Properties

Label 4864.2.a.p
Level $4864$
Weight $2$
Character orbit 4864.a
Self dual yes
Analytic conductor $38.839$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4864 = 2^{8} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4864.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(38.8392355432\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1216)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3q^{3} + 4q^{5} + q^{7} + 6q^{9} + O(q^{10}) \) \( q + 3q^{3} + 4q^{5} + q^{7} + 6q^{9} + 5q^{13} + 12q^{15} - 5q^{17} + q^{19} + 3q^{21} - 3q^{23} + 11q^{25} + 9q^{27} - 7q^{29} - 10q^{31} + 4q^{35} + 2q^{37} + 15q^{39} + 6q^{41} + 4q^{43} + 24q^{45} - 8q^{47} - 6q^{49} - 15q^{51} + 9q^{53} + 3q^{57} - q^{59} + 2q^{61} + 6q^{63} + 20q^{65} + 7q^{67} - 9q^{69} - 12q^{71} - 11q^{73} + 33q^{75} - 16q^{79} + 9q^{81} + 14q^{83} - 20q^{85} - 21q^{87} + 4q^{89} + 5q^{91} - 30q^{93} + 4q^{95} - 12q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 4.00000 0 1.00000 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4864.2.a.p 1
4.b odd 2 1 4864.2.a.b 1
8.b even 2 1 4864.2.a.a 1
8.d odd 2 1 4864.2.a.o 1
16.e even 4 2 1216.2.c.b 2
16.f odd 4 2 1216.2.c.c yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1216.2.c.b 2 16.e even 4 2
1216.2.c.c yes 2 16.f odd 4 2
4864.2.a.a 1 8.b even 2 1
4864.2.a.b 1 4.b odd 2 1
4864.2.a.o 1 8.d odd 2 1
4864.2.a.p 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4864))\):

\( T_{3} - 3 \)
\( T_{5} - 4 \)
\( T_{7} - 1 \)
\( T_{11} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -3 + T \)
$5$ \( -4 + T \)
$7$ \( -1 + T \)
$11$ \( T \)
$13$ \( -5 + T \)
$17$ \( 5 + T \)
$19$ \( -1 + T \)
$23$ \( 3 + T \)
$29$ \( 7 + T \)
$31$ \( 10 + T \)
$37$ \( -2 + T \)
$41$ \( -6 + T \)
$43$ \( -4 + T \)
$47$ \( 8 + T \)
$53$ \( -9 + T \)
$59$ \( 1 + T \)
$61$ \( -2 + T \)
$67$ \( -7 + T \)
$71$ \( 12 + T \)
$73$ \( 11 + T \)
$79$ \( 16 + T \)
$83$ \( -14 + T \)
$89$ \( -4 + T \)
$97$ \( 12 + T \)
show more
show less