Properties

Label 49.10.e
Level $49$
Weight $10$
Character orbit 49.e
Rep. character $\chi_{49}(8,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $246$
Newform subspaces $1$
Sturm bound $46$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 49.e (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 1 \)
Sturm bound: \(46\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(49, [\chi])\).

Total New Old
Modular forms 258 258 0
Cusp forms 246 246 0
Eisenstein series 12 12 0

Trace form

\( 246 q - 5 q^{2} - 5 q^{3} - 10245 q^{4} + 677 q^{5} + 14971 q^{6} - 2408 q^{7} + 305 q^{8} - 340374 q^{9} + 54469 q^{10} - 75759 q^{11} - 139412 q^{12} + 46305 q^{13} + 1170141 q^{14} + 256627 q^{15} - 3026557 q^{16}+ \cdots - 9994213472 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(49, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
49.10.e.a 49.e 49.e $246$ $25.237$ None 49.10.e.a \(-5\) \(-5\) \(677\) \(-2408\) $\mathrm{SU}(2)[C_{7}]$