Properties

Label 49.10.g
Level $49$
Weight $10$
Character orbit 49.g
Rep. character $\chi_{49}(2,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $492$
Newform subspaces $1$
Sturm bound $46$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 49.g (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 1 \)
Sturm bound: \(46\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(49, [\chi])\).

Total New Old
Modular forms 516 516 0
Cusp forms 492 492 0
Eisenstein series 24 24 0

Trace form

\( 492 q - 13 q^{2} - 175 q^{3} + 10227 q^{4} - 1547 q^{5} - 7210 q^{6} + 1022 q^{7} - 320 q^{8} + 391050 q^{9} - 4312 q^{10} + 1653 q^{11} + 58037 q^{12} + 319662 q^{13} - 1195467 q^{14} - 256642 q^{15} + 2222263 q^{16}+ \cdots + 9994213436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(49, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
49.10.g.a 49.g 49.g $492$ $25.237$ None 49.10.g.a \(-13\) \(-175\) \(-1547\) \(1022\) $\mathrm{SU}(2)[C_{21}]$