Properties

Label 49.10.c.g.30.3
Level $49$
Weight $10$
Character 49.30
Analytic conductor $25.237$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 230389400 found in table mf_hecke_traces.

Error: no document with id 261596712 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,10,Mod(18,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.18"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-18,-161] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2367559720\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 430 x^{8} + 61 x^{7} + 146753 x^{6} + 23608 x^{5} + 16136944 x^{4} + 30575648 x^{3} + \cdots + 761760000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{3}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 30.3
Root \(-0.371984 - 0.644295i\) of defining polynomial
Character \(\chi\) \(=\) 49.30
Dual form 49.10.c.g.18.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.74397 + 4.75269i) q^{2} +(1.70307 + 2.94981i) q^{3} +(240.941 + 417.323i) q^{4} +(828.924 - 1435.74i) q^{5} -18.6927 q^{6} -5454.36 q^{8} +(9835.70 - 17035.9i) q^{9} +(4549.08 + 7879.24i) q^{10} +(-16835.7 - 29160.2i) q^{11} +(-820.681 + 1421.46i) q^{12} -47905.5 q^{13} +5646.87 q^{15} +(-108395. + 187746. i) q^{16} +(-172909. - 299487. i) q^{17} +(53977.7 + 93492.1i) q^{18} +(-202522. + 350778. i) q^{19} +798888. q^{20} +184786. q^{22} +(926736. - 1.60515e6i) q^{23} +(-9289.18 - 16089.3i) q^{24} +(-397666. - 688778. i) q^{25} +(131451. - 227680. i) q^{26} +134047. q^{27} +682809. q^{29} +(-15494.8 + 26837.8i) q^{30} +(-4.54839e6 - 7.87804e6i) q^{31} +(-1.99118e6 - 3.44883e6i) q^{32} +(57344.7 - 99324.0i) q^{33} +1.89782e6 q^{34} +9.47930e6 q^{36} +(7.77984e6 - 1.34751e7i) q^{37} +(-1.11143e6 - 1.92505e6i) q^{38} +(-81586.5 - 141312. i) q^{39} +(-4.52125e6 + 7.83104e6i) q^{40} +2.98719e7 q^{41} +6.28733e6 q^{43} +(8.11281e6 - 1.40518e7i) q^{44} +(-1.63061e7 - 2.82430e7i) q^{45} +(5.08587e6 + 8.80898e6i) q^{46} +(5.16042e6 - 8.93811e6i) q^{47} -738421. q^{48} +4.36473e6 q^{50} +(588952. - 1.02010e6i) q^{51} +(-1.15424e7 - 1.99920e7i) q^{52} +(-3.32218e7 - 5.75419e7i) q^{53} +(-367820. + 637083. i) q^{54} -5.58219e7 q^{55} -1.37964e6 q^{57} +(-1.87361e6 + 3.24518e6i) q^{58} +(3.52902e7 + 6.11245e7i) q^{59} +(1.36056e6 + 2.35657e6i) q^{60} +(-4.21696e7 + 7.30399e7i) q^{61} +4.99225e7 q^{62} -8.91419e7 q^{64} +(-3.97100e7 + 6.87797e7i) q^{65} +(314704. + 545084. i) q^{66} +(1.05869e8 + 1.83370e8i) q^{67} +(8.33217e7 - 1.44317e8i) q^{68} +6.31320e6 q^{69} +2.31588e7 q^{71} +(-5.36475e7 + 9.29202e7i) q^{72} +(1.24284e8 + 2.15266e8i) q^{73} +(4.26952e7 + 7.39503e7i) q^{74} +(1.35451e6 - 2.34608e6i) q^{75} -1.95184e8 q^{76} +895483. q^{78} +(-1.33038e8 + 2.30429e8i) q^{79} +(1.79703e8 + 3.11255e8i) q^{80} +(-1.93368e8 - 3.34923e8i) q^{81} +(-8.19675e7 + 1.41972e8i) q^{82} -6.33299e8 q^{83} -5.73312e8 q^{85} +(-1.72522e7 + 2.98817e7i) q^{86} +(1.16287e6 + 2.01416e6i) q^{87} +(9.18278e7 + 1.59050e8i) q^{88} +(3.11190e8 - 5.38997e8i) q^{89} +1.78973e8 q^{90} +8.93156e8 q^{92} +(1.54925e7 - 2.68338e7i) q^{93} +(2.83201e7 + 4.90518e7i) q^{94} +(3.35751e8 + 5.81537e8i) q^{95} +(6.78226e6 - 1.17472e7i) q^{96} +9.94856e8 q^{97} -6.62362e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 18 q^{2} - 161 q^{3} - 940 q^{4} - 1533 q^{5} + 8708 q^{6} + 34272 q^{8} - 35734 q^{9} - 4298 q^{10} + 42213 q^{11} - 135604 q^{12} + 319676 q^{13} + 151394 q^{15} + 322064 q^{16} - 324681 q^{17}+ \cdots - 1900777180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.74397 + 4.75269i −0.121267 + 0.210041i −0.920268 0.391289i \(-0.872029\pi\)
0.799000 + 0.601331i \(0.205363\pi\)
\(3\) 1.70307 + 2.94981i 0.0121391 + 0.0210256i 0.872031 0.489450i \(-0.162803\pi\)
−0.859892 + 0.510476i \(0.829469\pi\)
\(4\) 240.941 + 417.323i 0.470588 + 0.815083i
\(5\) 828.924 1435.74i 0.593129 1.02733i −0.400679 0.916219i \(-0.631226\pi\)
0.993808 0.111112i \(-0.0354411\pi\)
\(6\) −18.6927 −0.00588833
\(7\) 0 0
\(8\) −5454.36 −0.470803
\(9\) 9835.70 17035.9i 0.499705 0.865515i
\(10\) 4549.08 + 7879.24i 0.143855 + 0.249163i
\(11\) −16835.7 29160.2i −0.346707 0.600515i 0.638955 0.769244i \(-0.279367\pi\)
−0.985662 + 0.168729i \(0.946034\pi\)
\(12\) −820.681 + 1421.46i −0.0114251 + 0.0197888i
\(13\) −47905.5 −0.465200 −0.232600 0.972572i \(-0.574723\pi\)
−0.232600 + 0.972572i \(0.574723\pi\)
\(14\) 0 0
\(15\) 5646.87 0.0288003
\(16\) −108395. + 187746.i −0.413495 + 0.716195i
\(17\) −172909. 299487.i −0.502107 0.869676i −0.999997 0.00243516i \(-0.999225\pi\)
0.497890 0.867240i \(-0.334108\pi\)
\(18\) 53977.7 + 93492.1i 0.121196 + 0.209917i
\(19\) −202522. + 350778.i −0.356518 + 0.617507i −0.987376 0.158391i \(-0.949369\pi\)
0.630859 + 0.775898i \(0.282703\pi\)
\(20\) 798888. 1.11648
\(21\) 0 0
\(22\) 184786. 0.168177
\(23\) 926736. 1.60515e6i 0.690527 1.19603i −0.281138 0.959667i \(-0.590712\pi\)
0.971665 0.236361i \(-0.0759548\pi\)
\(24\) −9289.18 16089.3i −0.00571514 0.00989891i
\(25\) −397666. 688778.i −0.203605 0.352654i
\(26\) 131451. 227680.i 0.0564136 0.0977113i
\(27\) 134047. 0.0485422
\(28\) 0 0
\(29\) 682809. 0.179270 0.0896351 0.995975i \(-0.471430\pi\)
0.0896351 + 0.995975i \(0.471430\pi\)
\(30\) −15494.8 + 26837.8i −0.00349254 + 0.00604925i
\(31\) −4.54839e6 7.87804e6i −0.884565 1.53211i −0.846211 0.532847i \(-0.821122\pi\)
−0.0383536 0.999264i \(-0.512211\pi\)
\(32\) −1.99118e6 3.44883e6i −0.335688 0.581429i
\(33\) 57344.7 99324.0i 0.00841746 0.0145795i
\(34\) 1.89782e6 0.243557
\(35\) 0 0
\(36\) 9.47930e6 0.940622
\(37\) 7.77984e6 1.34751e7i 0.682437 1.18202i −0.291798 0.956480i \(-0.594253\pi\)
0.974235 0.225536i \(-0.0724133\pi\)
\(38\) −1.11143e6 1.92505e6i −0.0864679 0.149767i
\(39\) −81586.5 141312.i −0.00564713 0.00978111i
\(40\) −4.52125e6 + 7.83104e6i −0.279247 + 0.483670i
\(41\) 2.98719e7 1.65095 0.825477 0.564435i \(-0.190906\pi\)
0.825477 + 0.564435i \(0.190906\pi\)
\(42\) 0 0
\(43\) 6.28733e6 0.280452 0.140226 0.990120i \(-0.455217\pi\)
0.140226 + 0.990120i \(0.455217\pi\)
\(44\) 8.11281e6 1.40518e7i 0.326313 0.565191i
\(45\) −1.63061e7 2.82430e7i −0.592780 1.02672i
\(46\) 5.08587e6 + 8.80898e6i 0.167477 + 0.290078i
\(47\) 5.16042e6 8.93811e6i 0.154257 0.267181i −0.778531 0.627606i \(-0.784035\pi\)
0.932788 + 0.360425i \(0.117368\pi\)
\(48\) −738421. −0.0200779
\(49\) 0 0
\(50\) 4.36473e6 0.0987626
\(51\) 588952. 1.02010e6i 0.0121903 0.0211142i
\(52\) −1.15424e7 1.99920e7i −0.218918 0.379177i
\(53\) −3.32218e7 5.75419e7i −0.578339 1.00171i −0.995670 0.0929577i \(-0.970368\pi\)
0.417331 0.908754i \(-0.362965\pi\)
\(54\) −367820. + 637083.i −0.00588659 + 0.0101959i
\(55\) −5.58219e7 −0.822570
\(56\) 0 0
\(57\) −1.37964e6 −0.0173113
\(58\) −1.87361e6 + 3.24518e6i −0.0217396 + 0.0376541i
\(59\) 3.52902e7 + 6.11245e7i 0.379158 + 0.656721i 0.990940 0.134305i \(-0.0428803\pi\)
−0.611782 + 0.791027i \(0.709547\pi\)
\(60\) 1.36056e6 + 2.35657e6i 0.0135531 + 0.0234746i
\(61\) −4.21696e7 + 7.30399e7i −0.389955 + 0.675423i −0.992443 0.122706i \(-0.960843\pi\)
0.602488 + 0.798128i \(0.294176\pi\)
\(62\) 4.99225e7 0.429076
\(63\) 0 0
\(64\) −8.91419e7 −0.664159
\(65\) −3.97100e7 + 6.87797e7i −0.275924 + 0.477914i
\(66\) 314704. + 545084.i 0.00204153 + 0.00353603i
\(67\) 1.05869e8 + 1.83370e8i 0.641846 + 1.11171i 0.985020 + 0.172438i \(0.0551644\pi\)
−0.343175 + 0.939272i \(0.611502\pi\)
\(68\) 8.33217e7 1.44317e8i 0.472572 0.818519i
\(69\) 6.31320e6 0.0335296
\(70\) 0 0
\(71\) 2.31588e7 0.108157 0.0540785 0.998537i \(-0.482778\pi\)
0.0540785 + 0.998537i \(0.482778\pi\)
\(72\) −5.36475e7 + 9.29202e7i −0.235263 + 0.407487i
\(73\) 1.24284e8 + 2.15266e8i 0.512226 + 0.887201i 0.999900 + 0.0141754i \(0.00451231\pi\)
−0.487674 + 0.873026i \(0.662154\pi\)
\(74\) 4.26952e7 + 7.39503e7i 0.165515 + 0.286680i
\(75\) 1.35451e6 2.34608e6i 0.00494318 0.00856184i
\(76\) −1.95184e8 −0.671092
\(77\) 0 0
\(78\) 895483. 0.00273925
\(79\) −1.33038e8 + 2.30429e8i −0.384287 + 0.665604i −0.991670 0.128805i \(-0.958886\pi\)
0.607383 + 0.794409i \(0.292219\pi\)
\(80\) 1.79703e8 + 3.11255e8i 0.490513 + 0.849593i
\(81\) −1.93368e8 3.34923e8i −0.499116 0.864494i
\(82\) −8.19675e7 + 1.41972e8i −0.200207 + 0.346769i
\(83\) −6.33299e8 −1.46473 −0.732365 0.680912i \(-0.761583\pi\)
−0.732365 + 0.680912i \(0.761583\pi\)
\(84\) 0 0
\(85\) −5.73312e8 −1.19126
\(86\) −1.72522e7 + 2.98817e7i −0.0340097 + 0.0589065i
\(87\) 1.16287e6 + 2.01416e6i 0.00217619 + 0.00376926i
\(88\) 9.18278e7 + 1.59050e8i 0.163231 + 0.282724i
\(89\) 3.11190e8 5.38997e8i 0.525740 0.910608i −0.473811 0.880627i \(-0.657122\pi\)
0.999550 0.0299813i \(-0.00954476\pi\)
\(90\) 1.78973e8 0.287539
\(91\) 0 0
\(92\) 8.93156e8 1.29982
\(93\) 1.54925e7 2.68338e7i 0.0214757 0.0371970i
\(94\) 2.83201e7 + 4.90518e7i 0.0374127 + 0.0648007i
\(95\) 3.35751e8 + 5.81537e8i 0.422922 + 0.732523i
\(96\) 6.78226e6 1.17472e7i 0.00814994 0.0141161i
\(97\) 9.94856e8 1.14100 0.570502 0.821296i \(-0.306749\pi\)
0.570502 + 0.821296i \(0.306749\pi\)
\(98\) 0 0
\(99\) −6.62362e8 −0.693006
\(100\) 1.91628e8 3.31910e8i 0.191628 0.331910i
\(101\) −4.19400e8 7.26423e8i −0.401035 0.694613i 0.592816 0.805338i \(-0.298016\pi\)
−0.993851 + 0.110725i \(0.964683\pi\)
\(102\) 3.23213e6 + 5.59822e6i 0.00295657 + 0.00512093i
\(103\) −7.67183e8 + 1.32880e9i −0.671632 + 1.16330i 0.305809 + 0.952093i \(0.401073\pi\)
−0.977441 + 0.211208i \(0.932260\pi\)
\(104\) 2.61294e8 0.219018
\(105\) 0 0
\(106\) 3.64639e8 0.280535
\(107\) 3.11913e8 5.40249e8i 0.230041 0.398443i −0.727779 0.685812i \(-0.759447\pi\)
0.957820 + 0.287369i \(0.0927805\pi\)
\(108\) 3.22974e7 + 5.59408e7i 0.0228434 + 0.0395660i
\(109\) −1.09462e9 1.89593e9i −0.742749 1.28648i −0.951239 0.308455i \(-0.900188\pi\)
0.208490 0.978025i \(-0.433145\pi\)
\(110\) 1.53174e8 2.65304e8i 0.0997509 0.172774i
\(111\) 5.29985e7 0.0331368
\(112\) 0 0
\(113\) 9.14275e8 0.527502 0.263751 0.964591i \(-0.415040\pi\)
0.263751 + 0.964591i \(0.415040\pi\)
\(114\) 3.78569e6 6.55700e6i 0.00209929 0.00363608i
\(115\) −1.53639e9 2.66110e9i −0.819144 1.41880i
\(116\) 1.64517e8 + 2.84952e8i 0.0843625 + 0.146120i
\(117\) −4.71184e8 + 8.16114e8i −0.232463 + 0.402638i
\(118\) −3.87341e8 −0.183918
\(119\) 0 0
\(120\) −3.08001e7 −0.0135593
\(121\) 6.12095e8 1.06018e9i 0.259588 0.449619i
\(122\) −2.31424e8 4.00838e8i −0.0945778 0.163813i
\(123\) 5.08740e7 + 8.81163e7i 0.0200412 + 0.0347123i
\(124\) 2.19179e9 3.79629e9i 0.832532 1.44199i
\(125\) 1.91944e9 0.703202
\(126\) 0 0
\(127\) 1.00914e9 0.344218 0.172109 0.985078i \(-0.444942\pi\)
0.172109 + 0.985078i \(0.444942\pi\)
\(128\) 1.26409e9 2.18947e9i 0.416229 0.720930i
\(129\) 1.07078e7 + 1.85464e7i 0.00340444 + 0.00589667i
\(130\) −2.17926e8 3.77458e8i −0.0669212 0.115911i
\(131\) −2.19762e9 + 3.80639e9i −0.651976 + 1.12926i 0.330666 + 0.943748i \(0.392727\pi\)
−0.982643 + 0.185509i \(0.940607\pi\)
\(132\) 5.52669e7 0.0158446
\(133\) 0 0
\(134\) −1.16200e9 −0.311340
\(135\) 1.11115e8 1.92456e8i 0.0287918 0.0498689i
\(136\) 9.43107e8 + 1.63351e9i 0.236394 + 0.409446i
\(137\) −8.75011e7 1.51556e8i −0.0212212 0.0367563i 0.855220 0.518266i \(-0.173422\pi\)
−0.876441 + 0.481509i \(0.840089\pi\)
\(138\) −1.73232e7 + 3.00047e7i −0.00406605 + 0.00704260i
\(139\) 1.87062e9 0.425030 0.212515 0.977158i \(-0.431835\pi\)
0.212515 + 0.977158i \(0.431835\pi\)
\(140\) 0 0
\(141\) 3.51543e7 0.00749018
\(142\) −6.35471e7 + 1.10067e8i −0.0131159 + 0.0227174i
\(143\) 8.06520e8 + 1.39693e9i 0.161288 + 0.279360i
\(144\) 2.13229e9 + 3.69323e9i 0.413252 + 0.715773i
\(145\) 5.65996e8 9.80334e8i 0.106330 0.184170i
\(146\) −1.36412e9 −0.248465
\(147\) 0 0
\(148\) 7.49794e9 1.28459
\(149\) −5.69185e9 + 9.85857e9i −0.946053 + 1.63861i −0.192423 + 0.981312i \(0.561634\pi\)
−0.753630 + 0.657299i \(0.771699\pi\)
\(150\) 7.43346e6 + 1.28751e7i 0.00119889 + 0.00207654i
\(151\) −3.77654e8 6.54115e8i −0.0591149 0.102390i 0.834953 0.550321i \(-0.185495\pi\)
−0.894068 + 0.447931i \(0.852161\pi\)
\(152\) 1.10463e9 1.91327e9i 0.167850 0.290724i
\(153\) −6.80271e9 −1.00362
\(154\) 0 0
\(155\) −1.50811e10 −2.09865
\(156\) 3.93151e7 6.80958e7i 0.00531495 0.00920576i
\(157\) −3.52403e8 6.10380e8i −0.0462904 0.0801774i 0.841952 0.539553i \(-0.181407\pi\)
−0.888242 + 0.459375i \(0.848073\pi\)
\(158\) −7.30107e8 1.26458e9i −0.0932029 0.161432i
\(159\) 1.13158e8 1.95996e8i 0.0140411 0.0243198i
\(160\) −6.60216e9 −0.796427
\(161\) 0 0
\(162\) 2.12238e9 0.242106
\(163\) −3.29346e8 + 5.70444e8i −0.0365433 + 0.0632949i −0.883719 0.468019i \(-0.844968\pi\)
0.847175 + 0.531313i \(0.178301\pi\)
\(164\) 7.19737e9 + 1.24662e10i 0.776920 + 1.34567i
\(165\) −9.50688e7 1.64664e8i −0.00998528 0.0172950i
\(166\) 1.73775e9 3.00988e9i 0.177624 0.307654i
\(167\) 2.62390e9 0.261050 0.130525 0.991445i \(-0.458334\pi\)
0.130525 + 0.991445i \(0.458334\pi\)
\(168\) 0 0
\(169\) −8.30957e9 −0.783589
\(170\) 1.57315e9 2.72478e9i 0.144461 0.250214i
\(171\) 3.98389e9 + 6.90030e9i 0.356308 + 0.617143i
\(172\) 1.51488e9 + 2.62384e9i 0.131977 + 0.228592i
\(173\) −5.31176e9 + 9.20023e9i −0.450849 + 0.780893i −0.998439 0.0558539i \(-0.982212\pi\)
0.547590 + 0.836747i \(0.315545\pi\)
\(174\) −1.27636e7 −0.00105560
\(175\) 0 0
\(176\) 7.29963e9 0.573448
\(177\) −1.20204e8 + 2.08199e8i −0.00920530 + 0.0159441i
\(178\) 1.70779e9 + 2.95798e9i 0.127510 + 0.220854i
\(179\) 2.16215e9 + 3.74496e9i 0.157416 + 0.272652i 0.933936 0.357440i \(-0.116350\pi\)
−0.776520 + 0.630092i \(0.783017\pi\)
\(180\) 7.85762e9 1.36098e10i 0.557911 0.966330i
\(181\) −8.10532e8 −0.0561328 −0.0280664 0.999606i \(-0.508935\pi\)
−0.0280664 + 0.999606i \(0.508935\pi\)
\(182\) 0 0
\(183\) −2.87272e8 −0.0189349
\(184\) −5.05476e9 + 8.75509e9i −0.325102 + 0.563094i
\(185\) −1.28978e10 2.23396e10i −0.809547 1.40218i
\(186\) 8.50217e7 + 1.47262e8i 0.00520861 + 0.00902157i
\(187\) −5.82206e9 + 1.00841e10i −0.348169 + 0.603046i
\(188\) 4.97343e9 0.290366
\(189\) 0 0
\(190\) −3.68516e9 −0.205147
\(191\) −6.69665e9 + 1.15989e10i −0.364089 + 0.630620i −0.988629 0.150372i \(-0.951953\pi\)
0.624541 + 0.780992i \(0.285286\pi\)
\(192\) −1.51815e8 2.62952e8i −0.00806231 0.0139643i
\(193\) −4.33922e8 7.51575e8i −0.0225115 0.0389910i 0.854550 0.519369i \(-0.173833\pi\)
−0.877062 + 0.480378i \(0.840500\pi\)
\(194\) −2.72985e9 + 4.72824e9i −0.138367 + 0.239658i
\(195\) −2.70516e8 −0.0133979
\(196\) 0 0
\(197\) 1.72523e10 0.816112 0.408056 0.912957i \(-0.366207\pi\)
0.408056 + 0.912957i \(0.366207\pi\)
\(198\) 1.81750e9 3.14800e9i 0.0840390 0.145560i
\(199\) 1.61364e9 + 2.79490e9i 0.0729403 + 0.126336i 0.900189 0.435500i \(-0.143428\pi\)
−0.827248 + 0.561836i \(0.810095\pi\)
\(200\) 2.16902e9 + 3.75684e9i 0.0958578 + 0.166031i
\(201\) −3.60604e8 + 6.24585e8i −0.0155829 + 0.0269904i
\(202\) 4.60328e9 0.194530
\(203\) 0 0
\(204\) 5.67612e8 0.0229465
\(205\) 2.47615e10 4.28882e10i 0.979230 1.69608i
\(206\) −4.21025e9 7.29237e9i −0.162894 0.282141i
\(207\) −1.82302e10 3.15756e10i −0.690120 1.19532i
\(208\) 5.19273e9 8.99407e9i 0.192358 0.333174i
\(209\) 1.36384e10 0.494429
\(210\) 0 0
\(211\) 4.90060e9 0.170207 0.0851036 0.996372i \(-0.472878\pi\)
0.0851036 + 0.996372i \(0.472878\pi\)
\(212\) 1.60090e10 2.77284e10i 0.544319 0.942788i
\(213\) 3.94412e7 + 6.83142e7i 0.00131293 + 0.00227406i
\(214\) 1.71176e9 + 2.96485e9i 0.0557931 + 0.0966364i
\(215\) 5.21172e9 9.02696e9i 0.166344 0.288117i
\(216\) −7.31140e8 −0.0228538
\(217\) 0 0
\(218\) 1.20144e10 0.360285
\(219\) −4.23329e8 + 7.33227e8i −0.0124360 + 0.0215397i
\(220\) −1.34498e10 2.32957e10i −0.387092 0.670463i
\(221\) 8.28327e9 + 1.43470e10i 0.233581 + 0.404573i
\(222\) −1.45426e8 + 2.51886e8i −0.00401841 + 0.00696009i
\(223\) 1.61028e10 0.436044 0.218022 0.975944i \(-0.430039\pi\)
0.218022 + 0.975944i \(0.430039\pi\)
\(224\) 0 0
\(225\) −1.56453e10 −0.406970
\(226\) −2.50874e9 + 4.34527e9i −0.0639688 + 0.110797i
\(227\) −2.38627e10 4.13315e10i −0.596491 1.03315i −0.993335 0.115267i \(-0.963228\pi\)
0.396843 0.917886i \(-0.370106\pi\)
\(228\) −3.32412e8 5.75755e8i −0.00814648 0.0141101i
\(229\) −8.48309e9 + 1.46931e10i −0.203842 + 0.353065i −0.949763 0.312969i \(-0.898676\pi\)
0.745921 + 0.666035i \(0.232010\pi\)
\(230\) 1.68632e10 0.397342
\(231\) 0 0
\(232\) −3.72429e9 −0.0844009
\(233\) −2.32965e10 + 4.03508e10i −0.517833 + 0.896912i 0.481953 + 0.876197i \(0.339928\pi\)
−0.999785 + 0.0207152i \(0.993406\pi\)
\(234\) −2.58583e9 4.47878e9i −0.0563804 0.0976537i
\(235\) −8.55519e9 1.48180e10i −0.182989 0.316946i
\(236\) −1.70057e10 + 2.94548e10i −0.356855 + 0.618091i
\(237\) −9.06297e8 −0.0186596
\(238\) 0 0
\(239\) 4.41773e10 0.875808 0.437904 0.899022i \(-0.355721\pi\)
0.437904 + 0.899022i \(0.355721\pi\)
\(240\) −6.12095e8 + 1.06018e9i −0.0119088 + 0.0206266i
\(241\) 1.67014e10 + 2.89276e10i 0.318915 + 0.552377i 0.980262 0.197703i \(-0.0633482\pi\)
−0.661347 + 0.750080i \(0.730015\pi\)
\(242\) 3.35914e9 + 5.81819e9i 0.0629591 + 0.109048i
\(243\) 1.97786e9 3.42576e9i 0.0363888 0.0630272i
\(244\) −4.06416e10 −0.734034
\(245\) 0 0
\(246\) −5.58386e8 −0.00972136
\(247\) 9.70191e9 1.68042e10i 0.165852 0.287264i
\(248\) 2.48086e10 + 4.29697e10i 0.416456 + 0.721323i
\(249\) −1.07856e9 1.86811e9i −0.0177806 0.0307968i
\(250\) −5.26689e9 + 9.12252e9i −0.0852755 + 0.147702i
\(251\) 3.09851e10 0.492745 0.246372 0.969175i \(-0.420761\pi\)
0.246372 + 0.969175i \(0.420761\pi\)
\(252\) 0 0
\(253\) −6.24089e10 −0.957644
\(254\) −2.76904e9 + 4.79611e9i −0.0417424 + 0.0722999i
\(255\) −9.76393e8 1.69116e9i −0.0144609 0.0250469i
\(256\) −1.58831e10 2.75103e10i −0.231129 0.400328i
\(257\) 1.44350e10 2.50021e10i 0.206404 0.357502i −0.744175 0.667984i \(-0.767157\pi\)
0.950579 + 0.310483i \(0.100491\pi\)
\(258\) −1.17527e8 −0.00165139
\(259\) 0 0
\(260\) −3.82711e10 −0.519387
\(261\) 6.71590e9 1.16323e10i 0.0895823 0.155161i
\(262\) −1.20604e10 2.08892e10i −0.158127 0.273884i
\(263\) 5.51341e10 + 9.54951e10i 0.710591 + 1.23078i 0.964636 + 0.263587i \(0.0849058\pi\)
−0.254044 + 0.967193i \(0.581761\pi\)
\(264\) −3.12779e8 + 5.41749e8i −0.00396296 + 0.00686405i
\(265\) −1.10153e11 −1.37212
\(266\) 0 0
\(267\) 2.11992e9 0.0255281
\(268\) −5.10162e10 + 8.83627e10i −0.604090 + 1.04632i
\(269\) 7.59021e10 + 1.31466e11i 0.883829 + 1.53084i 0.847050 + 0.531514i \(0.178377\pi\)
0.0367799 + 0.999323i \(0.488290\pi\)
\(270\) 6.09790e8 + 1.05619e9i 0.00698302 + 0.0120949i
\(271\) 6.22958e10 1.07899e11i 0.701612 1.21523i −0.266289 0.963893i \(-0.585797\pi\)
0.967900 0.251334i \(-0.0808692\pi\)
\(272\) 7.49700e10 0.830476
\(273\) 0 0
\(274\) 9.60400e8 0.0102938
\(275\) −1.33899e10 + 2.31921e10i −0.141183 + 0.244536i
\(276\) 1.52111e9 + 2.63464e9i 0.0157787 + 0.0273294i
\(277\) −1.63156e10 2.82594e10i −0.166511 0.288405i 0.770680 0.637223i \(-0.219917\pi\)
−0.937191 + 0.348817i \(0.886583\pi\)
\(278\) −5.13292e9 + 8.89048e9i −0.0515422 + 0.0892738i
\(279\) −1.78946e11 −1.76809
\(280\) 0 0
\(281\) 1.22979e10 0.117666 0.0588331 0.998268i \(-0.481262\pi\)
0.0588331 + 0.998268i \(0.481262\pi\)
\(282\) −9.64623e7 + 1.67078e8i −0.000908315 + 0.00157325i
\(283\) 2.97894e10 + 5.15968e10i 0.276072 + 0.478171i 0.970405 0.241483i \(-0.0776337\pi\)
−0.694333 + 0.719654i \(0.744300\pi\)
\(284\) 5.57992e9 + 9.66471e9i 0.0508974 + 0.0881569i
\(285\) −1.14362e9 + 1.98080e9i −0.0102678 + 0.0177844i
\(286\) −8.85226e9 −0.0782361
\(287\) 0 0
\(288\) −7.83387e10 −0.670981
\(289\) −5.00885e8 + 8.67558e8i −0.00422374 + 0.00731574i
\(290\) 3.10615e9 + 5.38001e9i 0.0257888 + 0.0446676i
\(291\) 1.69431e9 + 2.93464e9i 0.0138508 + 0.0239903i
\(292\) −5.98902e10 + 1.03733e11i −0.482095 + 0.835013i
\(293\) 9.22958e10 0.731606 0.365803 0.930692i \(-0.380794\pi\)
0.365803 + 0.930692i \(0.380794\pi\)
\(294\) 0 0
\(295\) 1.17012e11 0.899559
\(296\) −4.24341e10 + 7.34979e10i −0.321293 + 0.556497i
\(297\) −2.25677e9 3.90884e9i −0.0168300 0.0291503i
\(298\) −3.12365e10 5.41032e10i −0.229451 0.397420i
\(299\) −4.43957e10 + 7.68957e10i −0.321233 + 0.556393i
\(300\) 1.30543e9 0.00930481
\(301\) 0 0
\(302\) 4.14508e9 0.0286749
\(303\) 1.42854e9 2.47430e9i 0.00973644 0.0168640i
\(304\) −4.39049e10 7.60455e10i −0.294837 0.510672i
\(305\) 6.99107e10 + 1.21089e11i 0.462588 + 0.801226i
\(306\) 1.86664e10 3.23312e10i 0.121707 0.210802i
\(307\) 1.38141e11 0.887567 0.443783 0.896134i \(-0.353636\pi\)
0.443783 + 0.896134i \(0.353636\pi\)
\(308\) 0 0
\(309\) −5.22628e9 −0.0326121
\(310\) 4.13819e10 7.16756e10i 0.254497 0.440802i
\(311\) −4.44357e10 7.69648e10i −0.269346 0.466520i 0.699347 0.714782i \(-0.253474\pi\)
−0.968693 + 0.248262i \(0.920141\pi\)
\(312\) 4.45003e8 + 7.70767e8i 0.00265868 + 0.00460498i
\(313\) 1.34313e11 2.32637e11i 0.790986 1.37003i −0.134370 0.990931i \(-0.542901\pi\)
0.925357 0.379097i \(-0.123765\pi\)
\(314\) 3.86793e9 0.0224541
\(315\) 0 0
\(316\) −1.28218e11 −0.723364
\(317\) 2.53855e10 4.39689e10i 0.141195 0.244556i −0.786752 0.617269i \(-0.788239\pi\)
0.927947 + 0.372713i \(0.121572\pi\)
\(318\) 6.21006e8 + 1.07561e9i 0.00340545 + 0.00589841i
\(319\) −1.14955e10 1.99109e10i −0.0621543 0.107654i
\(320\) −7.38918e10 + 1.27984e11i −0.393932 + 0.682310i
\(321\) 2.12484e9 0.0111700
\(322\) 0 0
\(323\) 1.40071e11 0.716041
\(324\) 9.31806e10 1.61393e11i 0.469756 0.813642i
\(325\) 1.90504e10 + 3.29962e10i 0.0947171 + 0.164055i
\(326\) −1.80743e9 3.13056e9i −0.00886302 0.0153512i
\(327\) 3.72842e9 6.45781e9i 0.0180327 0.0312335i
\(328\) −1.62932e11 −0.777274
\(329\) 0 0
\(330\) 1.04346e9 0.00484356
\(331\) 6.58014e10 1.13971e11i 0.301307 0.521879i −0.675125 0.737703i \(-0.735911\pi\)
0.976432 + 0.215824i \(0.0692438\pi\)
\(332\) −1.52588e11 2.64290e11i −0.689285 1.19388i
\(333\) −1.53040e11 2.65074e11i −0.682035 1.18132i
\(334\) −7.19990e9 + 1.24706e10i −0.0316568 + 0.0548312i
\(335\) 3.51028e11 1.52279
\(336\) 0 0
\(337\) 1.17560e11 0.496506 0.248253 0.968695i \(-0.420144\pi\)
0.248253 + 0.968695i \(0.420144\pi\)
\(338\) 2.28012e10 3.94928e10i 0.0950238 0.164586i
\(339\) 1.55708e9 + 2.69694e9i 0.00640341 + 0.0110910i
\(340\) −1.38135e11 2.39256e11i −0.560593 0.970975i
\(341\) −1.53150e11 + 2.65264e11i −0.613371 + 1.06239i
\(342\) −4.37267e10 −0.172834
\(343\) 0 0
\(344\) −3.42934e10 −0.132038
\(345\) 5.23316e9 9.06410e9i 0.0198874 0.0344460i
\(346\) −2.91506e10 5.04903e10i −0.109346 0.189394i
\(347\) 1.11842e11 + 1.93716e11i 0.414117 + 0.717272i 0.995335 0.0964758i \(-0.0307570\pi\)
−0.581218 + 0.813748i \(0.697424\pi\)
\(348\) −5.60369e8 + 9.70587e8i −0.00204818 + 0.00354754i
\(349\) −1.91861e11 −0.692264 −0.346132 0.938186i \(-0.612505\pi\)
−0.346132 + 0.938186i \(0.612505\pi\)
\(350\) 0 0
\(351\) −6.42158e9 −0.0225819
\(352\) −6.70458e10 + 1.16127e11i −0.232771 + 0.403172i
\(353\) −2.23290e11 3.86749e11i −0.765390 1.32569i −0.940040 0.341063i \(-0.889213\pi\)
0.174651 0.984630i \(-0.444120\pi\)
\(354\) −6.59670e8 1.14258e9i −0.00223261 0.00386699i
\(355\) 1.91969e10 3.32500e10i 0.0641511 0.111113i
\(356\) 2.99914e11 0.989628
\(357\) 0 0
\(358\) −2.37315e10 −0.0763575
\(359\) −6.41252e10 + 1.11068e11i −0.203753 + 0.352910i −0.949735 0.313056i \(-0.898647\pi\)
0.745982 + 0.665966i \(0.231981\pi\)
\(360\) 8.89393e10 + 1.54047e11i 0.279082 + 0.483385i
\(361\) 7.93135e10 + 1.37375e11i 0.245790 + 0.425721i
\(362\) 2.22407e9 3.85221e9i 0.00680708 0.0117902i
\(363\) 4.16977e9 0.0126047
\(364\) 0 0
\(365\) 4.12087e11 1.21527
\(366\) 7.88264e8 1.36531e9i 0.00229618 0.00397711i
\(367\) 1.76396e11 + 3.05526e11i 0.507564 + 0.879127i 0.999962 + 0.00875648i \(0.00278731\pi\)
−0.492397 + 0.870370i \(0.663879\pi\)
\(368\) 2.00908e11 + 3.47982e11i 0.571060 + 0.989104i
\(369\) 2.93811e11 5.08895e11i 0.824991 1.42893i
\(370\) 1.41564e11 0.392687
\(371\) 0 0
\(372\) 1.49311e10 0.0404249
\(373\) 2.39725e11 4.15215e11i 0.641244 1.11067i −0.343912 0.939002i \(-0.611752\pi\)
0.985155 0.171665i \(-0.0549146\pi\)
\(374\) −3.19511e10 5.53410e10i −0.0844430 0.146260i
\(375\) 3.26895e9 + 5.66199e9i 0.00853627 + 0.0147853i
\(376\) −2.81468e10 + 4.87517e10i −0.0726246 + 0.125790i
\(377\) −3.27103e10 −0.0833965
\(378\) 0 0
\(379\) −5.82262e11 −1.44958 −0.724790 0.688970i \(-0.758063\pi\)
−0.724790 + 0.688970i \(0.758063\pi\)
\(380\) −1.61792e11 + 2.80233e11i −0.398045 + 0.689434i
\(381\) 1.71863e9 + 2.97676e9i 0.00417850 + 0.00723738i
\(382\) −3.67508e10 6.36542e10i −0.0883042 0.152947i
\(383\) −2.80765e11 + 4.86300e11i −0.666729 + 1.15481i 0.312085 + 0.950054i \(0.398973\pi\)
−0.978813 + 0.204754i \(0.934361\pi\)
\(384\) 8.61134e9 0.0202107
\(385\) 0 0
\(386\) 4.76267e9 0.0109196
\(387\) 6.18403e10 1.07111e11i 0.140143 0.242735i
\(388\) 2.39702e11 + 4.15176e11i 0.536944 + 0.930014i
\(389\) −2.11258e11 3.65909e11i −0.467778 0.810215i 0.531544 0.847031i \(-0.321612\pi\)
−0.999322 + 0.0368154i \(0.988279\pi\)
\(390\) 7.42287e8 1.28568e9i 0.00162473 0.00281411i
\(391\) −6.40963e11 −1.38688
\(392\) 0 0
\(393\) −1.49708e10 −0.0316577
\(394\) −4.73399e10 + 8.19950e10i −0.0989678 + 0.171417i
\(395\) 2.20557e11 + 3.82017e11i 0.455864 + 0.789579i
\(396\) −1.59590e11 2.76419e11i −0.326121 0.564858i
\(397\) 1.51671e11 2.62702e11i 0.306440 0.530770i −0.671141 0.741330i \(-0.734195\pi\)
0.977581 + 0.210560i \(0.0675287\pi\)
\(398\) −1.77111e10 −0.0353811
\(399\) 0 0
\(400\) 1.72421e11 0.336759
\(401\) −2.98643e11 + 5.17265e11i −0.576770 + 0.998995i 0.419077 + 0.907951i \(0.362354\pi\)
−0.995847 + 0.0910443i \(0.970979\pi\)
\(402\) −1.97897e9 3.42768e9i −0.00377940 0.00654611i
\(403\) 2.17893e11 + 3.77401e11i 0.411500 + 0.712739i
\(404\) 2.02102e11 3.50050e11i 0.377445 0.653754i
\(405\) −6.41148e11 −1.18416
\(406\) 0 0
\(407\) −5.23915e11 −0.946424
\(408\) −3.21236e9 + 5.56397e9i −0.00573923 + 0.00994064i
\(409\) −3.86849e10 6.70042e10i −0.0683575 0.118399i 0.829821 0.558030i \(-0.188443\pi\)
−0.898178 + 0.439631i \(0.855109\pi\)
\(410\) 1.35890e11 + 2.35368e11i 0.237497 + 0.411357i
\(411\) 2.98042e8 5.16223e8i 0.000515215 0.000892379i
\(412\) −7.39384e11 −1.26425
\(413\) 0 0
\(414\) 2.00092e11 0.334756
\(415\) −5.24957e11 + 9.09252e11i −0.868774 + 1.50476i
\(416\) 9.53886e10 + 1.65218e11i 0.156162 + 0.270481i
\(417\) 3.18580e9 + 5.51798e9i 0.00515949 + 0.00893650i
\(418\) −3.74233e10 + 6.48190e10i −0.0599582 + 0.103851i
\(419\) 1.19811e12 1.89904 0.949521 0.313704i \(-0.101570\pi\)
0.949521 + 0.313704i \(0.101570\pi\)
\(420\) 0 0
\(421\) −4.34567e11 −0.674198 −0.337099 0.941469i \(-0.609446\pi\)
−0.337099 + 0.941469i \(0.609446\pi\)
\(422\) −1.34471e10 + 2.32910e10i −0.0206406 + 0.0357505i
\(423\) −1.01513e11 1.75825e11i −0.154166 0.267023i
\(424\) 1.81204e11 + 3.13855e11i 0.272284 + 0.471609i
\(425\) −1.37520e11 + 2.38191e11i −0.204463 + 0.354141i
\(426\) −4.32902e8 −0.000636863
\(427\) 0 0
\(428\) 3.00611e11 0.433019
\(429\) −2.74713e9 + 4.75816e9i −0.00391580 + 0.00678237i
\(430\) 2.86016e10 + 4.95394e10i 0.0403443 + 0.0698783i
\(431\) 1.35601e11 + 2.34868e11i 0.189284 + 0.327850i 0.945012 0.327036i \(-0.106050\pi\)
−0.755727 + 0.654886i \(0.772717\pi\)
\(432\) −1.45301e10 + 2.51668e10i −0.0200720 + 0.0347657i
\(433\) 1.84420e11 0.252123 0.126062 0.992022i \(-0.459766\pi\)
0.126062 + 0.992022i \(0.459766\pi\)
\(434\) 0 0
\(435\) 3.85573e9 0.00516304
\(436\) 5.27476e11 9.13615e11i 0.699058 1.21080i
\(437\) 3.75369e11 + 6.50158e11i 0.492370 + 0.852811i
\(438\) −2.32320e9 4.02390e9i −0.00301615 0.00522413i
\(439\) −3.15142e11 + 5.45842e11i −0.404963 + 0.701417i −0.994317 0.106458i \(-0.966049\pi\)
0.589354 + 0.807875i \(0.299382\pi\)
\(440\) 3.04473e11 0.387268
\(441\) 0 0
\(442\) −9.09161e10 −0.113303
\(443\) 1.75387e11 3.03779e11i 0.216362 0.374750i −0.737331 0.675531i \(-0.763914\pi\)
0.953693 + 0.300782i \(0.0972476\pi\)
\(444\) 1.27695e10 + 2.21175e10i 0.0155938 + 0.0270092i
\(445\) −5.15906e11 8.93575e11i −0.623663 1.08022i
\(446\) −4.41857e10 + 7.65319e10i −0.0528780 + 0.0915873i
\(447\) −3.87746e10 −0.0459370
\(448\) 0 0
\(449\) −3.31400e11 −0.384808 −0.192404 0.981316i \(-0.561628\pi\)
−0.192404 + 0.981316i \(0.561628\pi\)
\(450\) 4.29302e10 7.43573e10i 0.0493522 0.0854805i
\(451\) −5.02913e11 8.71071e11i −0.572398 0.991423i
\(452\) 2.20287e11 + 3.81548e11i 0.248236 + 0.429958i
\(453\) 1.28634e9 2.22801e9i 0.00143521 0.00248585i
\(454\) 2.61914e11 0.289340
\(455\) 0 0
\(456\) 7.52506e9 0.00815020
\(457\) −1.26740e10 + 2.19519e10i −0.0135922 + 0.0235424i −0.872741 0.488183i \(-0.837660\pi\)
0.859149 + 0.511725i \(0.170993\pi\)
\(458\) −4.65547e10 8.06350e10i −0.0494389 0.0856306i
\(459\) −2.31779e10 4.01452e10i −0.0243734 0.0422160i
\(460\) 7.40358e11 1.28234e12i 0.770960 1.33534i
\(461\) −4.16101e11 −0.429086 −0.214543 0.976715i \(-0.568826\pi\)
−0.214543 + 0.976715i \(0.568826\pi\)
\(462\) 0 0
\(463\) 1.60498e12 1.62313 0.811567 0.584259i \(-0.198615\pi\)
0.811567 + 0.584259i \(0.198615\pi\)
\(464\) −7.40133e10 + 1.28195e11i −0.0741274 + 0.128392i
\(465\) −2.56842e10 4.44863e10i −0.0254757 0.0441253i
\(466\) −1.27850e11 2.21442e11i −0.125592 0.217532i
\(467\) −9.14312e10 + 1.58363e11i −0.0889546 + 0.154074i −0.907069 0.420981i \(-0.861686\pi\)
0.818115 + 0.575055i \(0.195019\pi\)
\(468\) −4.54110e11 −0.437578
\(469\) 0 0
\(470\) 9.39007e10 0.0887622
\(471\) 1.20034e9 2.07904e9i 0.00112385 0.00194657i
\(472\) −1.92486e11 3.33395e11i −0.178509 0.309186i
\(473\) −1.05851e11 1.83340e11i −0.0972347 0.168415i
\(474\) 2.48685e9 4.30735e9i 0.00226281 0.00391929i
\(475\) 3.22145e11 0.290355
\(476\) 0 0
\(477\) −1.30704e12 −1.15600
\(478\) −1.21221e11 + 2.09961e11i −0.106207 + 0.183956i
\(479\) −9.58675e11 1.66047e12i −0.832073 1.44119i −0.896391 0.443264i \(-0.853821\pi\)
0.0643179 0.997929i \(-0.479513\pi\)
\(480\) −1.12440e10 1.94751e10i −0.00966793 0.0167454i
\(481\) −3.72697e11 + 6.45530e11i −0.317470 + 0.549874i
\(482\) −1.83312e11 −0.154696
\(483\) 0 0
\(484\) 5.89916e11 0.488636
\(485\) 8.24660e11 1.42835e12i 0.676763 1.17219i
\(486\) 1.08544e10 + 1.88003e10i 0.00882555 + 0.0152863i
\(487\) −6.03193e11 1.04476e12i −0.485932 0.841660i 0.513937 0.857828i \(-0.328187\pi\)
−0.999869 + 0.0161683i \(0.994853\pi\)
\(488\) 2.30008e11 3.98386e11i 0.183592 0.317991i
\(489\) −2.24360e9 −0.00177442
\(490\) 0 0
\(491\) 1.46000e12 1.13367 0.566835 0.823831i \(-0.308168\pi\)
0.566835 + 0.823831i \(0.308168\pi\)
\(492\) −2.45153e10 + 4.24617e10i −0.0188623 + 0.0326704i
\(493\) −1.18064e11 2.04492e11i −0.0900129 0.155907i
\(494\) 5.32435e10 + 9.22204e10i 0.0402249 + 0.0696716i
\(495\) −5.49048e11 + 9.50978e11i −0.411042 + 0.711946i
\(496\) 1.97210e12 1.46305
\(497\) 0 0
\(498\) 1.18381e10 0.00862481
\(499\) 6.29177e11 1.08977e12i 0.454276 0.786830i −0.544370 0.838845i \(-0.683231\pi\)
0.998646 + 0.0520155i \(0.0165645\pi\)
\(500\) 4.62473e11 + 8.01027e11i 0.330919 + 0.573168i
\(501\) 4.46870e9 + 7.74001e9i 0.00316892 + 0.00548873i
\(502\) −8.50222e10 + 1.47263e11i −0.0597538 + 0.103497i
\(503\) 1.60066e12 1.11492 0.557458 0.830205i \(-0.311777\pi\)
0.557458 + 0.830205i \(0.311777\pi\)
\(504\) 0 0
\(505\) −1.39060e12 −0.951463
\(506\) 1.71248e11 2.96610e11i 0.116131 0.201145i
\(507\) −1.41518e10 2.45116e10i −0.00951209 0.0164754i
\(508\) 2.43143e11 + 4.21135e11i 0.161985 + 0.280566i
\(509\) −3.60832e9 + 6.24980e9i −0.00238273 + 0.00412701i −0.867214 0.497935i \(-0.834092\pi\)
0.864832 + 0.502062i \(0.167425\pi\)
\(510\) 1.07168e10 0.00701452
\(511\) 0 0
\(512\) 1.46876e12 0.944572
\(513\) −2.71474e10 + 4.70208e10i −0.0173062 + 0.0299752i
\(514\) 7.92183e10 + 1.37210e11i 0.0500601 + 0.0867066i
\(515\) 1.27187e12 + 2.20295e12i 0.796730 + 1.37998i
\(516\) −5.15990e9 + 8.93720e9i −0.00320418 + 0.00554981i
\(517\) −3.47516e11 −0.213928
\(518\) 0 0
\(519\) −3.61852e10 −0.0218916
\(520\) 2.16593e11 3.75149e11i 0.129906 0.225003i
\(521\) −2.16286e11 3.74619e11i −0.128605 0.222751i 0.794531 0.607223i \(-0.207717\pi\)
−0.923136 + 0.384472i \(0.874383\pi\)
\(522\) 3.68564e10 + 6.38372e10i 0.0217268 + 0.0376319i
\(523\) 3.75915e11 6.51104e11i 0.219701 0.380533i −0.735015 0.678050i \(-0.762825\pi\)
0.954717 + 0.297517i \(0.0961585\pi\)
\(524\) −2.11799e12 −1.22725
\(525\) 0 0
\(526\) −6.05145e11 −0.344686
\(527\) −1.57291e12 + 2.72436e12i −0.888293 + 1.53857i
\(528\) 1.24318e10 + 2.15325e10i 0.00696116 + 0.0120571i
\(529\) −8.17104e11 1.41526e12i −0.453656 0.785755i
\(530\) 3.02258e11 5.23525e11i 0.166393 0.288202i
\(531\) 1.38842e12 0.757869
\(532\) 0 0
\(533\) −1.43103e12 −0.768024
\(534\) −5.81699e9 + 1.00753e10i −0.00309573 + 0.00536196i
\(535\) −5.17104e11 8.95650e11i −0.272889 0.472657i
\(536\) −5.77446e11 1.00017e12i −0.302183 0.523396i
\(537\) −7.36461e9 + 1.27559e10i −0.00382178 + 0.00661951i
\(538\) −8.33091e11 −0.428719
\(539\) 0 0
\(540\) 1.07088e11 0.0541964
\(541\) −9.04475e11 + 1.56660e12i −0.453951 + 0.786266i −0.998627 0.0523804i \(-0.983319\pi\)
0.544676 + 0.838646i \(0.316653\pi\)
\(542\) 3.41875e11 + 5.92145e11i 0.170165 + 0.294735i
\(543\) −1.38040e9 2.39092e9i −0.000681404 0.00118023i
\(544\) −6.88586e11 + 1.19267e12i −0.337103 + 0.583880i
\(545\) −3.62941e12 −1.76219
\(546\) 0 0
\(547\) −9.94162e11 −0.474804 −0.237402 0.971411i \(-0.576296\pi\)
−0.237402 + 0.971411i \(0.576296\pi\)
\(548\) 4.21652e10 7.30323e10i 0.0199729 0.0345942i
\(549\) 8.29535e11 + 1.43680e12i 0.389726 + 0.675025i
\(550\) −7.34831e10 1.27277e11i −0.0342417 0.0593084i
\(551\) −1.38284e11 + 2.39515e11i −0.0639130 + 0.110701i
\(552\) −3.44345e10 −0.0157858
\(553\) 0 0
\(554\) 1.79077e11 0.0807694
\(555\) 4.39317e10 7.60920e10i 0.0196544 0.0340424i
\(556\) 4.50710e11 + 7.80652e11i 0.200014 + 0.346434i
\(557\) −2.24919e11 3.89571e11i −0.0990098 0.171490i 0.812265 0.583288i \(-0.198234\pi\)
−0.911275 + 0.411798i \(0.864901\pi\)
\(558\) 4.91023e11 8.50476e11i 0.214411 0.371371i
\(559\) −3.01198e11 −0.130466
\(560\) 0 0
\(561\) −3.96616e10 −0.0169059
\(562\) −3.37450e10 + 5.84480e10i −0.0142691 + 0.0247148i
\(563\) 1.65320e12 + 2.86343e12i 0.693487 + 1.20115i 0.970688 + 0.240343i \(0.0772598\pi\)
−0.277201 + 0.960812i \(0.589407\pi\)
\(564\) 8.47012e9 + 1.46707e10i 0.00352479 + 0.00610512i
\(565\) 7.57864e11 1.31266e12i 0.312877 0.541918i
\(566\) −3.26965e11 −0.133914
\(567\) 0 0
\(568\) −1.26317e11 −0.0509206
\(569\) 9.61760e11 1.66582e12i 0.384646 0.666227i −0.607074 0.794646i \(-0.707657\pi\)
0.991720 + 0.128418i \(0.0409901\pi\)
\(570\) −6.27609e9 1.08705e10i −0.00249030 0.00431333i
\(571\) 1.44994e12 + 2.51137e12i 0.570804 + 0.988661i 0.996484 + 0.0837874i \(0.0267017\pi\)
−0.425680 + 0.904874i \(0.639965\pi\)
\(572\) −3.88648e11 + 6.73158e11i −0.151801 + 0.262927i
\(573\) −4.56195e10 −0.0176789
\(574\) 0 0
\(575\) −1.47413e12 −0.562379
\(576\) −8.76772e11 + 1.51861e12i −0.331884 + 0.574839i
\(577\) 1.38264e12 + 2.39480e12i 0.519299 + 0.899452i 0.999748 + 0.0224293i \(0.00714007\pi\)
−0.480450 + 0.877022i \(0.659527\pi\)
\(578\) −2.74882e9 4.76110e9i −0.00102440 0.00177432i
\(579\) 1.47800e9 2.55998e9i 0.000546540 0.000946634i
\(580\) 5.45487e11 0.200151
\(581\) 0 0
\(582\) −1.85966e10 −0.00671861
\(583\) −1.11862e12 + 1.93751e12i −0.401029 + 0.694602i
\(584\) −6.77889e11 1.17414e12i −0.241157 0.417697i
\(585\) 7.81151e11 + 1.35299e12i 0.275761 + 0.477633i
\(586\) −2.53257e11 + 4.38653e11i −0.0887200 + 0.153668i
\(587\) 2.55711e12 0.888950 0.444475 0.895791i \(-0.353390\pi\)
0.444475 + 0.895791i \(0.353390\pi\)
\(588\) 0 0
\(589\) 3.68459e12 1.26145
\(590\) −3.21076e11 + 5.56120e11i −0.109087 + 0.188945i
\(591\) 2.93820e10 + 5.08911e10i 0.00990690 + 0.0171592i
\(592\) 1.68660e12 + 2.92127e12i 0.564369 + 0.977516i
\(593\) 1.90543e12 3.30030e12i 0.632771 1.09599i −0.354211 0.935165i \(-0.615251\pi\)
0.986983 0.160827i \(-0.0514160\pi\)
\(594\) 2.47700e10 0.00816370
\(595\) 0 0
\(596\) −5.48561e12 −1.78081
\(597\) −5.49629e9 + 9.51986e9i −0.00177086 + 0.00306723i
\(598\) −2.43641e11 4.21998e11i −0.0779103 0.134945i
\(599\) −1.26327e12 2.18804e12i −0.400935 0.694441i 0.592904 0.805273i \(-0.297981\pi\)
−0.993839 + 0.110833i \(0.964648\pi\)
\(600\) −7.38798e9 + 1.27964e10i −0.00232726 + 0.00403094i
\(601\) −2.55170e12 −0.797802 −0.398901 0.916994i \(-0.630608\pi\)
−0.398901 + 0.916994i \(0.630608\pi\)
\(602\) 0 0
\(603\) 4.16517e12 1.28293
\(604\) 1.81985e11 3.15207e11i 0.0556376 0.0963672i
\(605\) −1.01476e12 1.75761e12i −0.307938 0.533365i
\(606\) 7.83973e9 + 1.35788e10i 0.00236143 + 0.00409011i
\(607\) −2.06939e12 + 3.58429e12i −0.618719 + 1.07165i 0.371001 + 0.928633i \(0.379015\pi\)
−0.989720 + 0.143020i \(0.954319\pi\)
\(608\) 1.61303e12 0.478716
\(609\) 0 0
\(610\) −7.67331e11 −0.224387
\(611\) −2.47212e11 + 4.28184e11i −0.0717604 + 0.124293i
\(612\) −1.63905e12 2.83892e12i −0.472293 0.818036i
\(613\) 7.71066e11 + 1.33553e12i 0.220556 + 0.382015i 0.954977 0.296680i \(-0.0958794\pi\)
−0.734421 + 0.678695i \(0.762546\pi\)
\(614\) −3.79056e11 + 6.56543e11i −0.107633 + 0.186426i
\(615\) 1.68683e11 0.0475480
\(616\) 0 0
\(617\) 1.47701e12 0.410299 0.205149 0.978731i \(-0.434232\pi\)
0.205149 + 0.978731i \(0.434232\pi\)
\(618\) 1.43407e10 2.48389e10i 0.00395479 0.00684990i
\(619\) 1.38355e12 + 2.39638e12i 0.378780 + 0.656066i 0.990885 0.134710i \(-0.0430104\pi\)
−0.612105 + 0.790776i \(0.709677\pi\)
\(620\) −3.63365e12 6.29367e12i −0.987599 1.71057i
\(621\) 1.24226e11 2.15166e11i 0.0335197 0.0580579i
\(622\) 4.87720e11 0.130651
\(623\) 0 0
\(624\) 3.53744e10 0.00934025
\(625\) 2.36776e12 4.10109e12i 0.620695 1.07508i
\(626\) 7.37102e11 + 1.27670e12i 0.191842 + 0.332280i
\(627\) 2.32272e10 + 4.02306e10i 0.00600195 + 0.0103957i
\(628\) 1.69817e11 2.94132e11i 0.0435675 0.0754611i
\(629\) −5.38081e12 −1.37063
\(630\) 0 0
\(631\) 4.12567e11 0.103601 0.0518004 0.998657i \(-0.483504\pi\)
0.0518004 + 0.998657i \(0.483504\pi\)
\(632\) 7.25640e11 1.25685e12i 0.180923 0.313368i
\(633\) 8.34608e9 + 1.44558e10i 0.00206617 + 0.00357871i
\(634\) 1.39314e11 + 2.41299e11i 0.0342446 + 0.0593134i
\(635\) 8.36497e11 1.44886e12i 0.204166 0.353625i
\(636\) 1.09058e11 0.0264303
\(637\) 0 0
\(638\) 1.26174e11 0.0301492
\(639\) 2.27783e11 3.94533e11i 0.0540466 0.0936114i
\(640\) −2.09567e12 3.62980e12i −0.493756 0.855210i
\(641\) −3.38620e12 5.86507e12i −0.792230 1.37218i −0.924583 0.380981i \(-0.875586\pi\)
0.132353 0.991203i \(-0.457747\pi\)
\(642\) −5.83050e9 + 1.00987e10i −0.00135456 + 0.00234616i
\(643\) 5.48262e12 1.26485 0.632424 0.774622i \(-0.282060\pi\)
0.632424 + 0.774622i \(0.282060\pi\)
\(644\) 0 0
\(645\) 3.55037e10 0.00807710
\(646\) −3.84351e11 + 6.65716e11i −0.0868324 + 0.150398i
\(647\) −2.04205e12 3.53693e12i −0.458139 0.793519i 0.540724 0.841200i \(-0.318150\pi\)
−0.998863 + 0.0476807i \(0.984817\pi\)
\(648\) 1.05470e12 + 1.82679e12i 0.234985 + 0.407006i
\(649\) 1.18827e12 2.05814e12i 0.262914 0.455380i
\(650\) −2.09094e11 −0.0459444
\(651\) 0 0
\(652\) −3.17412e11 −0.0687874
\(653\) 2.36249e12 4.09196e12i 0.508465 0.880688i −0.491487 0.870885i \(-0.663546\pi\)
0.999952 0.00980273i \(-0.00312036\pi\)
\(654\) 2.04613e10 + 3.54401e10i 0.00437355 + 0.00757521i
\(655\) 3.64332e12 + 6.31041e12i 0.773413 + 1.33959i
\(656\) −3.23797e12 + 5.60833e12i −0.682662 + 1.18241i
\(657\) 4.88967e12 1.02385
\(658\) 0 0
\(659\) −2.35775e12 −0.486983 −0.243492 0.969903i \(-0.578293\pi\)
−0.243492 + 0.969903i \(0.578293\pi\)
\(660\) 4.58120e10 7.93487e10i 0.00939792 0.0162777i
\(661\) −3.56976e12 6.18301e12i −0.727332 1.25978i −0.958007 0.286746i \(-0.907427\pi\)
0.230674 0.973031i \(-0.425907\pi\)
\(662\) 3.61114e11 + 6.25467e11i 0.0730774 + 0.126574i
\(663\) −2.82140e10 + 4.88681e10i −0.00567093 + 0.00982234i
\(664\) 3.45424e12 0.689599
\(665\) 0 0
\(666\) 1.67975e12 0.330834
\(667\) 6.32784e11 1.09601e12i 0.123791 0.214412i
\(668\) 6.32206e11 + 1.09501e12i 0.122847 + 0.212777i
\(669\) 2.74243e10 + 4.75003e10i 0.00529320 + 0.00916810i
\(670\) −9.63209e11 + 1.66833e12i −0.184665 + 0.319849i
\(671\) 2.83981e12 0.540802
\(672\) 0 0
\(673\) 3.71999e12 0.698994 0.349497 0.936937i \(-0.386352\pi\)
0.349497 + 0.936937i \(0.386352\pi\)
\(674\) −3.22580e11 + 5.58725e11i −0.0602099 + 0.104287i
\(675\) −5.33059e10 9.23285e10i −0.00988344 0.0171186i
\(676\) −2.00212e12 3.46777e12i −0.368748 0.638690i
\(677\) 3.61937e12 6.26893e12i 0.662192 1.14695i −0.317846 0.948142i \(-0.602960\pi\)
0.980038 0.198808i \(-0.0637071\pi\)
\(678\) −1.70903e10 −0.00310610
\(679\) 0 0
\(680\) 3.12705e12 0.560848
\(681\) 8.12800e10 1.40781e11i 0.0144818 0.0250832i
\(682\) −8.40478e11 1.45575e12i −0.148764 0.257666i
\(683\) 1.34575e12 + 2.33091e12i 0.236631 + 0.409857i 0.959746 0.280871i \(-0.0906233\pi\)
−0.723114 + 0.690728i \(0.757290\pi\)
\(684\) −1.91977e12 + 3.32514e12i −0.335348 + 0.580841i
\(685\) −2.90127e11 −0.0503478
\(686\) 0 0
\(687\) −5.77893e10 −0.00989788
\(688\) −6.81517e11 + 1.18042e12i −0.115966 + 0.200858i
\(689\) 1.59151e12 + 2.75657e12i 0.269043 + 0.465997i
\(690\) 2.87192e10 + 4.97432e10i 0.00482339 + 0.00835435i
\(691\) −2.24362e12 + 3.88606e12i −0.374367 + 0.648423i −0.990232 0.139429i \(-0.955473\pi\)
0.615865 + 0.787852i \(0.288807\pi\)
\(692\) −5.11929e12 −0.848657
\(693\) 0 0
\(694\) −1.22757e12 −0.200876
\(695\) 1.55060e12 2.68572e12i 0.252098 0.436646i
\(696\) −6.34274e9 1.09859e10i −0.00102455 0.00177458i
\(697\) −5.16511e12 8.94623e12i −0.828956 1.43579i
\(698\) 5.26460e11 9.11856e11i 0.0839491 0.145404i
\(699\) −1.58703e11 −0.0251442
\(700\) 0 0
\(701\) −3.40308e12 −0.532280 −0.266140 0.963934i \(-0.585748\pi\)
−0.266140 + 0.963934i \(0.585748\pi\)
\(702\) 1.76206e10 3.05198e10i 0.00273844 0.00474312i
\(703\) 3.15118e12 + 5.45800e12i 0.486602 + 0.842819i
\(704\) 1.50076e12 + 2.59940e12i 0.230269 + 0.398837i
\(705\) 2.91402e10 5.04724e10i 0.00444265 0.00769489i
\(706\) 2.45080e12 0.371267
\(707\) 0 0
\(708\) −1.15848e11 −0.0173276
\(709\) −4.88326e12 + 8.45806e12i −0.725775 + 1.25708i 0.232879 + 0.972506i \(0.425185\pi\)
−0.958654 + 0.284574i \(0.908148\pi\)
\(710\) 1.05351e11 + 1.82474e11i 0.0155589 + 0.0269487i
\(711\) 2.61705e12 + 4.53287e12i 0.384060 + 0.665212i
\(712\) −1.69734e12 + 2.93989e12i −0.247520 + 0.428717i
\(713\) −1.68606e13 −2.44327
\(714\) 0 0
\(715\) 2.67417e12 0.382660
\(716\) −1.04190e12 + 1.80463e12i −0.148156 + 0.256614i
\(717\) 7.52373e10 + 1.30315e11i 0.0106316 + 0.0184144i
\(718\) −3.51915e11 6.09535e11i −0.0494172 0.0855931i
\(719\) 2.70236e12 4.68063e12i 0.377106 0.653167i −0.613534 0.789668i \(-0.710253\pi\)
0.990640 + 0.136502i \(0.0435859\pi\)
\(720\) 7.07001e12 0.980447
\(721\) 0 0
\(722\) −8.70535e11 −0.119225
\(723\) −5.68873e10 + 9.85317e10i −0.00774271 + 0.0134108i
\(724\) −1.95291e11 3.38253e11i −0.0264155 0.0457529i
\(725\) −2.71530e11 4.70304e11i −0.0365003 0.0632204i
\(726\) −1.14417e10 + 1.98176e10i −0.00152854 + 0.00264751i
\(727\) 2.66584e11 0.0353939 0.0176970 0.999843i \(-0.494367\pi\)
0.0176970 + 0.999843i \(0.494367\pi\)
\(728\) 0 0
\(729\) −7.59864e12 −0.996465
\(730\) −1.13075e12 + 1.95852e12i −0.147372 + 0.255256i
\(731\) −1.08713e12 1.88297e12i −0.140817 0.243902i
\(732\) −6.92156e10 1.19885e11i −0.00891054 0.0154335i
\(733\) 6.89115e12 1.19358e13i 0.881706 1.52716i 0.0322624 0.999479i \(-0.489729\pi\)
0.849443 0.527680i \(-0.176938\pi\)
\(734\) −1.93610e12 −0.246204
\(735\) 0 0
\(736\) −7.38121e12 −0.927208
\(737\) 3.56474e12 6.17431e12i 0.445065 0.770876i
\(738\) 1.61241e12 + 2.79278e12i 0.200089 + 0.346564i
\(739\) 5.03261e12 + 8.71674e12i 0.620717 + 1.07511i 0.989352 + 0.145539i \(0.0464917\pi\)
−0.368636 + 0.929574i \(0.620175\pi\)
\(740\) 6.21522e12 1.07651e13i 0.761927 1.31970i
\(741\) 6.60923e10 0.00805321
\(742\) 0 0
\(743\) 1.14809e13 1.38206 0.691029 0.722827i \(-0.257158\pi\)
0.691029 + 0.722827i \(0.257158\pi\)
\(744\) −8.45016e10 + 1.46361e11i −0.0101108 + 0.0175125i
\(745\) 9.43622e12 + 1.63440e13i 1.12226 + 1.94382i
\(746\) 1.31559e12 + 2.27868e12i 0.155524 + 0.269375i
\(747\) −6.22894e12 + 1.07888e13i −0.731933 + 1.26775i
\(748\) −5.61110e12 −0.655377
\(749\) 0 0
\(750\) −3.58796e10 −0.00414068
\(751\) −2.17453e12 + 3.76639e12i −0.249451 + 0.432062i −0.963374 0.268163i \(-0.913583\pi\)
0.713923 + 0.700225i \(0.246917\pi\)
\(752\) 1.11873e12 + 1.93770e12i 0.127569 + 0.220956i
\(753\) 5.27700e10 + 9.14003e10i 0.00598149 + 0.0103602i
\(754\) 8.97559e10 1.55462e11i 0.0101133 0.0175167i
\(755\) −1.25218e12 −0.140251
\(756\) 0 0
\(757\) −2.90851e12 −0.321914 −0.160957 0.986961i \(-0.551458\pi\)
−0.160957 + 0.986961i \(0.551458\pi\)
\(758\) 1.59771e12 2.76731e12i 0.175787 0.304472i
\(759\) −1.06287e11 1.84094e11i −0.0116250 0.0201350i
\(760\) −1.83131e12 3.17191e12i −0.199113 0.344874i
\(761\) −6.22820e12 + 1.07876e13i −0.673180 + 1.16598i 0.303817 + 0.952730i \(0.401739\pi\)
−0.976997 + 0.213252i \(0.931594\pi\)
\(762\) −1.88635e10 −0.00202687
\(763\) 0 0
\(764\) −6.45400e12 −0.685344
\(765\) −5.63893e12 + 9.76691e12i −0.595278 + 1.03105i
\(766\) −1.54082e12 2.66878e12i −0.161705 0.280081i
\(767\) −1.69059e12 2.92820e12i −0.176384 0.305507i
\(768\) 5.41001e10 9.37041e10i 0.00561142 0.00971926i
\(769\) 8.52239e12 0.878806 0.439403 0.898290i \(-0.355190\pi\)
0.439403 + 0.898290i \(0.355190\pi\)
\(770\) 0 0
\(771\) 9.83354e10 0.0100222
\(772\) 2.09100e11 3.62171e11i 0.0211873 0.0366974i
\(773\) 4.80341e12 + 8.31975e12i 0.483885 + 0.838113i 0.999829 0.0185091i \(-0.00589196\pi\)
−0.515944 + 0.856623i \(0.672559\pi\)
\(774\) 3.39376e11 + 5.87816e11i 0.0339896 + 0.0588717i
\(775\) −3.61748e12 + 6.26566e12i −0.360204 + 0.623891i
\(776\) −5.42631e12 −0.537188
\(777\) 0 0
\(778\) 2.31874e12 0.226905
\(779\) −6.04971e12 + 1.04784e13i −0.588595 + 1.01948i
\(780\) −6.51785e10 1.12892e11i −0.00630490 0.0109204i
\(781\) −3.89895e11 6.75317e11i −0.0374988 0.0649499i
\(782\) 1.75878e12 3.04630e12i 0.168183 0.291301i
\(783\) 9.15284e10 0.00870218
\(784\) 0 0
\(785\) −1.16846e12 −0.109825
\(786\) 4.10795e10 7.11518e10i 0.00383905 0.00664943i
\(787\) −9.01714e12 1.56181e13i −0.837881 1.45125i −0.891663 0.452700i \(-0.850461\pi\)
0.0537815 0.998553i \(-0.482873\pi\)
\(788\) 4.15680e12 + 7.19979e12i 0.384053 + 0.665199i
\(789\) −1.87795e11 + 3.25271e11i −0.0172519 + 0.0298812i
\(790\) −2.42081e12 −0.221126
\(791\) 0 0
\(792\) 3.61276e12 0.326269
\(793\) 2.02015e12 3.49901e12i 0.181407 0.314207i
\(794\) 8.32362e11 + 1.44169e12i 0.0743225 + 0.128730i
\(795\) −1.87599e11 3.24932e11i −0.0166563 0.0288496i
\(796\) −7.77584e11 + 1.34682e12i −0.0686497 + 0.118905i
\(797\) 1.36276e12 0.119634 0.0598171 0.998209i \(-0.480948\pi\)
0.0598171 + 0.998209i \(0.480948\pi\)
\(798\) 0 0
\(799\) −3.56913e12 −0.309814
\(800\) −1.58365e12 + 2.74297e12i −0.136696 + 0.236764i
\(801\) −6.12155e12 1.06028e13i −0.525430 0.910071i
\(802\) −1.63893e12 2.83872e12i −0.139887 0.242291i
\(803\) 4.18480e12 7.24829e12i 0.355185 0.615199i
\(804\) −3.47538e11 −0.0293325
\(805\) 0 0
\(806\) −2.39156e12 −0.199606
\(807\) −2.58534e11 + 4.47793e11i −0.0214578 + 0.0371661i
\(808\) 2.28756e12 + 3.96217e12i 0.188809 + 0.327026i
\(809\) −6.21326e12 1.07617e13i −0.509978 0.883308i −0.999933 0.0115603i \(-0.996320\pi\)
0.489955 0.871748i \(-0.337013\pi\)
\(810\) 1.75929e12 3.04718e12i 0.143600 0.248723i
\(811\) 7.29519e11 0.0592165 0.0296082 0.999562i \(-0.490574\pi\)
0.0296082 + 0.999562i \(0.490574\pi\)
\(812\) 0 0
\(813\) 4.24377e11 0.0340678
\(814\) 1.43761e12 2.49001e12i 0.114770 0.198788i
\(815\) 5.46005e11 + 9.45708e11i 0.0433498 + 0.0750841i
\(816\) 1.27679e11 + 2.21147e11i 0.0100813 + 0.0174613i
\(817\) −1.27332e12 + 2.20546e12i −0.0999860 + 0.173181i
\(818\) 4.24600e11 0.0331582
\(819\) 0 0
\(820\) 2.38643e13 1.84326
\(821\) 1.01494e13 1.75792e13i 0.779642 1.35038i −0.152506 0.988303i \(-0.548734\pi\)
0.932148 0.362077i \(-0.117932\pi\)
\(822\) 1.63563e9 + 2.83300e9i 0.000124958 + 0.000216433i
\(823\) 5.23649e12 + 9.06987e12i 0.397870 + 0.689131i 0.993463 0.114156i \(-0.0364162\pi\)
−0.595593 + 0.803286i \(0.703083\pi\)
\(824\) 4.18450e12 7.24776e12i 0.316206 0.547686i
\(825\) −9.12162e10 −0.00685535
\(826\) 0 0
\(827\) −1.49862e13 −1.11408 −0.557039 0.830486i \(-0.688063\pi\)
−0.557039 + 0.830486i \(0.688063\pi\)
\(828\) 8.78481e12 1.52157e13i 0.649525 1.12501i
\(829\) −4.07846e12 7.06410e12i −0.299917 0.519471i 0.676200 0.736718i \(-0.263626\pi\)
−0.976117 + 0.217247i \(0.930292\pi\)
\(830\) −2.88093e12 4.98991e12i −0.210708 0.364957i
\(831\) 5.55732e10 9.62556e10i 0.00404260 0.00700199i
\(832\) 4.27038e12 0.308967
\(833\) 0 0
\(834\) −3.49670e10 −0.00250271
\(835\) 2.17501e12 3.76723e12i 0.154836 0.268184i
\(836\) 3.28605e12 + 5.69160e12i 0.232673 + 0.403001i
\(837\) −6.09697e11 1.05603e12i −0.0429388 0.0743721i
\(838\) −3.28758e12 + 5.69426e12i −0.230292 + 0.398877i
\(839\) 1.92668e13 1.34239 0.671197 0.741279i \(-0.265780\pi\)
0.671197 + 0.741279i \(0.265780\pi\)
\(840\) 0 0
\(841\) −1.40409e13 −0.967862
\(842\) 1.19244e12 2.06536e12i 0.0817582 0.141609i
\(843\) 2.09442e10 + 3.62764e10i 0.00142837 + 0.00247400i
\(844\) 1.18076e12 + 2.04513e12i 0.0800975 + 0.138733i
\(845\) −6.88799e12 + 1.19304e13i −0.464770 + 0.805004i
\(846\) 1.11419e12 0.0747813
\(847\) 0 0
\(848\) 1.44044e13 0.956562
\(849\) −1.01467e11 + 1.75746e11i −0.00670256 + 0.0116092i
\(850\) −7.54700e11 1.30718e12i −0.0495894 0.0858914i
\(851\) −1.44197e13 2.49757e13i −0.942483 1.63243i
\(852\) −1.90060e10 + 3.29194e10i −0.00123570 + 0.00214030i
\(853\) −4.93520e12 −0.319179 −0.159589 0.987183i \(-0.551017\pi\)
−0.159589 + 0.987183i \(0.551017\pi\)
\(854\) 0 0
\(855\) 1.32094e13 0.845346
\(856\) −1.70129e12 + 2.94671e12i −0.108304 + 0.187588i
\(857\) −1.28953e13 2.23353e13i −0.816614 1.41442i −0.908163 0.418617i \(-0.862515\pi\)
0.0915489 0.995801i \(-0.470818\pi\)
\(858\) −1.50761e10 2.61125e10i −0.000949719 0.00164496i
\(859\) −2.82867e12 + 4.89940e12i −0.177261 + 0.307025i −0.940941 0.338569i \(-0.890057\pi\)
0.763680 + 0.645595i \(0.223390\pi\)
\(860\) 5.02287e12 0.313119
\(861\) 0 0
\(862\) −1.48834e12 −0.0918161
\(863\) 3.14748e11 5.45160e11i 0.0193159 0.0334561i −0.856206 0.516635i \(-0.827185\pi\)
0.875522 + 0.483179i \(0.160518\pi\)
\(864\) −2.66912e11 4.62305e11i −0.0162951 0.0282239i
\(865\) 8.80608e12 + 1.52526e13i 0.534823 + 0.926341i
\(866\) −5.06043e11 + 8.76492e11i −0.0305743 + 0.0529563i
\(867\) −3.41217e9 −0.000205090
\(868\) 0 0
\(869\) 8.95917e12 0.532940
\(870\) −1.05800e10 + 1.83251e10i −0.000626108 + 0.00108445i
\(871\) −5.07169e12 8.78442e12i −0.298587 0.517168i
\(872\) 5.97043e12 + 1.03411e13i 0.349688 + 0.605678i
\(873\) 9.78510e12 1.69483e13i 0.570166 0.987557i
\(874\) −4.12000e12 −0.238834
\(875\) 0 0
\(876\) −4.07990e11 −0.0234089
\(877\) −1.49229e11 + 2.58471e11i −0.00851832 + 0.0147542i −0.870253 0.492605i \(-0.836045\pi\)
0.861735 + 0.507359i \(0.169378\pi\)
\(878\) −1.72948e12 2.99554e12i −0.0982177 0.170118i
\(879\) 1.57186e11 + 2.72255e11i 0.00888107 + 0.0153825i
\(880\) 6.05084e12 1.04804e13i 0.340129 0.589120i
\(881\) 6.27239e12 0.350785 0.175393 0.984499i \(-0.443880\pi\)
0.175393 + 0.984499i \(0.443880\pi\)
\(882\) 0 0
\(883\) 4.32257e12 0.239287 0.119643 0.992817i \(-0.461825\pi\)
0.119643 + 0.992817i \(0.461825\pi\)
\(884\) −3.99156e12 + 6.91359e12i −0.219841 + 0.380775i
\(885\) 1.99279e11 + 3.45162e11i 0.0109199 + 0.0189138i
\(886\) 9.62512e11 + 1.66712e12i 0.0524753 + 0.0908898i
\(887\) −8.10937e12 + 1.40458e13i −0.439876 + 0.761888i −0.997680 0.0680849i \(-0.978311\pi\)
0.557803 + 0.829973i \(0.311644\pi\)
\(888\) −2.89073e11 −0.0156009
\(889\) 0 0
\(890\) 5.66251e12 0.302520
\(891\) −6.51095e12 + 1.12773e13i −0.346094 + 0.599453i
\(892\) 3.87984e12 + 6.72008e12i 0.205197 + 0.355412i
\(893\) 2.09020e12 + 3.62033e12i 0.109991 + 0.190509i
\(894\) 1.06396e11 1.84284e11i 0.00557067 0.00964868i
\(895\) 7.16904e12 0.373471
\(896\) 0 0
\(897\) −3.02437e11 −0.0155980
\(898\) 9.09352e11 1.57504e12i 0.0466647 0.0808257i
\(899\) −3.10568e12 5.37919e12i −0.158576 0.274662i
\(900\) −3.76960e12 6.52913e12i −0.191515 0.331714i
\(901\) −1.14887e13 + 1.98990e13i −0.580776 + 1.00593i
\(902\) 5.51991e12 0.277653
\(903\) 0 0
\(904\) −4.98679e12 −0.248349
\(905\) −6.71869e11 + 1.16371e12i −0.0332940 + 0.0576669i
\(906\) 7.05937e9 + 1.22272e10i 0.000348088 + 0.000602906i
\(907\) −7.24848e12 1.25547e13i −0.355643 0.615992i 0.631585 0.775307i \(-0.282405\pi\)
−0.987228 + 0.159315i \(0.949071\pi\)
\(908\) 1.14990e13 1.99169e13i 0.561404 0.972380i
\(909\) −1.65004e13 −0.801598
\(910\) 0 0
\(911\) −1.95797e13 −0.941834 −0.470917 0.882178i \(-0.656077\pi\)
−0.470917 + 0.882178i \(0.656077\pi\)
\(912\) 1.49547e11 2.59022e11i 0.00715813 0.0123982i
\(913\) 1.06620e13 + 1.84671e13i 0.507833 + 0.879592i
\(914\) −6.95539e10 1.20471e11i −0.00329658 0.00570984i
\(915\) −2.38126e11 + 4.12447e11i −0.0112308 + 0.0194524i
\(916\) −8.17571e12 −0.383703
\(917\) 0 0
\(918\) 2.54397e11 0.0118228
\(919\) 1.73442e13 3.00410e13i 0.802111 1.38930i −0.116113 0.993236i \(-0.537044\pi\)
0.918224 0.396061i \(-0.129623\pi\)
\(920\) 8.38001e12 + 1.45146e13i 0.385655 + 0.667975i
\(921\) 2.35265e11 + 4.07491e11i 0.0107743 + 0.0186616i
\(922\) 1.14177e12 1.97760e12i 0.0520342 0.0901258i
\(923\) −1.10944e12 −0.0503146
\(924\) 0 0
\(925\) −1.23751e13 −0.555791
\(926\) −4.40401e12 + 7.62796e12i −0.196833 + 0.340925i
\(927\) 1.50916e13 + 2.61394e13i 0.671236 + 1.16262i
\(928\) −1.35960e12 2.35489e12i −0.0601789 0.104233i
\(929\) −1.44579e13 + 2.50418e13i −0.636846 + 1.10305i 0.349274 + 0.937020i \(0.386428\pi\)
−0.986121 + 0.166030i \(0.946905\pi\)
\(930\) 2.81906e11 0.0123575
\(931\) 0 0
\(932\) −2.24524e13 −0.974744
\(933\) 1.51354e11 2.62153e11i 0.00653925 0.0113263i
\(934\) −5.01768e11 8.69088e11i −0.0215746 0.0373683i
\(935\) 9.65209e12 + 1.67179e13i 0.413018 + 0.715369i
\(936\) 2.57001e12 4.45138e12i 0.109444 0.189563i
\(937\) −2.01915e13 −0.855737 −0.427869 0.903841i \(-0.640735\pi\)
−0.427869 + 0.903841i \(0.640735\pi\)
\(938\) 0 0
\(939\) 9.14981e11 0.0384076
\(940\) 4.12260e12 7.14055e12i 0.172225 0.298302i
\(941\) −7.80967e12 1.35267e13i −0.324698 0.562393i 0.656753 0.754105i \(-0.271929\pi\)
−0.981451 + 0.191712i \(0.938596\pi\)
\(942\) 6.58737e9 + 1.14097e10i 0.000272573 + 0.000472111i
\(943\) 2.76833e13 4.79490e13i 1.14003 1.97459i
\(944\) −1.53012e13 −0.627121
\(945\) 0 0
\(946\) 1.16181e12 0.0471656
\(947\) −2.43439e13 + 4.21649e13i −0.983592 + 1.70363i −0.335561 + 0.942018i \(0.608926\pi\)
−0.648031 + 0.761614i \(0.724407\pi\)
\(948\) −2.18364e11 3.78218e11i −0.00878101 0.0152092i
\(949\) −5.95387e12 1.03124e13i −0.238288 0.412726i
\(950\) −8.83954e11 + 1.53105e12i −0.0352106 + 0.0609866i
\(951\) 1.72933e11 0.00685593
\(952\) 0 0
\(953\) 2.59691e13 1.01986 0.509928 0.860217i \(-0.329672\pi\)
0.509928 + 0.860217i \(0.329672\pi\)
\(954\) 3.58648e12 6.21196e12i 0.140185 0.242807i
\(955\) 1.11020e13 + 1.92293e13i 0.431904 + 0.748079i
\(956\) 1.06441e13 + 1.84362e13i 0.412145 + 0.713857i
\(957\) 3.91555e10 6.78193e10i 0.00150900 0.00261366i
\(958\) 1.05223e13 0.403613
\(959\) 0 0
\(960\) −5.03373e11 −0.0191280
\(961\) −2.81558e13 + 4.87673e13i −1.06491 + 1.84448i
\(962\) −2.04534e12 3.54262e12i −0.0769975 0.133364i
\(963\) −6.13576e12 1.06274e13i −0.229906 0.398209i
\(964\) −8.04809e12 + 1.39397e13i −0.300156 + 0.519885i
\(965\) −1.43875e12 −0.0534089
\(966\) 0 0
\(967\) −7.34548e12 −0.270148 −0.135074 0.990836i \(-0.543127\pi\)
−0.135074 + 0.990836i \(0.543127\pi\)
\(968\) −3.33859e12 + 5.78260e12i −0.122215 + 0.211682i
\(969\) 2.38552e11 + 4.13184e11i 0.00869212 + 0.0150552i
\(970\) 4.52568e12 + 7.83871e12i 0.164139 + 0.284297i
\(971\) −1.40101e13 + 2.42662e13i −0.505771 + 0.876021i 0.494207 + 0.869345i \(0.335459\pi\)
−0.999978 + 0.00667683i \(0.997875\pi\)
\(972\) 1.90619e12 0.0684966
\(973\) 0 0
\(974\) 6.62057e12 0.235711
\(975\) −6.48884e10 + 1.12390e11i −0.00229957 + 0.00398297i
\(976\) −9.14197e12 1.58344e13i −0.322490 0.558568i
\(977\) 2.07190e13 + 3.58863e13i 0.727516 + 1.26010i 0.957930 + 0.287003i \(0.0926588\pi\)
−0.230413 + 0.973093i \(0.574008\pi\)
\(978\) 6.15637e9 1.06631e10i 0.000215179 0.000372701i
\(979\) −2.09564e13 −0.729112
\(980\) 0 0
\(981\) −4.30652e13 −1.48462
\(982\) −4.00620e12 + 6.93894e12i −0.137477 + 0.238117i
\(983\) 8.17640e12 + 1.41619e13i 0.279300 + 0.483762i 0.971211 0.238221i \(-0.0765642\pi\)
−0.691911 + 0.721983i \(0.743231\pi\)
\(984\) −2.77485e11 4.80619e11i −0.00943544 0.0163427i
\(985\) 1.43009e13 2.47698e13i 0.484060 0.838417i
\(986\) 1.29585e12 0.0436625
\(987\) 0 0
\(988\) 9.35037e12 0.312192
\(989\) 5.82670e12 1.00921e13i 0.193660 0.335428i
\(990\) −3.01314e12 5.21891e12i −0.0996921 0.172672i
\(991\) −2.21249e13 3.83214e13i −0.728700 1.26215i −0.957433 0.288657i \(-0.906791\pi\)
0.228732 0.973489i \(-0.426542\pi\)
\(992\) −1.81133e13 + 3.13732e13i −0.593877 + 1.02862i
\(993\) 4.48258e11 0.0146304
\(994\) 0 0
\(995\) 5.35033e12 0.173052
\(996\) 5.19737e11 9.00211e11i 0.0167346 0.0289853i
\(997\) 1.72558e13 + 2.98880e13i 0.553105 + 0.958006i 0.998048 + 0.0624475i \(0.0198906\pi\)
−0.444943 + 0.895559i \(0.646776\pi\)
\(998\) 3.45288e12 + 5.98057e12i 0.110178 + 0.190834i
\(999\) 1.04286e12 1.80629e12i 0.0331270 0.0573777i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.10.c.g.30.3 10
7.2 even 3 49.10.a.f.1.3 5
7.3 odd 6 7.10.c.a.4.3 yes 10
7.4 even 3 inner 49.10.c.g.18.3 10
7.5 odd 6 49.10.a.e.1.3 5
7.6 odd 2 7.10.c.a.2.3 10
21.17 even 6 63.10.e.b.46.3 10
21.20 even 2 63.10.e.b.37.3 10
28.3 even 6 112.10.i.c.81.3 10
28.27 even 2 112.10.i.c.65.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.c.a.2.3 10 7.6 odd 2
7.10.c.a.4.3 yes 10 7.3 odd 6
49.10.a.e.1.3 5 7.5 odd 6
49.10.a.f.1.3 5 7.2 even 3
49.10.c.g.18.3 10 7.4 even 3 inner
49.10.c.g.30.3 10 1.1 even 1 trivial
63.10.e.b.37.3 10 21.20 even 2
63.10.e.b.46.3 10 21.17 even 6
112.10.i.c.65.3 10 28.27 even 2
112.10.i.c.81.3 10 28.3 even 6