Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [49,10,Mod(8,49)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(49, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([12]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("49.8");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 49.e (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(25.2367559720\) |
Analytic rank: | \(0\) |
Dimension: | \(246\) |
Relative dimension: | \(41\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −27.5021 | − | 34.4865i | −199.512 | + | 96.0798i | −319.024 | + | 1397.74i | −1501.71 | + | 723.187i | 8800.44 | + | 4238.07i | −4765.10 | − | 4200.88i | 36629.2 | − | 17639.7i | 18301.5 | − | 22949.3i | 66240.4 | + | 31899.7i |
8.2 | −26.6219 | − | 33.3828i | 49.3817 | − | 23.7810i | −291.754 | + | 1278.26i | −854.899 | + | 411.698i | −2108.51 | − | 1015.40i | 5966.56 | + | 2180.32i | 30742.4 | − | 14804.8i | −10399.1 | + | 13040.1i | 36502.6 | + | 17578.7i |
8.3 | −26.0529 | − | 32.6693i | 118.418 | − | 57.0270i | −274.599 | + | 1203.10i | 2200.70 | − | 1059.80i | −4948.16 | − | 2382.91i | −3198.87 | + | 5488.24i | 27182.9 | − | 13090.6i | −1501.47 | + | 1882.79i | −91957.6 | − | 44284.5i |
8.4 | −23.5173 | − | 29.4897i | 195.572 | − | 94.1824i | −202.651 | + | 887.871i | −698.746 | + | 336.498i | −7376.72 | − | 3552.44i | −3080.46 | − | 5555.57i | 13549.3 | − | 6525.01i | 17105.8 | − | 21450.0i | 26355.8 | + | 12692.3i |
8.5 | −23.2638 | − | 29.1719i | −97.6307 | + | 47.0165i | −195.865 | + | 858.138i | 1758.58 | − | 846.886i | 3642.83 | + | 1754.29i | −183.693 | − | 6349.79i | 12378.1 | − | 5960.98i | −4950.94 | + | 6208.28i | −65616.5 | − | 31599.3i |
8.6 | −21.6527 | − | 27.1516i | −188.121 | + | 90.5945i | −154.440 | + | 676.645i | 1069.65 | − | 515.115i | 6533.11 | + | 3146.18i | 3522.82 | + | 5286.15i | 5696.04 | − | 2743.07i | 14910.1 | − | 18696.7i | −37146.9 | − | 17889.0i |
8.7 | −21.1744 | − | 26.5518i | −51.7391 | + | 24.9162i | −142.714 | + | 625.271i | 49.5766 | − | 23.8748i | 1757.11 | + | 846.181i | −5980.06 | + | 2143.01i | 3957.86 | − | 1906.01i | −10216.0 | + | 12810.5i | −1683.67 | − | 810.813i |
8.8 | −18.8984 | − | 23.6978i | 27.1152 | − | 13.0580i | −90.5066 | + | 396.535i | −2117.49 | + | 1019.73i | −821.877 | − | 395.795i | −4256.71 | + | 4715.29i | −2874.73 | + | 1384.40i | −11707.4 | + | 14680.7i | 64182.3 | + | 30908.6i |
8.9 | −18.0662 | − | 22.6543i | −9.41753 | + | 4.53524i | −72.8994 | + | 319.393i | −246.139 | + | 118.535i | 272.882 | + | 131.413i | 3654.09 | − | 5196.27i | −4813.85 | + | 2318.23i | −12204.0 | + | 15303.4i | 7132.13 | + | 3434.65i |
8.10 | −17.1277 | − | 21.4775i | 186.442 | − | 89.7859i | −53.9926 | + | 236.557i | 1440.03 | − | 693.481i | −5121.70 | − | 2466.48i | 6242.74 | − | 1175.50i | −6666.72 | + | 3210.52i | 14427.1 | − | 18091.0i | −39558.6 | − | 19050.4i |
8.11 | −15.8506 | − | 19.8760i | −168.327 | + | 81.0619i | −29.8833 | + | 130.927i | −2073.17 | + | 998.385i | 4279.26 | + | 2060.78i | 6349.51 | + | 193.114i | −8651.24 | + | 4166.22i | 9490.72 | − | 11901.0i | 52704.7 | + | 25381.3i |
8.12 | −15.3789 | − | 19.2846i | 196.531 | − | 94.6442i | −21.4526 | + | 93.9900i | −780.749 | + | 375.989i | −4847.61 | − | 2334.49i | −371.887 | + | 6341.55i | −9235.81 | + | 4447.73i | 17394.6 | − | 21812.2i | 19257.9 | + | 9274.11i |
8.13 | −10.6593 | − | 13.3664i | 80.5360 | − | 38.7841i | 48.8920 | − | 214.210i | 1662.55 | − | 800.640i | −1376.86 | − | 663.062i | −5873.41 | − | 2420.06i | −11270.8 | + | 5427.73i | −7290.30 | + | 9141.75i | −28423.3 | − | 13687.9i |
8.14 | −10.0609 | − | 12.6160i | −197.170 | + | 94.9520i | 55.9892 | − | 245.305i | 330.844 | − | 159.326i | 3181.63 | + | 1532.19i | −5507.02 | + | 3166.44i | −11101.8 | + | 5346.34i | 17587.9 | − | 22054.5i | −5338.66 | − | 2570.96i |
8.15 | −9.39492 | − | 11.7809i | 12.2276 | − | 5.88849i | 63.4066 | − | 277.803i | 653.991 | − | 314.946i | −184.249 | − | 88.7295i | 4089.19 | + | 4861.29i | −10819.4 | + | 5210.35i | −12157.3 | + | 15244.8i | −9854.52 | − | 4745.69i |
8.16 | −8.43131 | − | 10.5725i | −178.962 | + | 86.1834i | 73.2393 | − | 320.883i | −655.391 | + | 315.620i | 2420.06 | + | 1165.44i | −2632.21 | − | 5781.44i | −10248.0 | + | 4935.20i | 12327.6 | − | 15458.3i | 8862.71 | + | 4268.06i |
8.17 | −6.59322 | − | 8.26763i | 87.9977 | − | 42.3775i | 89.0475 | − | 390.142i | −1655.17 | + | 797.089i | −930.549 | − | 448.129i | −2112.47 | − | 5990.91i | −8690.73 | + | 4185.24i | −6324.41 | + | 7930.55i | 17503.0 | + | 8428.98i |
8.18 | −4.37680 | − | 5.48834i | −165.717 | + | 79.8053i | 102.965 | − | 451.120i | 2378.93 | − | 1145.63i | 1163.31 | + | 560.221i | 4498.11 | − | 4485.61i | −6164.79 | + | 2968.80i | 8821.23 | − | 11061.5i | −16699.7 | − | 8042.17i |
8.19 | −3.77201 | − | 4.72995i | −18.2261 | + | 8.77721i | 105.786 | − | 463.480i | 840.765 | − | 404.891i | 110.265 | + | 53.1006i | 1565.88 | + | 6156.43i | −5382.03 | + | 2591.85i | −12017.0 | + | 15068.8i | −5086.48 | − | 2449.52i |
8.20 | −2.51927 | − | 3.15906i | 165.553 | − | 79.7261i | 110.298 | − | 483.246i | −1650.12 | + | 794.655i | −668.932 | − | 322.141i | 6343.91 | − | 329.246i | −3668.39 | + | 1766.60i | 8779.36 | − | 11009.0i | 6667.46 | + | 3210.88i |
See next 80 embeddings (of 246 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.e | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 49.10.e.a | ✓ | 246 |
49.e | even | 7 | 1 | inner | 49.10.e.a | ✓ | 246 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
49.10.e.a | ✓ | 246 | 1.a | even | 1 | 1 | trivial |
49.10.e.a | ✓ | 246 | 49.e | even | 7 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(49, [\chi])\).