Properties

Label 4864.2.a.f.1.1
Level $4864$
Weight $2$
Character 4864.1
Self dual yes
Analytic conductor $38.839$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4864,2,Mod(1,4864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4864, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4864.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4864 = 2^{8} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4864.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.8392355432\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2432)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4864.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.00000 q^{5} +1.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +2.00000 q^{5} +1.00000 q^{7} -2.00000 q^{9} -4.00000 q^{11} +1.00000 q^{13} -2.00000 q^{15} -5.00000 q^{17} -1.00000 q^{19} -1.00000 q^{21} +9.00000 q^{23} -1.00000 q^{25} +5.00000 q^{27} +5.00000 q^{29} -2.00000 q^{31} +4.00000 q^{33} +2.00000 q^{35} +10.0000 q^{37} -1.00000 q^{39} +12.0000 q^{41} -10.0000 q^{43} -4.00000 q^{45} -12.0000 q^{47} -6.00000 q^{49} +5.00000 q^{51} +9.00000 q^{53} -8.00000 q^{55} +1.00000 q^{57} -9.00000 q^{59} -2.00000 q^{61} -2.00000 q^{63} +2.00000 q^{65} -13.0000 q^{67} -9.00000 q^{69} -10.0000 q^{71} -7.00000 q^{73} +1.00000 q^{75} -4.00000 q^{77} -10.0000 q^{79} +1.00000 q^{81} +8.00000 q^{83} -10.0000 q^{85} -5.00000 q^{87} -6.00000 q^{89} +1.00000 q^{91} +2.00000 q^{93} -2.00000 q^{95} -6.00000 q^{97} +8.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 9.00000 1.87663 0.938315 0.345782i \(-0.112386\pi\)
0.938315 + 0.345782i \(0.112386\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 12.0000 1.87409 0.937043 0.349215i \(-0.113552\pi\)
0.937043 + 0.349215i \(0.113552\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) −4.00000 −0.596285
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 5.00000 0.700140
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) −9.00000 −1.17170 −0.585850 0.810419i \(-0.699239\pi\)
−0.585850 + 0.810419i \(0.699239\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −13.0000 −1.58820 −0.794101 0.607785i \(-0.792058\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) 0 0
\(69\) −9.00000 −1.08347
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) −10.0000 −1.08465
\(86\) 0 0
\(87\) −5.00000 −0.536056
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 8.00000 0.804030
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) −11.0000 −1.06341 −0.531705 0.846930i \(-0.678449\pi\)
−0.531705 + 0.846930i \(0.678449\pi\)
\(108\) 0 0
\(109\) 15.0000 1.43674 0.718370 0.695662i \(-0.244889\pi\)
0.718370 + 0.695662i \(0.244889\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 18.0000 1.67851
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) −5.00000 −0.458349
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −12.0000 −1.08200
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) 0 0
\(129\) 10.0000 0.880451
\(130\) 0 0
\(131\) 14.0000 1.22319 0.611593 0.791173i \(-0.290529\pi\)
0.611593 + 0.791173i \(0.290529\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 10.0000 0.860663
\(136\) 0 0
\(137\) −13.0000 −1.11066 −0.555332 0.831628i \(-0.687409\pi\)
−0.555332 + 0.831628i \(0.687409\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 6.00000 0.494872
\(148\) 0 0
\(149\) 8.00000 0.655386 0.327693 0.944784i \(-0.393729\pi\)
0.327693 + 0.944784i \(0.393729\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 10.0000 0.808452
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) −9.00000 −0.713746
\(160\) 0 0
\(161\) 9.00000 0.709299
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 0 0
\(165\) 8.00000 0.622799
\(166\) 0 0
\(167\) −24.0000 −1.85718 −0.928588 0.371113i \(-0.878976\pi\)
−0.928588 + 0.371113i \(0.878976\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) 9.00000 0.676481
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 20.0000 1.47043
\(186\) 0 0
\(187\) 20.0000 1.46254
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −23.0000 −1.66422 −0.832111 0.554609i \(-0.812868\pi\)
−0.832111 + 0.554609i \(0.812868\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) 5.00000 0.354441 0.177220 0.984171i \(-0.443289\pi\)
0.177220 + 0.984171i \(0.443289\pi\)
\(200\) 0 0
\(201\) 13.0000 0.916949
\(202\) 0 0
\(203\) 5.00000 0.350931
\(204\) 0 0
\(205\) 24.0000 1.67623
\(206\) 0 0
\(207\) −18.0000 −1.25109
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) 10.0000 0.685189
\(214\) 0 0
\(215\) −20.0000 −1.36399
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 0 0
\(219\) 7.00000 0.473016
\(220\) 0 0
\(221\) −5.00000 −0.336336
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 2.00000 0.133333
\(226\) 0 0
\(227\) −1.00000 −0.0663723 −0.0331862 0.999449i \(-0.510565\pi\)
−0.0331862 + 0.999449i \(0.510565\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) −24.0000 −1.56559
\(236\) 0 0
\(237\) 10.0000 0.649570
\(238\) 0 0
\(239\) −19.0000 −1.22901 −0.614504 0.788914i \(-0.710644\pi\)
−0.614504 + 0.788914i \(0.710644\pi\)
\(240\) 0 0
\(241\) −16.0000 −1.03065 −0.515325 0.856995i \(-0.672329\pi\)
−0.515325 + 0.856995i \(0.672329\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) −12.0000 −0.766652
\(246\) 0 0
\(247\) −1.00000 −0.0636285
\(248\) 0 0
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) −36.0000 −2.26330
\(254\) 0 0
\(255\) 10.0000 0.626224
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 10.0000 0.621370
\(260\) 0 0
\(261\) −10.0000 −0.618984
\(262\) 0 0
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 18.0000 1.10573
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −3.00000 −0.182237 −0.0911185 0.995840i \(-0.529044\pi\)
−0.0911185 + 0.995840i \(0.529044\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −20.0000 −1.19310 −0.596550 0.802576i \(-0.703462\pi\)
−0.596550 + 0.802576i \(0.703462\pi\)
\(282\) 0 0
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) 0 0
\(285\) 2.00000 0.118470
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) −21.0000 −1.22683 −0.613417 0.789760i \(-0.710205\pi\)
−0.613417 + 0.789760i \(0.710205\pi\)
\(294\) 0 0
\(295\) −18.0000 −1.04800
\(296\) 0 0
\(297\) −20.0000 −1.16052
\(298\) 0 0
\(299\) 9.00000 0.520483
\(300\) 0 0
\(301\) −10.0000 −0.576390
\(302\) 0 0
\(303\) 4.00000 0.229794
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 33.0000 1.87126 0.935629 0.352985i \(-0.114833\pi\)
0.935629 + 0.352985i \(0.114833\pi\)
\(312\) 0 0
\(313\) 21.0000 1.18699 0.593495 0.804838i \(-0.297748\pi\)
0.593495 + 0.804838i \(0.297748\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) 31.0000 1.74113 0.870567 0.492050i \(-0.163752\pi\)
0.870567 + 0.492050i \(0.163752\pi\)
\(318\) 0 0
\(319\) −20.0000 −1.11979
\(320\) 0 0
\(321\) 11.0000 0.613960
\(322\) 0 0
\(323\) 5.00000 0.278207
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) −15.0000 −0.829502
\(328\) 0 0
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 1.00000 0.0549650 0.0274825 0.999622i \(-0.491251\pi\)
0.0274825 + 0.999622i \(0.491251\pi\)
\(332\) 0 0
\(333\) −20.0000 −1.09599
\(334\) 0 0
\(335\) −26.0000 −1.42053
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) −18.0000 −0.969087
\(346\) 0 0
\(347\) 22.0000 1.18102 0.590511 0.807030i \(-0.298926\pi\)
0.590511 + 0.807030i \(0.298926\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −35.0000 −1.86286 −0.931431 0.363918i \(-0.881439\pi\)
−0.931431 + 0.363918i \(0.881439\pi\)
\(354\) 0 0
\(355\) −20.0000 −1.06149
\(356\) 0 0
\(357\) 5.00000 0.264628
\(358\) 0 0
\(359\) 3.00000 0.158334 0.0791670 0.996861i \(-0.474774\pi\)
0.0791670 + 0.996861i \(0.474774\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −14.0000 −0.732793
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 0 0
\(369\) −24.0000 −1.24939
\(370\) 0 0
\(371\) 9.00000 0.467257
\(372\) 0 0
\(373\) −13.0000 −0.673114 −0.336557 0.941663i \(-0.609263\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) 0 0
\(375\) 12.0000 0.619677
\(376\) 0 0
\(377\) 5.00000 0.257513
\(378\) 0 0
\(379\) −17.0000 −0.873231 −0.436616 0.899648i \(-0.643823\pi\)
−0.436616 + 0.899648i \(0.643823\pi\)
\(380\) 0 0
\(381\) 6.00000 0.307389
\(382\) 0 0
\(383\) 8.00000 0.408781 0.204390 0.978889i \(-0.434479\pi\)
0.204390 + 0.978889i \(0.434479\pi\)
\(384\) 0 0
\(385\) −8.00000 −0.407718
\(386\) 0 0
\(387\) 20.0000 1.01666
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −45.0000 −2.27575
\(392\) 0 0
\(393\) −14.0000 −0.706207
\(394\) 0 0
\(395\) −20.0000 −1.00631
\(396\) 0 0
\(397\) −26.0000 −1.30490 −0.652451 0.757831i \(-0.726259\pi\)
−0.652451 + 0.757831i \(0.726259\pi\)
\(398\) 0 0
\(399\) 1.00000 0.0500626
\(400\) 0 0
\(401\) 36.0000 1.79775 0.898877 0.438201i \(-0.144384\pi\)
0.898877 + 0.438201i \(0.144384\pi\)
\(402\) 0 0
\(403\) −2.00000 −0.0996271
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) −40.0000 −1.98273
\(408\) 0 0
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 0 0
\(411\) 13.0000 0.641243
\(412\) 0 0
\(413\) −9.00000 −0.442861
\(414\) 0 0
\(415\) 16.0000 0.785409
\(416\) 0 0
\(417\) −2.00000 −0.0979404
\(418\) 0 0
\(419\) −34.0000 −1.66101 −0.830504 0.557012i \(-0.811948\pi\)
−0.830504 + 0.557012i \(0.811948\pi\)
\(420\) 0 0
\(421\) −15.0000 −0.731055 −0.365528 0.930800i \(-0.619111\pi\)
−0.365528 + 0.930800i \(0.619111\pi\)
\(422\) 0 0
\(423\) 24.0000 1.16692
\(424\) 0 0
\(425\) 5.00000 0.242536
\(426\) 0 0
\(427\) −2.00000 −0.0967868
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 0 0
\(433\) 8.00000 0.384455 0.192228 0.981350i \(-0.438429\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(434\) 0 0
\(435\) −10.0000 −0.479463
\(436\) 0 0
\(437\) −9.00000 −0.430528
\(438\) 0 0
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) −8.00000 −0.378387
\(448\) 0 0
\(449\) −20.0000 −0.943858 −0.471929 0.881636i \(-0.656442\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(450\) 0 0
\(451\) −48.0000 −2.26023
\(452\) 0 0
\(453\) −8.00000 −0.375873
\(454\) 0 0
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) 0 0
\(459\) −25.0000 −1.16690
\(460\) 0 0
\(461\) −24.0000 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 0 0
\(465\) 4.00000 0.185496
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) −13.0000 −0.600284
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 40.0000 1.83920
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 0 0
\(479\) −8.00000 −0.365529 −0.182765 0.983157i \(-0.558505\pi\)
−0.182765 + 0.983157i \(0.558505\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) 0 0
\(483\) −9.00000 −0.409514
\(484\) 0 0
\(485\) −12.0000 −0.544892
\(486\) 0 0
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 0 0
\(489\) 10.0000 0.452216
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −25.0000 −1.12594
\(494\) 0 0
\(495\) 16.0000 0.719147
\(496\) 0 0
\(497\) −10.0000 −0.448561
\(498\) 0 0
\(499\) −10.0000 −0.447661 −0.223831 0.974628i \(-0.571856\pi\)
−0.223831 + 0.974628i \(0.571856\pi\)
\(500\) 0 0
\(501\) 24.0000 1.07224
\(502\) 0 0
\(503\) −11.0000 −0.490466 −0.245233 0.969464i \(-0.578864\pi\)
−0.245233 + 0.969464i \(0.578864\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) −7.00000 −0.309662
\(512\) 0 0
\(513\) −5.00000 −0.220755
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) 48.0000 2.11104
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) −32.0000 −1.40195 −0.700973 0.713188i \(-0.747251\pi\)
−0.700973 + 0.713188i \(0.747251\pi\)
\(522\) 0 0
\(523\) 17.0000 0.743358 0.371679 0.928361i \(-0.378782\pi\)
0.371679 + 0.928361i \(0.378782\pi\)
\(524\) 0 0
\(525\) 1.00000 0.0436436
\(526\) 0 0
\(527\) 10.0000 0.435607
\(528\) 0 0
\(529\) 58.0000 2.52174
\(530\) 0 0
\(531\) 18.0000 0.781133
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) −22.0000 −0.951143
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) 24.0000 1.03375
\(540\) 0 0
\(541\) 4.00000 0.171973 0.0859867 0.996296i \(-0.472596\pi\)
0.0859867 + 0.996296i \(0.472596\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) 30.0000 1.28506
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) −5.00000 −0.213007
\(552\) 0 0
\(553\) −10.0000 −0.425243
\(554\) 0 0
\(555\) −20.0000 −0.848953
\(556\) 0 0
\(557\) 22.0000 0.932170 0.466085 0.884740i \(-0.345664\pi\)
0.466085 + 0.884740i \(0.345664\pi\)
\(558\) 0 0
\(559\) −10.0000 −0.422955
\(560\) 0 0
\(561\) −20.0000 −0.844401
\(562\) 0 0
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) −12.0000 −0.504844
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 23.0000 0.960839
\(574\) 0 0
\(575\) −9.00000 −0.375326
\(576\) 0 0
\(577\) 3.00000 0.124892 0.0624458 0.998048i \(-0.480110\pi\)
0.0624458 + 0.998048i \(0.480110\pi\)
\(578\) 0 0
\(579\) 4.00000 0.166234
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) −36.0000 −1.49097
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) −48.0000 −1.98117 −0.990586 0.136892i \(-0.956289\pi\)
−0.990586 + 0.136892i \(0.956289\pi\)
\(588\) 0 0
\(589\) 2.00000 0.0824086
\(590\) 0 0
\(591\) 12.0000 0.493614
\(592\) 0 0
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) −10.0000 −0.409960
\(596\) 0 0
\(597\) −5.00000 −0.204636
\(598\) 0 0
\(599\) −28.0000 −1.14405 −0.572024 0.820237i \(-0.693842\pi\)
−0.572024 + 0.820237i \(0.693842\pi\)
\(600\) 0 0
\(601\) −34.0000 −1.38689 −0.693444 0.720510i \(-0.743908\pi\)
−0.693444 + 0.720510i \(0.743908\pi\)
\(602\) 0 0
\(603\) 26.0000 1.05880
\(604\) 0 0
\(605\) 10.0000 0.406558
\(606\) 0 0
\(607\) 10.0000 0.405887 0.202944 0.979190i \(-0.434949\pi\)
0.202944 + 0.979190i \(0.434949\pi\)
\(608\) 0 0
\(609\) −5.00000 −0.202610
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) −12.0000 −0.484675 −0.242338 0.970192i \(-0.577914\pi\)
−0.242338 + 0.970192i \(0.577914\pi\)
\(614\) 0 0
\(615\) −24.0000 −0.967773
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) 45.0000 1.80579
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) −50.0000 −1.99363
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 13.0000 0.516704
\(634\) 0 0
\(635\) −12.0000 −0.476205
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) 0 0
\(639\) 20.0000 0.791188
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) 0 0
\(645\) 20.0000 0.787499
\(646\) 0 0
\(647\) 37.0000 1.45462 0.727310 0.686309i \(-0.240770\pi\)
0.727310 + 0.686309i \(0.240770\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 2.00000 0.0783862
\(652\) 0 0
\(653\) 46.0000 1.80012 0.900060 0.435767i \(-0.143523\pi\)
0.900060 + 0.435767i \(0.143523\pi\)
\(654\) 0 0
\(655\) 28.0000 1.09405
\(656\) 0 0
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) −19.0000 −0.740135 −0.370067 0.929005i \(-0.620665\pi\)
−0.370067 + 0.929005i \(0.620665\pi\)
\(660\) 0 0
\(661\) 15.0000 0.583432 0.291716 0.956505i \(-0.405774\pi\)
0.291716 + 0.956505i \(0.405774\pi\)
\(662\) 0 0
\(663\) 5.00000 0.194184
\(664\) 0 0
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) 45.0000 1.74241
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) −20.0000 −0.770943 −0.385472 0.922720i \(-0.625961\pi\)
−0.385472 + 0.922720i \(0.625961\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 15.0000 0.576497 0.288248 0.957556i \(-0.406927\pi\)
0.288248 + 0.957556i \(0.406927\pi\)
\(678\) 0 0
\(679\) −6.00000 −0.230259
\(680\) 0 0
\(681\) 1.00000 0.0383201
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) −26.0000 −0.993409
\(686\) 0 0
\(687\) −14.0000 −0.534133
\(688\) 0 0
\(689\) 9.00000 0.342873
\(690\) 0 0
\(691\) −30.0000 −1.14125 −0.570627 0.821209i \(-0.693300\pi\)
−0.570627 + 0.821209i \(0.693300\pi\)
\(692\) 0 0
\(693\) 8.00000 0.303895
\(694\) 0 0
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) −60.0000 −2.27266
\(698\) 0 0
\(699\) 10.0000 0.378235
\(700\) 0 0
\(701\) 20.0000 0.755390 0.377695 0.925930i \(-0.376717\pi\)
0.377695 + 0.925930i \(0.376717\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) 0 0
\(705\) 24.0000 0.903892
\(706\) 0 0
\(707\) −4.00000 −0.150435
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 20.0000 0.750059
\(712\) 0 0
\(713\) −18.0000 −0.674105
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 0 0
\(717\) 19.0000 0.709568
\(718\) 0 0
\(719\) −3.00000 −0.111881 −0.0559406 0.998434i \(-0.517816\pi\)
−0.0559406 + 0.998434i \(0.517816\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 16.0000 0.595046
\(724\) 0 0
\(725\) −5.00000 −0.185695
\(726\) 0 0
\(727\) 29.0000 1.07555 0.537775 0.843088i \(-0.319265\pi\)
0.537775 + 0.843088i \(0.319265\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 50.0000 1.84932
\(732\) 0 0
\(733\) −6.00000 −0.221615 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(734\) 0 0
\(735\) 12.0000 0.442627
\(736\) 0 0
\(737\) 52.0000 1.91544
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 1.00000 0.0367359
\(742\) 0 0
\(743\) 50.0000 1.83432 0.917161 0.398517i \(-0.130475\pi\)
0.917161 + 0.398517i \(0.130475\pi\)
\(744\) 0 0
\(745\) 16.0000 0.586195
\(746\) 0 0
\(747\) −16.0000 −0.585409
\(748\) 0 0
\(749\) −11.0000 −0.401931
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) 0 0
\(753\) −6.00000 −0.218652
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) 36.0000 1.30672
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) 0 0
\(763\) 15.0000 0.543036
\(764\) 0 0
\(765\) 20.0000 0.723102
\(766\) 0 0
\(767\) −9.00000 −0.324971
\(768\) 0 0
\(769\) 1.00000 0.0360609 0.0180305 0.999837i \(-0.494260\pi\)
0.0180305 + 0.999837i \(0.494260\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) −9.00000 −0.323708 −0.161854 0.986815i \(-0.551747\pi\)
−0.161854 + 0.986815i \(0.551747\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) −10.0000 −0.358748
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 40.0000 1.43131
\(782\) 0 0
\(783\) 25.0000 0.893427
\(784\) 0 0
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) 11.0000 0.392108 0.196054 0.980593i \(-0.437187\pi\)
0.196054 + 0.980593i \(0.437187\pi\)
\(788\) 0 0
\(789\) 16.0000 0.569615
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) −2.00000 −0.0710221
\(794\) 0 0
\(795\) −18.0000 −0.638394
\(796\) 0 0
\(797\) 5.00000 0.177109 0.0885545 0.996071i \(-0.471775\pi\)
0.0885545 + 0.996071i \(0.471775\pi\)
\(798\) 0 0
\(799\) 60.0000 2.12265
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) 0 0
\(803\) 28.0000 0.988099
\(804\) 0 0
\(805\) 18.0000 0.634417
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) 5.00000 0.175791 0.0878953 0.996130i \(-0.471986\pi\)
0.0878953 + 0.996130i \(0.471986\pi\)
\(810\) 0 0
\(811\) 9.00000 0.316033 0.158016 0.987436i \(-0.449490\pi\)
0.158016 + 0.987436i \(0.449490\pi\)
\(812\) 0 0
\(813\) 3.00000 0.105215
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) 10.0000 0.349856
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 50.0000 1.74501 0.872506 0.488603i \(-0.162493\pi\)
0.872506 + 0.488603i \(0.162493\pi\)
\(822\) 0 0
\(823\) 3.00000 0.104573 0.0522867 0.998632i \(-0.483349\pi\)
0.0522867 + 0.998632i \(0.483349\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 19.0000 0.660695 0.330347 0.943859i \(-0.392834\pi\)
0.330347 + 0.943859i \(0.392834\pi\)
\(828\) 0 0
\(829\) 7.00000 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 0 0
\(831\) −6.00000 −0.208138
\(832\) 0 0
\(833\) 30.0000 1.03944
\(834\) 0 0
\(835\) −48.0000 −1.66111
\(836\) 0 0
\(837\) −10.0000 −0.345651
\(838\) 0 0
\(839\) 22.0000 0.759524 0.379762 0.925084i \(-0.376006\pi\)
0.379762 + 0.925084i \(0.376006\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) 20.0000 0.688837
\(844\) 0 0
\(845\) −24.0000 −0.825625
\(846\) 0 0
\(847\) 5.00000 0.171802
\(848\) 0 0
\(849\) −24.0000 −0.823678
\(850\) 0 0
\(851\) 90.0000 3.08516
\(852\) 0 0
\(853\) −40.0000 −1.36957 −0.684787 0.728743i \(-0.740105\pi\)
−0.684787 + 0.728743i \(0.740105\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) 12.0000 0.409912 0.204956 0.978771i \(-0.434295\pi\)
0.204956 + 0.978771i \(0.434295\pi\)
\(858\) 0 0
\(859\) 16.0000 0.545913 0.272956 0.962026i \(-0.411998\pi\)
0.272956 + 0.962026i \(0.411998\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) 0 0
\(863\) −30.0000 −1.02121 −0.510606 0.859815i \(-0.670579\pi\)
−0.510606 + 0.859815i \(0.670579\pi\)
\(864\) 0 0
\(865\) −28.0000 −0.952029
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) −13.0000 −0.440488
\(872\) 0 0
\(873\) 12.0000 0.406138
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) −41.0000 −1.38447 −0.692236 0.721671i \(-0.743374\pi\)
−0.692236 + 0.721671i \(0.743374\pi\)
\(878\) 0 0
\(879\) 21.0000 0.708312
\(880\) 0 0
\(881\) 10.0000 0.336909 0.168454 0.985709i \(-0.446122\pi\)
0.168454 + 0.985709i \(0.446122\pi\)
\(882\) 0 0
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) 0 0
\(885\) 18.0000 0.605063
\(886\) 0 0
\(887\) 18.0000 0.604381 0.302190 0.953248i \(-0.402282\pi\)
0.302190 + 0.953248i \(0.402282\pi\)
\(888\) 0 0
\(889\) −6.00000 −0.201234
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 0 0
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) 24.0000 0.802232
\(896\) 0 0
\(897\) −9.00000 −0.300501
\(898\) 0 0
\(899\) −10.0000 −0.333519
\(900\) 0 0
\(901\) −45.0000 −1.49917
\(902\) 0 0
\(903\) 10.0000 0.332779
\(904\) 0 0
\(905\) 4.00000 0.132964
\(906\) 0 0
\(907\) −51.0000 −1.69343 −0.846714 0.532049i \(-0.821422\pi\)
−0.846714 + 0.532049i \(0.821422\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) 0 0
\(913\) −32.0000 −1.05905
\(914\) 0 0
\(915\) 4.00000 0.132236
\(916\) 0 0
\(917\) 14.0000 0.462321
\(918\) 0 0
\(919\) 43.0000 1.41844 0.709220 0.704988i \(-0.249047\pi\)
0.709220 + 0.704988i \(0.249047\pi\)
\(920\) 0 0
\(921\) 12.0000 0.395413
\(922\) 0 0
\(923\) −10.0000 −0.329154
\(924\) 0 0
\(925\) −10.0000 −0.328798
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) 13.0000 0.426516 0.213258 0.976996i \(-0.431592\pi\)
0.213258 + 0.976996i \(0.431592\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) −33.0000 −1.08037
\(934\) 0 0
\(935\) 40.0000 1.30814
\(936\) 0 0
\(937\) 37.0000 1.20874 0.604369 0.796705i \(-0.293425\pi\)
0.604369 + 0.796705i \(0.293425\pi\)
\(938\) 0 0
\(939\) −21.0000 −0.685309
\(940\) 0 0
\(941\) −3.00000 −0.0977972 −0.0488986 0.998804i \(-0.515571\pi\)
−0.0488986 + 0.998804i \(0.515571\pi\)
\(942\) 0 0
\(943\) 108.000 3.51696
\(944\) 0 0
\(945\) 10.0000 0.325300
\(946\) 0 0
\(947\) −38.0000 −1.23483 −0.617417 0.786636i \(-0.711821\pi\)
−0.617417 + 0.786636i \(0.711821\pi\)
\(948\) 0 0
\(949\) −7.00000 −0.227230
\(950\) 0 0
\(951\) −31.0000 −1.00524
\(952\) 0 0
\(953\) −8.00000 −0.259145 −0.129573 0.991570i \(-0.541361\pi\)
−0.129573 + 0.991570i \(0.541361\pi\)
\(954\) 0 0
\(955\) −46.0000 −1.48853
\(956\) 0 0
\(957\) 20.0000 0.646508
\(958\) 0 0
\(959\) −13.0000 −0.419792
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 22.0000 0.708940
\(964\) 0 0
\(965\) −8.00000 −0.257529
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 0 0
\(969\) −5.00000 −0.160623
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 2.00000 0.0641171
\(974\) 0 0
\(975\) 1.00000 0.0320256
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) −30.0000 −0.957826
\(982\) 0 0
\(983\) −2.00000 −0.0637901 −0.0318950 0.999491i \(-0.510154\pi\)
−0.0318950 + 0.999491i \(0.510154\pi\)
\(984\) 0 0
\(985\) −24.0000 −0.764704
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) 0 0
\(989\) −90.0000 −2.86183
\(990\) 0 0
\(991\) 10.0000 0.317660 0.158830 0.987306i \(-0.449228\pi\)
0.158830 + 0.987306i \(0.449228\pi\)
\(992\) 0 0
\(993\) −1.00000 −0.0317340
\(994\) 0 0
\(995\) 10.0000 0.317021
\(996\) 0 0
\(997\) −50.0000 −1.58352 −0.791758 0.610835i \(-0.790834\pi\)
−0.791758 + 0.610835i \(0.790834\pi\)
\(998\) 0 0
\(999\) 50.0000 1.58193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4864.2.a.f.1.1 1
4.3 odd 2 4864.2.a.n.1.1 1
8.3 odd 2 4864.2.a.c.1.1 1
8.5 even 2 4864.2.a.k.1.1 1
16.3 odd 4 2432.2.c.b.1217.2 yes 2
16.5 even 4 2432.2.c.a.1217.2 yes 2
16.11 odd 4 2432.2.c.b.1217.1 yes 2
16.13 even 4 2432.2.c.a.1217.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2432.2.c.a.1217.1 2 16.13 even 4
2432.2.c.a.1217.2 yes 2 16.5 even 4
2432.2.c.b.1217.1 yes 2 16.11 odd 4
2432.2.c.b.1217.2 yes 2 16.3 odd 4
4864.2.a.c.1.1 1 8.3 odd 2
4864.2.a.f.1.1 1 1.1 even 1 trivial
4864.2.a.k.1.1 1 8.5 even 2
4864.2.a.n.1.1 1 4.3 odd 2