Properties

Label 486.2.g.b.451.2
Level $486$
Weight $2$
Character 486.451
Analytic conductor $3.881$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(19,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([52]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 162)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 451.2
Character \(\chi\) \(=\) 486.451
Dual form 486.2.g.b.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.973045 - 0.230616i) q^{2} +(0.893633 + 0.448799i) q^{4} +(-0.537372 + 0.721815i) q^{5} +(-3.95679 - 2.60242i) q^{7} +(-0.766044 - 0.642788i) q^{8} +(0.689349 - 0.578432i) q^{10} +(4.21098 - 0.492194i) q^{11} +(-1.75605 + 5.86562i) q^{13} +(3.24997 + 3.44477i) q^{14} +(0.597159 + 0.802123i) q^{16} +(0.432180 + 2.45101i) q^{17} +(-0.284021 + 1.61076i) q^{19} +(-0.804163 + 0.403866i) q^{20} +(-4.21098 - 0.492194i) q^{22} +(-6.35325 + 4.17860i) q^{23} +(1.20177 + 4.01418i) q^{25} +(3.06142 - 5.30254i) q^{26} +(-2.36795 - 4.10141i) q^{28} +(-2.09368 + 2.21918i) q^{29} +(-0.107618 - 1.84773i) q^{31} +(-0.396080 - 0.918216i) q^{32} +(0.144712 - 2.48461i) q^{34} +(4.00473 - 1.45760i) q^{35} +(-8.42259 - 3.06557i) q^{37} +(0.647833 - 1.50184i) q^{38} +(0.875624 - 0.207527i) q^{40} +(-5.04755 + 1.19629i) q^{41} +(1.06337 - 2.46516i) q^{43} +(3.98397 + 1.45005i) q^{44} +(7.14564 - 2.60080i) q^{46} +(-0.486795 + 8.35794i) q^{47} +(6.11101 + 14.1669i) q^{49} +(-0.243639 - 4.18313i) q^{50} +(-4.20175 + 4.45360i) q^{52} +(1.11544 + 1.93201i) q^{53} +(-1.90759 + 3.30404i) q^{55} +(1.35827 + 4.53694i) q^{56} +(2.54903 - 1.67652i) q^{58} +(3.71218 + 0.433892i) q^{59} +(2.81018 - 1.41133i) q^{61} +(-0.321399 + 1.82275i) q^{62} +(0.173648 + 0.984808i) q^{64} +(-3.29024 - 4.41957i) q^{65} +(3.28793 + 3.48500i) q^{67} +(-0.713803 + 2.38427i) q^{68} +(-4.23293 + 0.494758i) q^{70} +(3.18551 - 2.67296i) q^{71} +(1.09995 + 0.922965i) q^{73} +(7.48859 + 4.92532i) q^{74} +(-0.976720 + 1.31196i) q^{76} +(-17.9429 - 9.01124i) q^{77} +(-5.03759 - 1.19393i) q^{79} -0.899881 q^{80} +5.18737 q^{82} +(2.63513 + 0.624537i) q^{83} +(-2.00142 - 1.00515i) q^{85} +(-1.60321 + 2.15349i) q^{86} +(-3.54218 - 2.32973i) q^{88} +(-12.5970 - 10.5701i) q^{89} +(22.2131 - 18.6390i) q^{91} +(-7.55282 + 0.882798i) q^{92} +(2.40115 - 8.02039i) q^{94} +(-1.01005 - 1.07059i) q^{95} +(2.79423 + 3.75330i) q^{97} +(-2.67917 - 15.1943i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 18 q^{13} + 9 q^{20} - 27 q^{23} - 18 q^{25} + 27 q^{26} - 18 q^{28} + 27 q^{29} + 54 q^{31} + 27 q^{35} + 18 q^{38} + 9 q^{41} - 36 q^{43} + 18 q^{46} + 27 q^{47} + 36 q^{52} + 27 q^{53} - 54 q^{55}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{2}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.973045 0.230616i −0.688047 0.163070i
\(3\) 0 0
\(4\) 0.893633 + 0.448799i 0.446816 + 0.224400i
\(5\) −0.537372 + 0.721815i −0.240320 + 0.322806i −0.905877 0.423542i \(-0.860787\pi\)
0.665557 + 0.746347i \(0.268194\pi\)
\(6\) 0 0
\(7\) −3.95679 2.60242i −1.49552 0.983622i −0.992879 0.119129i \(-0.961990\pi\)
−0.502646 0.864493i \(-0.667640\pi\)
\(8\) −0.766044 0.642788i −0.270838 0.227260i
\(9\) 0 0
\(10\) 0.689349 0.578432i 0.217991 0.182916i
\(11\) 4.21098 0.492194i 1.26966 0.148402i 0.545545 0.838082i \(-0.316323\pi\)
0.724115 + 0.689680i \(0.242249\pi\)
\(12\) 0 0
\(13\) −1.75605 + 5.86562i −0.487041 + 1.62683i 0.262541 + 0.964921i \(0.415439\pi\)
−0.749583 + 0.661911i \(0.769746\pi\)
\(14\) 3.24997 + 3.44477i 0.868591 + 0.920653i
\(15\) 0 0
\(16\) 0.597159 + 0.802123i 0.149290 + 0.200531i
\(17\) 0.432180 + 2.45101i 0.104819 + 0.594458i 0.991292 + 0.131679i \(0.0420367\pi\)
−0.886473 + 0.462780i \(0.846852\pi\)
\(18\) 0 0
\(19\) −0.284021 + 1.61076i −0.0651589 + 0.369534i 0.934740 + 0.355332i \(0.115632\pi\)
−0.999899 + 0.0142026i \(0.995479\pi\)
\(20\) −0.804163 + 0.403866i −0.179816 + 0.0903071i
\(21\) 0 0
\(22\) −4.21098 0.492194i −0.897785 0.104936i
\(23\) −6.35325 + 4.17860i −1.32474 + 0.871297i −0.997290 0.0735700i \(-0.976561\pi\)
−0.327453 + 0.944867i \(0.606190\pi\)
\(24\) 0 0
\(25\) 1.20177 + 4.01418i 0.240353 + 0.802836i
\(26\) 3.06142 5.30254i 0.600395 1.03991i
\(27\) 0 0
\(28\) −2.36795 4.10141i −0.447500 0.775093i
\(29\) −2.09368 + 2.21918i −0.388787 + 0.412091i −0.891974 0.452087i \(-0.850679\pi\)
0.503186 + 0.864178i \(0.332161\pi\)
\(30\) 0 0
\(31\) −0.107618 1.84773i −0.0193288 0.331863i −0.994086 0.108595i \(-0.965365\pi\)
0.974757 0.223267i \(-0.0716723\pi\)
\(32\) −0.396080 0.918216i −0.0700177 0.162319i
\(33\) 0 0
\(34\) 0.144712 2.48461i 0.0248180 0.426108i
\(35\) 4.00473 1.45760i 0.676923 0.246380i
\(36\) 0 0
\(37\) −8.42259 3.06557i −1.38467 0.503977i −0.461076 0.887361i \(-0.652537\pi\)
−0.923589 + 0.383384i \(0.874759\pi\)
\(38\) 0.647833 1.50184i 0.105092 0.243631i
\(39\) 0 0
\(40\) 0.875624 0.207527i 0.138448 0.0328129i
\(41\) −5.04755 + 1.19629i −0.788295 + 0.186829i −0.604996 0.796228i \(-0.706825\pi\)
−0.183298 + 0.983057i \(0.558677\pi\)
\(42\) 0 0
\(43\) 1.06337 2.46516i 0.162162 0.375934i −0.817690 0.575659i \(-0.804746\pi\)
0.979852 + 0.199725i \(0.0640049\pi\)
\(44\) 3.98397 + 1.45005i 0.600606 + 0.218603i
\(45\) 0 0
\(46\) 7.14564 2.60080i 1.05357 0.383467i
\(47\) −0.486795 + 8.35794i −0.0710063 + 1.21913i 0.755097 + 0.655613i \(0.227590\pi\)
−0.826103 + 0.563519i \(0.809447\pi\)
\(48\) 0 0
\(49\) 6.11101 + 14.1669i 0.873002 + 2.02384i
\(50\) −0.243639 4.18313i −0.0344558 0.591583i
\(51\) 0 0
\(52\) −4.20175 + 4.45360i −0.582678 + 0.617603i
\(53\) 1.11544 + 1.93201i 0.153218 + 0.265381i 0.932409 0.361406i \(-0.117703\pi\)
−0.779191 + 0.626787i \(0.784370\pi\)
\(54\) 0 0
\(55\) −1.90759 + 3.30404i −0.257219 + 0.445517i
\(56\) 1.35827 + 4.53694i 0.181507 + 0.606274i
\(57\) 0 0
\(58\) 2.54903 1.67652i 0.334703 0.220138i
\(59\) 3.71218 + 0.433892i 0.483285 + 0.0564879i 0.354247 0.935152i \(-0.384737\pi\)
0.129038 + 0.991640i \(0.458811\pi\)
\(60\) 0 0
\(61\) 2.81018 1.41133i 0.359807 0.180702i −0.259707 0.965687i \(-0.583626\pi\)
0.619514 + 0.784986i \(0.287330\pi\)
\(62\) −0.321399 + 1.82275i −0.0408178 + 0.231489i
\(63\) 0 0
\(64\) 0.173648 + 0.984808i 0.0217060 + 0.123101i
\(65\) −3.29024 4.41957i −0.408105 0.548180i
\(66\) 0 0
\(67\) 3.28793 + 3.48500i 0.401685 + 0.425761i 0.896367 0.443313i \(-0.146197\pi\)
−0.494682 + 0.869074i \(0.664716\pi\)
\(68\) −0.713803 + 2.38427i −0.0865614 + 0.289135i
\(69\) 0 0
\(70\) −4.23293 + 0.494758i −0.505932 + 0.0591349i
\(71\) 3.18551 2.67296i 0.378051 0.317222i −0.433886 0.900968i \(-0.642858\pi\)
0.811937 + 0.583746i \(0.198413\pi\)
\(72\) 0 0
\(73\) 1.09995 + 0.922965i 0.128739 + 0.108025i 0.704884 0.709323i \(-0.250999\pi\)
−0.576145 + 0.817348i \(0.695444\pi\)
\(74\) 7.48859 + 4.92532i 0.870531 + 0.572557i
\(75\) 0 0
\(76\) −0.976720 + 1.31196i −0.112037 + 0.150492i
\(77\) −17.9429 9.01124i −2.04478 1.02693i
\(78\) 0 0
\(79\) −5.03759 1.19393i −0.566773 0.134328i −0.0627675 0.998028i \(-0.519993\pi\)
−0.504005 + 0.863701i \(0.668141\pi\)
\(80\) −0.899881 −0.100610
\(81\) 0 0
\(82\) 5.18737 0.572850
\(83\) 2.63513 + 0.624537i 0.289243 + 0.0685519i 0.372676 0.927962i \(-0.378440\pi\)
−0.0834329 + 0.996513i \(0.526588\pi\)
\(84\) 0 0
\(85\) −2.00142 1.00515i −0.217085 0.109024i
\(86\) −1.60321 + 2.15349i −0.172879 + 0.232216i
\(87\) 0 0
\(88\) −3.54218 2.32973i −0.377597 0.248350i
\(89\) −12.5970 10.5701i −1.33528 1.12043i −0.982813 0.184604i \(-0.940900\pi\)
−0.352463 0.935826i \(-0.614656\pi\)
\(90\) 0 0
\(91\) 22.2131 18.6390i 2.32857 1.95390i
\(92\) −7.55282 + 0.882798i −0.787436 + 0.0920380i
\(93\) 0 0
\(94\) 2.40115 8.02039i 0.247659 0.827240i
\(95\) −1.01005 1.07059i −0.103629 0.109840i
\(96\) 0 0
\(97\) 2.79423 + 3.75330i 0.283711 + 0.381090i 0.921018 0.389520i \(-0.127359\pi\)
−0.637307 + 0.770610i \(0.719952\pi\)
\(98\) −2.67917 15.1943i −0.270637 1.53486i
\(99\) 0 0
\(100\) −0.727623 + 4.12656i −0.0727623 + 0.412656i
\(101\) 10.7240 5.38577i 1.06707 0.535904i 0.173506 0.984833i \(-0.444490\pi\)
0.893568 + 0.448928i \(0.148194\pi\)
\(102\) 0 0
\(103\) 7.07350 + 0.826773i 0.696972 + 0.0814644i 0.457199 0.889364i \(-0.348853\pi\)
0.239774 + 0.970829i \(0.422927\pi\)
\(104\) 5.11557 3.36456i 0.501622 0.329922i
\(105\) 0 0
\(106\) −0.639826 2.13717i −0.0621454 0.207580i
\(107\) 4.54371 7.86994i 0.439257 0.760816i −0.558375 0.829589i \(-0.688575\pi\)
0.997632 + 0.0687727i \(0.0219083\pi\)
\(108\) 0 0
\(109\) −4.27740 7.40867i −0.409700 0.709622i 0.585156 0.810921i \(-0.301033\pi\)
−0.994856 + 0.101299i \(0.967700\pi\)
\(110\) 2.61814 2.77506i 0.249629 0.264592i
\(111\) 0 0
\(112\) −0.275368 4.72789i −0.0260198 0.446743i
\(113\) 2.11058 + 4.89288i 0.198547 + 0.460284i 0.988180 0.153295i \(-0.0489886\pi\)
−0.789633 + 0.613579i \(0.789729\pi\)
\(114\) 0 0
\(115\) 0.397880 6.83133i 0.0371025 0.637025i
\(116\) −2.86695 + 1.04348i −0.266189 + 0.0968850i
\(117\) 0 0
\(118\) −3.51206 1.27828i −0.323311 0.117676i
\(119\) 4.66852 10.8229i 0.427963 0.992129i
\(120\) 0 0
\(121\) 6.78664 1.60846i 0.616968 0.146224i
\(122\) −3.05991 + 0.725211i −0.277031 + 0.0656576i
\(123\) 0 0
\(124\) 0.733090 1.69949i 0.0658334 0.152619i
\(125\) −7.77135 2.82854i −0.695091 0.252992i
\(126\) 0 0
\(127\) −2.08699 + 0.759602i −0.185190 + 0.0674038i −0.432951 0.901418i \(-0.642528\pi\)
0.247760 + 0.968821i \(0.420305\pi\)
\(128\) 0.0581448 0.998308i 0.00513933 0.0882388i
\(129\) 0 0
\(130\) 2.18233 + 5.05922i 0.191403 + 0.443723i
\(131\) −0.0633149 1.08707i −0.00553185 0.0949781i 0.994412 0.105568i \(-0.0336661\pi\)
−0.999944 + 0.0105899i \(0.996629\pi\)
\(132\) 0 0
\(133\) 5.31569 5.63430i 0.460929 0.488556i
\(134\) −2.39561 4.14931i −0.206949 0.358446i
\(135\) 0 0
\(136\) 1.24441 2.15539i 0.106708 0.184823i
\(137\) 1.73952 + 5.81040i 0.148617 + 0.496416i 0.999585 0.0288015i \(-0.00916906\pi\)
−0.850968 + 0.525218i \(0.823984\pi\)
\(138\) 0 0
\(139\) −11.7886 + 7.75350i −0.999898 + 0.657644i −0.940218 0.340574i \(-0.889379\pi\)
−0.0596807 + 0.998218i \(0.519008\pi\)
\(140\) 4.23293 + 0.494758i 0.357748 + 0.0418147i
\(141\) 0 0
\(142\) −3.71607 + 1.86628i −0.311846 + 0.156615i
\(143\) −4.50769 + 25.5644i −0.376952 + 2.13780i
\(144\) 0 0
\(145\) −0.476748 2.70377i −0.0395918 0.224536i
\(146\) −0.857447 1.15175i −0.0709628 0.0953196i
\(147\) 0 0
\(148\) −6.15088 6.51955i −0.505599 0.535903i
\(149\) 0.589967 1.97063i 0.0483319 0.161440i −0.930417 0.366503i \(-0.880555\pi\)
0.978749 + 0.205063i \(0.0657400\pi\)
\(150\) 0 0
\(151\) −8.84148 + 1.03342i −0.719509 + 0.0840986i −0.467965 0.883747i \(-0.655013\pi\)
−0.251545 + 0.967846i \(0.580939\pi\)
\(152\) 1.25295 1.05135i 0.101628 0.0852758i
\(153\) 0 0
\(154\) 15.3811 + 12.9063i 1.23944 + 1.04002i
\(155\) 1.39155 + 0.915239i 0.111772 + 0.0735138i
\(156\) 0 0
\(157\) −2.34792 + 3.15381i −0.187385 + 0.251701i −0.885881 0.463912i \(-0.846445\pi\)
0.698496 + 0.715613i \(0.253853\pi\)
\(158\) 4.62646 + 2.32349i 0.368061 + 0.184847i
\(159\) 0 0
\(160\) 0.875624 + 0.207527i 0.0692242 + 0.0164064i
\(161\) 36.0129 2.83821
\(162\) 0 0
\(163\) −10.9972 −0.861367 −0.430683 0.902503i \(-0.641727\pi\)
−0.430683 + 0.902503i \(0.641727\pi\)
\(164\) −5.04755 1.19629i −0.394147 0.0934146i
\(165\) 0 0
\(166\) −2.42007 1.21541i −0.187834 0.0943338i
\(167\) 9.59118 12.8832i 0.742188 0.996931i −0.257343 0.966320i \(-0.582847\pi\)
0.999531 0.0306113i \(-0.00974542\pi\)
\(168\) 0 0
\(169\) −20.4605 13.4571i −1.57388 1.03516i
\(170\) 1.71567 + 1.43962i 0.131586 + 0.110414i
\(171\) 0 0
\(172\) 2.05662 1.72571i 0.156816 0.131584i
\(173\) 11.5069 1.34497i 0.874855 0.102256i 0.333199 0.942856i \(-0.391872\pi\)
0.541655 + 0.840601i \(0.317798\pi\)
\(174\) 0 0
\(175\) 5.69145 19.0108i 0.430233 1.43708i
\(176\) 2.90943 + 3.08381i 0.219306 + 0.232451i
\(177\) 0 0
\(178\) 9.81978 + 13.1903i 0.736024 + 0.988651i
\(179\) −1.19249 6.76294i −0.0891308 0.505486i −0.996389 0.0849109i \(-0.972939\pi\)
0.907258 0.420575i \(-0.138172\pi\)
\(180\) 0 0
\(181\) −4.15485 + 23.5633i −0.308827 + 1.75145i 0.296092 + 0.955159i \(0.404316\pi\)
−0.604919 + 0.796287i \(0.706795\pi\)
\(182\) −25.9128 + 13.0139i −1.92079 + 0.964656i
\(183\) 0 0
\(184\) 7.55282 + 0.882798i 0.556801 + 0.0650807i
\(185\) 6.73884 4.43220i 0.495449 0.325862i
\(186\) 0 0
\(187\) 3.02628 + 10.1085i 0.221303 + 0.739204i
\(188\) −4.18605 + 7.25046i −0.305299 + 0.528794i
\(189\) 0 0
\(190\) 0.735928 + 1.27466i 0.0533898 + 0.0924739i
\(191\) −6.80578 + 7.21370i −0.492449 + 0.521965i −0.925165 0.379565i \(-0.876074\pi\)
0.432716 + 0.901530i \(0.357555\pi\)
\(192\) 0 0
\(193\) −1.01279 17.3890i −0.0729023 1.25168i −0.814231 0.580542i \(-0.802841\pi\)
0.741328 0.671143i \(-0.234196\pi\)
\(194\) −1.85334 4.29653i −0.133062 0.308473i
\(195\) 0 0
\(196\) −0.897101 + 15.4026i −0.0640787 + 1.10019i
\(197\) −19.0553 + 6.93558i −1.35764 + 0.494140i −0.915323 0.402720i \(-0.868065\pi\)
−0.442314 + 0.896860i \(0.645842\pi\)
\(198\) 0 0
\(199\) 4.91031 + 1.78721i 0.348083 + 0.126692i 0.510144 0.860089i \(-0.329592\pi\)
−0.162062 + 0.986781i \(0.551814\pi\)
\(200\) 1.65966 3.84752i 0.117356 0.272061i
\(201\) 0 0
\(202\) −11.6769 + 2.76748i −0.821586 + 0.194720i
\(203\) 14.0595 3.33216i 0.986782 0.233872i
\(204\) 0 0
\(205\) 1.84891 4.28625i 0.129133 0.299365i
\(206\) −6.69216 2.43575i −0.466265 0.169707i
\(207\) 0 0
\(208\) −5.75360 + 2.09414i −0.398940 + 0.145202i
\(209\) −0.403201 + 6.92269i −0.0278900 + 0.478853i
\(210\) 0 0
\(211\) −3.96517 9.19229i −0.272973 0.632823i 0.725490 0.688232i \(-0.241613\pi\)
−0.998464 + 0.0554089i \(0.982354\pi\)
\(212\) 0.129715 + 2.22711i 0.00890884 + 0.152959i
\(213\) 0 0
\(214\) −6.23617 + 6.60995i −0.426296 + 0.451847i
\(215\) 1.20797 + 2.09226i 0.0823828 + 0.142691i
\(216\) 0 0
\(217\) −4.38275 + 7.59115i −0.297521 + 0.515321i
\(218\) 2.45354 + 8.19540i 0.166175 + 0.555063i
\(219\) 0 0
\(220\) −3.18754 + 2.09648i −0.214904 + 0.141344i
\(221\) −15.1357 1.76911i −1.01813 0.119003i
\(222\) 0 0
\(223\) 20.2555 10.1727i 1.35641 0.681215i 0.385961 0.922515i \(-0.373870\pi\)
0.970451 + 0.241300i \(0.0775738\pi\)
\(224\) −0.822380 + 4.66395i −0.0549476 + 0.311623i
\(225\) 0 0
\(226\) −0.925316 5.24773i −0.0615511 0.349074i
\(227\) −1.72373 2.31537i −0.114408 0.153677i 0.741230 0.671251i \(-0.234243\pi\)
−0.855638 + 0.517574i \(0.826835\pi\)
\(228\) 0 0
\(229\) 13.2406 + 14.0343i 0.874967 + 0.927410i 0.997885 0.0650064i \(-0.0207068\pi\)
−0.122918 + 0.992417i \(0.539225\pi\)
\(230\) −1.96257 + 6.55543i −0.129408 + 0.432252i
\(231\) 0 0
\(232\) 3.03031 0.354193i 0.198950 0.0232539i
\(233\) −20.8609 + 17.5044i −1.36664 + 1.14675i −0.392777 + 0.919634i \(0.628485\pi\)
−0.973868 + 0.227117i \(0.927070\pi\)
\(234\) 0 0
\(235\) −5.77130 4.84270i −0.376478 0.315903i
\(236\) 3.12260 + 2.05376i 0.203264 + 0.133689i
\(237\) 0 0
\(238\) −7.03860 + 9.45449i −0.456245 + 0.612843i
\(239\) −7.06865 3.55001i −0.457233 0.229631i 0.205248 0.978710i \(-0.434200\pi\)
−0.662481 + 0.749079i \(0.730496\pi\)
\(240\) 0 0
\(241\) −0.421799 0.0999681i −0.0271704 0.00643951i 0.217008 0.976170i \(-0.430370\pi\)
−0.244179 + 0.969730i \(0.578518\pi\)
\(242\) −6.97465 −0.448347
\(243\) 0 0
\(244\) 3.14467 0.201317
\(245\) −13.5098 3.20188i −0.863108 0.204560i
\(246\) 0 0
\(247\) −8.94938 4.49455i −0.569435 0.285981i
\(248\) −1.10526 + 1.48462i −0.0701841 + 0.0942736i
\(249\) 0 0
\(250\) 6.90957 + 4.54449i 0.436999 + 0.287419i
\(251\) 4.62180 + 3.87815i 0.291725 + 0.244787i 0.776890 0.629636i \(-0.216796\pi\)
−0.485165 + 0.874423i \(0.661240\pi\)
\(252\) 0 0
\(253\) −24.6967 + 20.7230i −1.55267 + 1.30285i
\(254\) 2.20591 0.257834i 0.138411 0.0161780i
\(255\) 0 0
\(256\) −0.286803 + 0.957990i −0.0179252 + 0.0598743i
\(257\) 11.6285 + 12.3254i 0.725363 + 0.768840i 0.980171 0.198152i \(-0.0634938\pi\)
−0.254808 + 0.966992i \(0.582012\pi\)
\(258\) 0 0
\(259\) 25.3485 + 34.0489i 1.57508 + 2.11570i
\(260\) −0.956773 5.42613i −0.0593365 0.336514i
\(261\) 0 0
\(262\) −0.189088 + 1.07237i −0.0116819 + 0.0662515i
\(263\) 20.4228 10.2567i 1.25933 0.632458i 0.311198 0.950345i \(-0.399270\pi\)
0.948128 + 0.317887i \(0.102973\pi\)
\(264\) 0 0
\(265\) −1.99396 0.233060i −0.122488 0.0143168i
\(266\) −6.47176 + 4.25655i −0.396809 + 0.260986i
\(267\) 0 0
\(268\) 1.37414 + 4.58993i 0.0839387 + 0.280375i
\(269\) −11.0727 + 19.1784i −0.675113 + 1.16933i 0.301323 + 0.953522i \(0.402572\pi\)
−0.976436 + 0.215808i \(0.930761\pi\)
\(270\) 0 0
\(271\) 8.46422 + 14.6605i 0.514165 + 0.890559i 0.999865 + 0.0164339i \(0.00523130\pi\)
−0.485700 + 0.874125i \(0.661435\pi\)
\(272\) −1.70794 + 1.81031i −0.103559 + 0.109766i
\(273\) 0 0
\(274\) −0.352660 6.05494i −0.0213050 0.365793i
\(275\) 7.03638 + 16.3122i 0.424309 + 0.983660i
\(276\) 0 0
\(277\) 1.38639 23.8035i 0.0833004 1.43021i −0.654943 0.755678i \(-0.727307\pi\)
0.738244 0.674534i \(-0.235655\pi\)
\(278\) 13.2589 4.82586i 0.795219 0.289436i
\(279\) 0 0
\(280\) −4.00473 1.45760i −0.239328 0.0871084i
\(281\) −2.40187 + 5.56816i −0.143284 + 0.332169i −0.974713 0.223462i \(-0.928264\pi\)
0.831429 + 0.555631i \(0.187523\pi\)
\(282\) 0 0
\(283\) 6.35030 1.50505i 0.377486 0.0894659i −0.0374926 0.999297i \(-0.511937\pi\)
0.414979 + 0.909831i \(0.363789\pi\)
\(284\) 4.04630 0.958991i 0.240104 0.0569056i
\(285\) 0 0
\(286\) 10.2817 23.8357i 0.607972 1.40944i
\(287\) 23.0853 + 8.40237i 1.36268 + 0.495976i
\(288\) 0 0
\(289\) 10.1541 3.69578i 0.597299 0.217399i
\(290\) −0.159636 + 2.74084i −0.00937413 + 0.160948i
\(291\) 0 0
\(292\) 0.568723 + 1.31845i 0.0332820 + 0.0771563i
\(293\) −0.343009 5.88924i −0.0200388 0.344053i −0.993394 0.114751i \(-0.963393\pi\)
0.973355 0.229302i \(-0.0736442\pi\)
\(294\) 0 0
\(295\) −2.30801 + 2.44635i −0.134378 + 0.142432i
\(296\) 4.48157 + 7.76230i 0.260486 + 0.451175i
\(297\) 0 0
\(298\) −1.02852 + 1.78145i −0.0595806 + 0.103197i
\(299\) −13.3534 44.6036i −0.772249 2.57949i
\(300\) 0 0
\(301\) −10.6229 + 6.98680i −0.612294 + 0.402712i
\(302\) 8.84148 + 1.03342i 0.508770 + 0.0594667i
\(303\) 0 0
\(304\) −1.46164 + 0.734061i −0.0838306 + 0.0421013i
\(305\) −0.491395 + 2.78684i −0.0281372 + 0.159574i
\(306\) 0 0
\(307\) −2.40217 13.6234i −0.137099 0.777527i −0.973375 0.229219i \(-0.926383\pi\)
0.836276 0.548309i \(-0.184728\pi\)
\(308\) −11.9901 16.1055i −0.683199 0.917695i
\(309\) 0 0
\(310\) −1.14297 1.21148i −0.0649166 0.0688076i
\(311\) −6.10565 + 20.3943i −0.346220 + 1.15645i 0.590695 + 0.806895i \(0.298854\pi\)
−0.936914 + 0.349559i \(0.886331\pi\)
\(312\) 0 0
\(313\) −13.4077 + 1.56714i −0.757849 + 0.0885799i −0.486237 0.873827i \(-0.661631\pi\)
−0.271612 + 0.962407i \(0.587557\pi\)
\(314\) 3.01195 2.52733i 0.169974 0.142625i
\(315\) 0 0
\(316\) −3.96592 3.32780i −0.223100 0.187203i
\(317\) 7.36594 + 4.84465i 0.413712 + 0.272103i 0.739256 0.673424i \(-0.235177\pi\)
−0.325544 + 0.945527i \(0.605548\pi\)
\(318\) 0 0
\(319\) −7.72421 + 10.3754i −0.432473 + 0.580912i
\(320\) −0.804163 0.403866i −0.0449541 0.0225768i
\(321\) 0 0
\(322\) −35.0422 8.30514i −1.95282 0.462828i
\(323\) −4.07075 −0.226503
\(324\) 0 0
\(325\) −25.6560 −1.42314
\(326\) 10.7008 + 2.53613i 0.592660 + 0.140463i
\(327\) 0 0
\(328\) 4.63561 + 2.32809i 0.255959 + 0.128547i
\(329\) 23.6770 31.8038i 1.30536 1.75340i
\(330\) 0 0
\(331\) −2.52570 1.66118i −0.138825 0.0913066i 0.478197 0.878253i \(-0.341291\pi\)
−0.617022 + 0.786946i \(0.711661\pi\)
\(332\) 2.07455 + 1.74075i 0.113856 + 0.0955361i
\(333\) 0 0
\(334\) −12.3037 + 10.3240i −0.673230 + 0.564907i
\(335\) −4.28237 + 0.500537i −0.233971 + 0.0273473i
\(336\) 0 0
\(337\) −0.618666 + 2.06649i −0.0337009 + 0.112569i −0.973185 0.230023i \(-0.926120\pi\)
0.939484 + 0.342592i \(0.111305\pi\)
\(338\) 16.8056 + 17.8129i 0.914102 + 0.968891i
\(339\) 0 0
\(340\) −1.33742 1.79647i −0.0725320 0.0974274i
\(341\) −1.36262 7.72781i −0.0737901 0.418484i
\(342\) 0 0
\(343\) 6.93163 39.3112i 0.374273 2.12261i
\(344\) −2.39916 + 1.20491i −0.129354 + 0.0649641i
\(345\) 0 0
\(346\) −11.5069 1.34497i −0.618616 0.0723058i
\(347\) −24.2348 + 15.9395i −1.30099 + 0.855677i −0.995336 0.0964641i \(-0.969247\pi\)
−0.305658 + 0.952141i \(0.598876\pi\)
\(348\) 0 0
\(349\) 7.51624 + 25.1060i 0.402335 + 1.34389i 0.883980 + 0.467525i \(0.154854\pi\)
−0.481645 + 0.876367i \(0.659960\pi\)
\(350\) −9.92222 + 17.1858i −0.530365 + 0.918619i
\(351\) 0 0
\(352\) −2.11983 3.67165i −0.112987 0.195699i
\(353\) −10.1452 + 10.7533i −0.539974 + 0.572339i −0.938702 0.344731i \(-0.887970\pi\)
0.398728 + 0.917069i \(0.369452\pi\)
\(354\) 0 0
\(355\) 0.217581 + 3.73572i 0.0115480 + 0.198272i
\(356\) −6.51321 15.0993i −0.345199 0.800262i
\(357\) 0 0
\(358\) −0.399296 + 6.85565i −0.0211035 + 0.362332i
\(359\) 22.1228 8.05203i 1.16760 0.424970i 0.315790 0.948829i \(-0.397730\pi\)
0.851805 + 0.523859i \(0.175508\pi\)
\(360\) 0 0
\(361\) 15.3403 + 5.58340i 0.807383 + 0.293863i
\(362\) 9.47692 21.9700i 0.498096 1.15472i
\(363\) 0 0
\(364\) 28.2156 6.68721i 1.47890 0.350505i
\(365\) −1.25729 + 0.297983i −0.0658096 + 0.0155972i
\(366\) 0 0
\(367\) 11.0697 25.6624i 0.577833 1.33957i −0.339184 0.940720i \(-0.610151\pi\)
0.917017 0.398848i \(-0.130590\pi\)
\(368\) −7.14564 2.60080i −0.372492 0.135576i
\(369\) 0 0
\(370\) −7.57933 + 2.75865i −0.394030 + 0.143415i
\(371\) 0.614315 10.5474i 0.0318937 0.547593i
\(372\) 0 0
\(373\) −5.01904 11.6354i −0.259876 0.602460i 0.737461 0.675389i \(-0.236024\pi\)
−0.997337 + 0.0729295i \(0.976765\pi\)
\(374\) −0.613530 10.5339i −0.0317249 0.544695i
\(375\) 0 0
\(376\) 5.74529 6.08965i 0.296291 0.314050i
\(377\) −9.34023 16.1778i −0.481046 0.833197i
\(378\) 0 0
\(379\) −4.98552 + 8.63517i −0.256089 + 0.443559i −0.965191 0.261547i \(-0.915767\pi\)
0.709102 + 0.705106i \(0.249101\pi\)
\(380\) −0.422133 1.41002i −0.0216550 0.0723326i
\(381\) 0 0
\(382\) 8.28592 5.44974i 0.423945 0.278833i
\(383\) 31.6256 + 3.69650i 1.61599 + 0.188882i 0.875512 0.483197i \(-0.160524\pi\)
0.740479 + 0.672079i \(0.234599\pi\)
\(384\) 0 0
\(385\) 16.1464 8.10904i 0.822898 0.413275i
\(386\) −3.02468 + 17.1538i −0.153952 + 0.873105i
\(387\) 0 0
\(388\) 0.812536 + 4.60812i 0.0412503 + 0.233942i
\(389\) 12.8269 + 17.2296i 0.650351 + 0.873573i 0.997945 0.0640717i \(-0.0204086\pi\)
−0.347594 + 0.937645i \(0.613001\pi\)
\(390\) 0 0
\(391\) −12.9875 13.7660i −0.656808 0.696176i
\(392\) 4.42501 14.7806i 0.223497 0.746531i
\(393\) 0 0
\(394\) 20.1412 2.35416i 1.01470 0.118601i
\(395\) 3.56885 2.99462i 0.179568 0.150676i
\(396\) 0 0
\(397\) 3.00463 + 2.52118i 0.150798 + 0.126535i 0.715065 0.699058i \(-0.246397\pi\)
−0.564267 + 0.825592i \(0.690841\pi\)
\(398\) −4.36579 2.87143i −0.218837 0.143932i
\(399\) 0 0
\(400\) −2.50222 + 3.36107i −0.125111 + 0.168053i
\(401\) 22.9043 + 11.5030i 1.14378 + 0.574430i 0.916752 0.399457i \(-0.130801\pi\)
0.227032 + 0.973887i \(0.427098\pi\)
\(402\) 0 0
\(403\) 11.0271 + 2.61347i 0.549299 + 0.130186i
\(404\) 12.0004 0.597043
\(405\) 0 0
\(406\) −14.4490 −0.717090
\(407\) −36.9763 8.76353i −1.83284 0.434392i
\(408\) 0 0
\(409\) −12.5591 6.30740i −0.621006 0.311881i 0.110333 0.993895i \(-0.464808\pi\)
−0.731339 + 0.682014i \(0.761104\pi\)
\(410\) −2.78755 + 3.74433i −0.137667 + 0.184919i
\(411\) 0 0
\(412\) 5.95005 + 3.91341i 0.293138 + 0.192800i
\(413\) −13.5591 11.3775i −0.667202 0.559849i
\(414\) 0 0
\(415\) −1.86684 + 1.56647i −0.0916398 + 0.0768949i
\(416\) 6.08145 0.710819i 0.298168 0.0348508i
\(417\) 0 0
\(418\) 1.98882 6.64310i 0.0972761 0.324925i
\(419\) −27.6612 29.3192i −1.35134 1.43234i −0.802854 0.596176i \(-0.796686\pi\)
−0.548485 0.836160i \(-0.684795\pi\)
\(420\) 0 0
\(421\) 10.5011 + 14.1054i 0.511791 + 0.687455i 0.980639 0.195824i \(-0.0627382\pi\)
−0.468848 + 0.883279i \(0.655331\pi\)
\(422\) 1.73840 + 9.85894i 0.0846239 + 0.479926i
\(423\) 0 0
\(424\) 0.387390 2.19700i 0.0188133 0.106696i
\(425\) −9.31944 + 4.68040i −0.452059 + 0.227033i
\(426\) 0 0
\(427\) −14.7922 1.72895i −0.715842 0.0836700i
\(428\) 7.59243 4.99362i 0.366994 0.241376i
\(429\) 0 0
\(430\) −0.692899 2.31444i −0.0334146 0.111612i
\(431\) 12.3193 21.3377i 0.593402 1.02780i −0.400368 0.916354i \(-0.631118\pi\)
0.993770 0.111448i \(-0.0355489\pi\)
\(432\) 0 0
\(433\) 7.80606 + 13.5205i 0.375135 + 0.649754i 0.990347 0.138608i \(-0.0442629\pi\)
−0.615212 + 0.788362i \(0.710930\pi\)
\(434\) 6.01526 6.37580i 0.288742 0.306048i
\(435\) 0 0
\(436\) −0.497417 8.54032i −0.0238220 0.409007i
\(437\) −4.92627 11.4204i −0.235656 0.546311i
\(438\) 0 0
\(439\) −1.84393 + 31.6591i −0.0880062 + 1.51101i 0.608556 + 0.793511i \(0.291749\pi\)
−0.696562 + 0.717497i \(0.745288\pi\)
\(440\) 3.58510 1.30487i 0.170913 0.0622072i
\(441\) 0 0
\(442\) 14.3197 + 5.21194i 0.681118 + 0.247907i
\(443\) −6.05206 + 14.0302i −0.287542 + 0.666597i −0.999360 0.0357667i \(-0.988613\pi\)
0.711818 + 0.702364i \(0.247872\pi\)
\(444\) 0 0
\(445\) 14.3989 3.41261i 0.682574 0.161773i
\(446\) −22.0555 + 5.22726i −1.04436 + 0.247518i
\(447\) 0 0
\(448\) 1.87579 4.34858i 0.0886229 0.205451i
\(449\) 6.40822 + 2.33240i 0.302423 + 0.110073i 0.488774 0.872410i \(-0.337444\pi\)
−0.186352 + 0.982483i \(0.559666\pi\)
\(450\) 0 0
\(451\) −20.6663 + 7.52193i −0.973140 + 0.354194i
\(452\) −0.309835 + 5.31967i −0.0145734 + 0.250216i
\(453\) 0 0
\(454\) 1.14331 + 2.65048i 0.0536580 + 0.124393i
\(455\) 1.51723 + 26.0499i 0.0711289 + 1.22124i
\(456\) 0 0
\(457\) 4.39074 4.65391i 0.205390 0.217701i −0.616488 0.787364i \(-0.711445\pi\)
0.821878 + 0.569664i \(0.192927\pi\)
\(458\) −9.64722 16.7095i −0.450785 0.780782i
\(459\) 0 0
\(460\) 3.42145 5.92613i 0.159526 0.276307i
\(461\) 0.513842 + 1.71635i 0.0239320 + 0.0799385i 0.969121 0.246584i \(-0.0793082\pi\)
−0.945189 + 0.326523i \(0.894123\pi\)
\(462\) 0 0
\(463\) 15.9861 10.5142i 0.742936 0.488637i −0.120740 0.992684i \(-0.538527\pi\)
0.863676 + 0.504047i \(0.168156\pi\)
\(464\) −3.03031 0.354193i −0.140679 0.0164430i
\(465\) 0 0
\(466\) 24.3354 12.2217i 1.12732 0.566159i
\(467\) 0.191366 1.08529i 0.00885536 0.0502212i −0.980060 0.198702i \(-0.936327\pi\)
0.988915 + 0.148481i \(0.0474384\pi\)
\(468\) 0 0
\(469\) −3.94020 22.3460i −0.181941 1.03184i
\(470\) 4.49893 + 6.04312i 0.207520 + 0.278748i
\(471\) 0 0
\(472\) −2.56480 2.71852i −0.118054 0.125130i
\(473\) 3.26449 10.9041i 0.150101 0.501373i
\(474\) 0 0
\(475\) −6.80722 + 0.795650i −0.312337 + 0.0365069i
\(476\) 9.02923 7.57643i 0.413854 0.347265i
\(477\) 0 0
\(478\) 6.05943 + 5.08446i 0.277152 + 0.232558i
\(479\) −28.4725 18.7266i −1.30094 0.855642i −0.305608 0.952157i \(-0.598860\pi\)
−0.995331 + 0.0965158i \(0.969230\pi\)
\(480\) 0 0
\(481\) 32.7720 44.0204i 1.49428 2.00716i
\(482\) 0.387375 + 0.194547i 0.0176444 + 0.00886137i
\(483\) 0 0
\(484\) 6.78664 + 1.60846i 0.308484 + 0.0731120i
\(485\) −4.21073 −0.191199
\(486\) 0 0
\(487\) −6.28526 −0.284812 −0.142406 0.989808i \(-0.545484\pi\)
−0.142406 + 0.989808i \(0.545484\pi\)
\(488\) −3.05991 0.725211i −0.138515 0.0328288i
\(489\) 0 0
\(490\) 12.4072 + 6.23114i 0.560501 + 0.281494i
\(491\) −24.0769 + 32.3409i −1.08658 + 1.45952i −0.210348 + 0.977627i \(0.567460\pi\)
−0.876227 + 0.481898i \(0.839948\pi\)
\(492\) 0 0
\(493\) −6.34408 4.17257i −0.285723 0.187923i
\(494\) 7.67163 + 6.43726i 0.345163 + 0.289626i
\(495\) 0 0
\(496\) 1.41784 1.18971i 0.0636631 0.0534197i
\(497\) −19.5605 + 2.28630i −0.877411 + 0.102555i
\(498\) 0 0
\(499\) −6.22942 + 20.8077i −0.278867 + 0.931481i 0.697722 + 0.716368i \(0.254197\pi\)
−0.976589 + 0.215112i \(0.930988\pi\)
\(500\) −5.67529 6.01545i −0.253806 0.269019i
\(501\) 0 0
\(502\) −3.60285 4.83947i −0.160803 0.215996i
\(503\) −2.83726 16.0909i −0.126507 0.717457i −0.980401 0.197011i \(-0.936877\pi\)
0.853894 0.520447i \(-0.174234\pi\)
\(504\) 0 0
\(505\) −1.87522 + 10.6349i −0.0834460 + 0.473246i
\(506\) 28.8101 14.4690i 1.28077 0.643224i
\(507\) 0 0
\(508\) −2.20591 0.257834i −0.0978715 0.0114395i
\(509\) 23.8891 15.7121i 1.05887 0.696428i 0.104337 0.994542i \(-0.466728\pi\)
0.954530 + 0.298115i \(0.0963577\pi\)
\(510\) 0 0
\(511\) −1.95031 6.51450i −0.0862768 0.288184i
\(512\) 0.500000 0.866025i 0.0220971 0.0382733i
\(513\) 0 0
\(514\) −8.47257 14.6749i −0.373709 0.647283i
\(515\) −4.39787 + 4.66147i −0.193793 + 0.205409i
\(516\) 0 0
\(517\) 2.06384 + 35.4348i 0.0907676 + 1.55842i
\(518\) −16.8130 38.9769i −0.738720 1.71255i
\(519\) 0 0
\(520\) −0.320368 + 5.50051i −0.0140491 + 0.241213i
\(521\) −6.35056 + 2.31141i −0.278223 + 0.101265i −0.477363 0.878706i \(-0.658407\pi\)
0.199140 + 0.979971i \(0.436185\pi\)
\(522\) 0 0
\(523\) 41.5732 + 15.1314i 1.81787 + 0.661650i 0.995725 + 0.0923727i \(0.0294451\pi\)
0.822145 + 0.569278i \(0.192777\pi\)
\(524\) 0.431298 0.999861i 0.0188413 0.0436791i
\(525\) 0 0
\(526\) −22.2377 + 5.27044i −0.969610 + 0.229802i
\(527\) 4.48231 1.06233i 0.195253 0.0462757i
\(528\) 0 0
\(529\) 13.7932 31.9763i 0.599706 1.39027i
\(530\) 1.88646 + 0.686617i 0.0819428 + 0.0298247i
\(531\) 0 0
\(532\) 7.27894 2.64932i 0.315582 0.114863i
\(533\) 1.84677 31.7078i 0.0799924 1.37342i
\(534\) 0 0
\(535\) 3.23898 + 7.50880i 0.140033 + 0.324634i
\(536\) −0.278584 4.78311i −0.0120330 0.206599i
\(537\) 0 0
\(538\) 15.1971 16.1079i 0.655192 0.694463i
\(539\) 32.7062 + 56.6489i 1.40876 + 2.44004i
\(540\) 0 0
\(541\) 2.15840 3.73845i 0.0927967 0.160729i −0.815890 0.578207i \(-0.803753\pi\)
0.908687 + 0.417478i \(0.137086\pi\)
\(542\) −4.85513 16.2173i −0.208546 0.696591i
\(543\) 0 0
\(544\) 2.07938 1.36763i 0.0891528 0.0586367i
\(545\) 7.64624 + 0.893718i 0.327529 + 0.0382827i
\(546\) 0 0
\(547\) −29.0025 + 14.5656i −1.24006 + 0.622779i −0.943226 0.332151i \(-0.892226\pi\)
−0.296829 + 0.954931i \(0.595929\pi\)
\(548\) −1.05321 + 5.97306i −0.0449910 + 0.255157i
\(549\) 0 0
\(550\) −3.08487 17.4952i −0.131539 0.745996i
\(551\) −2.97992 4.00272i −0.126949 0.170522i
\(552\) 0 0
\(553\) 16.8255 + 17.8340i 0.715495 + 0.758380i
\(554\) −6.83848 + 22.8421i −0.290539 + 0.970469i
\(555\) 0 0
\(556\) −14.0145 + 1.63806i −0.594346 + 0.0694691i
\(557\) −27.5704 + 23.1343i −1.16820 + 0.980233i −0.999985 0.00551749i \(-0.998244\pi\)
−0.168212 + 0.985751i \(0.553799\pi\)
\(558\) 0 0
\(559\) 12.5924 + 10.5663i 0.532602 + 0.446906i
\(560\) 3.56064 + 2.34187i 0.150464 + 0.0989619i
\(561\) 0 0
\(562\) 3.62123 4.86416i 0.152753 0.205182i
\(563\) −10.7328 5.39023i −0.452335 0.227171i 0.208020 0.978125i \(-0.433298\pi\)
−0.660355 + 0.750953i \(0.729594\pi\)
\(564\) 0 0
\(565\) −4.66592 1.10584i −0.196297 0.0465232i
\(566\) −6.52622 −0.274317
\(567\) 0 0
\(568\) −4.15839 −0.174482
\(569\) 29.2471 + 6.93169i 1.22610 + 0.290592i 0.792140 0.610339i \(-0.208967\pi\)
0.433963 + 0.900931i \(0.357115\pi\)
\(570\) 0 0
\(571\) −18.7127 9.39786i −0.783101 0.393288i 0.0118744 0.999929i \(-0.496220\pi\)
−0.794976 + 0.606641i \(0.792516\pi\)
\(572\) −15.5015 + 20.8221i −0.648150 + 0.870616i
\(573\) 0 0
\(574\) −20.5253 13.4997i −0.856711 0.563467i
\(575\) −24.4088 20.4814i −1.01792 0.854133i
\(576\) 0 0
\(577\) 25.8767 21.7131i 1.07726 0.903928i 0.0815689 0.996668i \(-0.474007\pi\)
0.995690 + 0.0927399i \(0.0295625\pi\)
\(578\) −10.7327 + 1.25447i −0.446421 + 0.0521791i
\(579\) 0 0
\(580\) 0.787414 2.63015i 0.0326956 0.109211i
\(581\) −8.80134 9.32887i −0.365141 0.387027i
\(582\) 0 0
\(583\) 5.64804 + 7.58663i 0.233918 + 0.314206i
\(584\) −0.249338 1.41406i −0.0103177 0.0585144i
\(585\) 0 0
\(586\) −1.02439 + 5.80960i −0.0423171 + 0.239992i
\(587\) 5.91286 2.96955i 0.244050 0.122567i −0.322570 0.946545i \(-0.604547\pi\)
0.566620 + 0.823979i \(0.308251\pi\)
\(588\) 0 0
\(589\) 3.00683 + 0.351448i 0.123894 + 0.0144811i
\(590\) 2.80996 1.84814i 0.115684 0.0760868i
\(591\) 0 0
\(592\) −2.57066 8.58659i −0.105653 0.352907i
\(593\) 0.624047 1.08088i 0.0256266 0.0443865i −0.852928 0.522029i \(-0.825175\pi\)
0.878554 + 0.477643i \(0.158509\pi\)
\(594\) 0 0
\(595\) 5.30337 + 9.18570i 0.217417 + 0.376577i
\(596\) 1.41163 1.49624i 0.0578226 0.0612883i
\(597\) 0 0
\(598\) 2.70720 + 46.4808i 0.110706 + 1.90074i
\(599\) 16.0453 + 37.1971i 0.655592 + 1.51983i 0.843207 + 0.537590i \(0.180665\pi\)
−0.187615 + 0.982243i \(0.560076\pi\)
\(600\) 0 0
\(601\) −2.24413 + 38.5302i −0.0915399 + 1.57168i 0.569921 + 0.821700i \(0.306974\pi\)
−0.661461 + 0.749980i \(0.730063\pi\)
\(602\) 11.9478 4.34866i 0.486957 0.177238i
\(603\) 0 0
\(604\) −8.36483 3.04455i −0.340360 0.123881i
\(605\) −2.48594 + 5.76305i −0.101068 + 0.234301i
\(606\) 0 0
\(607\) −27.8613 + 6.60324i −1.13085 + 0.268017i −0.753111 0.657893i \(-0.771448\pi\)
−0.377743 + 0.925910i \(0.623300\pi\)
\(608\) 1.59152 0.377198i 0.0645448 0.0152974i
\(609\) 0 0
\(610\) 1.12084 2.59840i 0.0453814 0.105206i
\(611\) −48.1697 17.5323i −1.94874 0.709283i
\(612\) 0 0
\(613\) −3.45856 + 1.25881i −0.139690 + 0.0508429i −0.410919 0.911672i \(-0.634792\pi\)
0.271229 + 0.962515i \(0.412570\pi\)
\(614\) −0.804349 + 13.8101i −0.0324609 + 0.557332i
\(615\) 0 0
\(616\) 7.95271 + 18.4365i 0.320424 + 0.742826i
\(617\) 0.480387 + 8.24792i 0.0193396 + 0.332049i 0.994076 + 0.108689i \(0.0346653\pi\)
−0.974736 + 0.223359i \(0.928298\pi\)
\(618\) 0 0
\(619\) −10.8014 + 11.4488i −0.434143 + 0.460165i −0.907097 0.420923i \(-0.861706\pi\)
0.472953 + 0.881087i \(0.343188\pi\)
\(620\) 0.832779 + 1.44242i 0.0334452 + 0.0579288i
\(621\) 0 0
\(622\) 10.6443 18.4365i 0.426798 0.739236i
\(623\) 22.3356 + 74.6063i 0.894859 + 2.98904i
\(624\) 0 0
\(625\) −11.2866 + 7.42330i −0.451463 + 0.296932i
\(626\) 13.4077 + 1.56714i 0.535880 + 0.0626354i
\(627\) 0 0
\(628\) −3.51361 + 1.76460i −0.140208 + 0.0704152i
\(629\) 3.87369 21.9688i 0.154454 0.875952i
\(630\) 0 0
\(631\) 6.42930 + 36.4624i 0.255947 + 1.45155i 0.793631 + 0.608399i \(0.208188\pi\)
−0.537685 + 0.843146i \(0.680701\pi\)
\(632\) 3.09157 + 4.15270i 0.122976 + 0.165186i
\(633\) 0 0
\(634\) −6.05013 6.41277i −0.240281 0.254683i
\(635\) 0.573197 1.91461i 0.0227466 0.0759790i
\(636\) 0 0
\(637\) −93.8291 + 10.9670i −3.71764 + 0.434530i
\(638\) 9.90873 8.31442i 0.392291 0.329171i
\(639\) 0 0
\(640\) 0.689349 + 0.578432i 0.0272489 + 0.0228645i
\(641\) 39.3612 + 25.8883i 1.55467 + 1.02253i 0.978758 + 0.205017i \(0.0657250\pi\)
0.575916 + 0.817509i \(0.304645\pi\)
\(642\) 0 0
\(643\) 3.24751 4.36216i 0.128069 0.172027i −0.733464 0.679729i \(-0.762097\pi\)
0.861533 + 0.507702i \(0.169505\pi\)
\(644\) 32.1823 + 16.1626i 1.26816 + 0.636894i
\(645\) 0 0
\(646\) 3.96102 + 0.938780i 0.155844 + 0.0369358i
\(647\) −25.2978 −0.994557 −0.497279 0.867591i \(-0.665667\pi\)
−0.497279 + 0.867591i \(0.665667\pi\)
\(648\) 0 0
\(649\) 15.8455 0.621990
\(650\) 24.9645 + 5.91669i 0.979188 + 0.232072i
\(651\) 0 0
\(652\) −9.82745 4.93553i −0.384873 0.193290i
\(653\) 18.2201 24.4739i 0.713008 0.957736i −0.286992 0.957933i \(-0.592655\pi\)
1.00000 0.000197051i \(6.27231e-5\pi\)
\(654\) 0 0
\(655\) 0.818691 + 0.538461i 0.0319889 + 0.0210394i
\(656\) −3.97376 3.33438i −0.155149 0.130186i
\(657\) 0 0
\(658\) −30.3732 + 25.4862i −1.18407 + 0.993555i
\(659\) 18.6840 2.18385i 0.727826 0.0850706i 0.255893 0.966705i \(-0.417631\pi\)
0.471933 + 0.881635i \(0.343557\pi\)
\(660\) 0 0
\(661\) −0.384072 + 1.28289i −0.0149387 + 0.0498987i −0.965134 0.261757i \(-0.915698\pi\)
0.950195 + 0.311655i \(0.100883\pi\)
\(662\) 2.07452 + 2.19887i 0.0806286 + 0.0854613i
\(663\) 0 0
\(664\) −1.61718 2.17225i −0.0627588 0.0842997i
\(665\) 1.21042 + 6.86466i 0.0469383 + 0.266200i
\(666\) 0 0
\(667\) 4.02865 22.8476i 0.155990 0.884664i
\(668\) 14.3530 7.20833i 0.555333 0.278899i
\(669\) 0 0
\(670\) 4.28237 + 0.500537i 0.165442 + 0.0193374i
\(671\) 11.1390 7.32623i 0.430016 0.282826i
\(672\) 0 0
\(673\) −8.59506 28.7095i −0.331315 1.10667i −0.947683 0.319212i \(-0.896582\pi\)
0.616368 0.787458i \(-0.288603\pi\)
\(674\) 1.07856 1.86811i 0.0415444 0.0719570i
\(675\) 0 0
\(676\) −12.2446 21.2083i −0.470948 0.815705i
\(677\) 10.4366 11.0621i 0.401110 0.425152i −0.495062 0.868857i \(-0.664855\pi\)
0.896173 + 0.443705i \(0.146336\pi\)
\(678\) 0 0
\(679\) −1.28850 22.1228i −0.0494483 0.848994i
\(680\) 0.887079 + 2.05648i 0.0340179 + 0.0788624i
\(681\) 0 0
\(682\) −0.456264 + 7.83375i −0.0174712 + 0.299970i
\(683\) 32.1031 11.6846i 1.22839 0.447098i 0.355346 0.934735i \(-0.384363\pi\)
0.873047 + 0.487637i \(0.162141\pi\)
\(684\) 0 0
\(685\) −5.12881 1.86673i −0.195962 0.0713242i
\(686\) −15.8106 + 36.6530i −0.603650 + 1.39942i
\(687\) 0 0
\(688\) 2.61236 0.619142i 0.0995955 0.0236046i
\(689\) −13.2912 + 3.15007i −0.506354 + 0.120008i
\(690\) 0 0
\(691\) −3.28549 + 7.61662i −0.124986 + 0.289750i −0.969208 0.246244i \(-0.920804\pi\)
0.844222 + 0.535994i \(0.180063\pi\)
\(692\) 10.8866 + 3.96239i 0.413845 + 0.150627i
\(693\) 0 0
\(694\) 27.2575 9.92091i 1.03468 0.376593i
\(695\) 0.738277 12.6757i 0.0280044 0.480818i
\(696\) 0 0
\(697\) −5.11358 11.8546i −0.193690 0.449025i
\(698\) −1.52380 26.1626i −0.0576766 0.990269i
\(699\) 0 0
\(700\) 13.6181 14.4343i 0.514715 0.545566i
\(701\) −20.0087 34.6561i −0.755718 1.30894i −0.945016 0.327023i \(-0.893955\pi\)
0.189298 0.981920i \(-0.439379\pi\)
\(702\) 0 0
\(703\) 7.33010 12.6961i 0.276460 0.478843i
\(704\) 1.21595 + 4.06154i 0.0458277 + 0.153075i
\(705\) 0 0
\(706\) 12.3516 8.12377i 0.464858 0.305742i
\(707\) −56.4484 6.59788i −2.12296 0.248139i
\(708\) 0 0
\(709\) 26.9452 13.5324i 1.01195 0.508219i 0.136043 0.990703i \(-0.456561\pi\)
0.875905 + 0.482483i \(0.160265\pi\)
\(710\) 0.649801 3.68520i 0.0243866 0.138303i
\(711\) 0 0
\(712\) 2.85550 + 16.1944i 0.107014 + 0.606909i
\(713\) 8.40466 + 11.2894i 0.314757 + 0.422792i
\(714\) 0 0
\(715\) −16.0305 16.9913i −0.599505 0.635438i
\(716\) 1.96956 6.57877i 0.0736057 0.245860i
\(717\) 0 0
\(718\) −23.3834 + 2.73313i −0.872660 + 0.101999i
\(719\) 20.1751 16.9289i 0.752404 0.631342i −0.183733 0.982976i \(-0.558818\pi\)
0.936138 + 0.351634i \(0.114374\pi\)
\(720\) 0 0
\(721\) −25.8367 21.6796i −0.962209 0.807389i
\(722\) −13.6392 8.97061i −0.507597 0.333852i
\(723\) 0 0
\(724\) −14.2881 + 19.1922i −0.531013 + 0.713274i
\(725\) −11.4243 5.73750i −0.424288 0.213085i
\(726\) 0 0
\(727\) −37.7796 8.95394i −1.40117 0.332083i −0.540542 0.841317i \(-0.681781\pi\)
−0.860628 + 0.509234i \(0.829929\pi\)
\(728\) −28.9972 −1.07471
\(729\) 0 0
\(730\) 1.29212 0.0478235
\(731\) 6.50172 + 1.54094i 0.240475 + 0.0569936i
\(732\) 0 0
\(733\) 23.1712 + 11.6370i 0.855849 + 0.429823i 0.821921 0.569601i \(-0.192902\pi\)
0.0339274 + 0.999424i \(0.489198\pi\)
\(734\) −16.6895 + 22.4178i −0.616019 + 0.827458i
\(735\) 0 0
\(736\) 6.35325 + 4.17860i 0.234184 + 0.154025i
\(737\) 15.5607 + 13.0570i 0.573186 + 0.480960i
\(738\) 0 0
\(739\) 15.3874 12.9116i 0.566034 0.474959i −0.314293 0.949326i \(-0.601767\pi\)
0.880327 + 0.474367i \(0.157323\pi\)
\(740\) 8.01121 0.936377i 0.294498 0.0344219i
\(741\) 0 0
\(742\) −3.03015 + 10.1214i −0.111240 + 0.371569i
\(743\) −10.1530 10.7616i −0.372478 0.394804i 0.513836 0.857889i \(-0.328224\pi\)
−0.886314 + 0.463085i \(0.846743\pi\)
\(744\) 0 0
\(745\) 1.10540 + 1.48480i 0.0404986 + 0.0543990i
\(746\) 2.20043 + 12.4793i 0.0805635 + 0.456899i
\(747\) 0 0
\(748\) −1.83229 + 10.3914i −0.0669953 + 0.379949i
\(749\) −38.4594 + 19.3150i −1.40528 + 0.705756i
\(750\) 0 0
\(751\) 16.2830 + 1.90321i 0.594176 + 0.0694492i 0.407866 0.913042i \(-0.366273\pi\)
0.186310 + 0.982491i \(0.440347\pi\)
\(752\) −6.99479 + 4.60055i −0.255074 + 0.167765i
\(753\) 0 0
\(754\) 5.35762 + 17.8957i 0.195113 + 0.651722i
\(755\) 4.00522 6.93725i 0.145765 0.252472i
\(756\) 0 0
\(757\) −0.252679 0.437653i −0.00918377 0.0159068i 0.861397 0.507932i \(-0.169590\pi\)
−0.870581 + 0.492026i \(0.836257\pi\)
\(758\) 6.84254 7.25267i 0.248532 0.263429i
\(759\) 0 0
\(760\) 0.0855808 + 1.46937i 0.00310434 + 0.0532995i
\(761\) 7.50717 + 17.4036i 0.272135 + 0.630879i 0.998401 0.0565345i \(-0.0180051\pi\)
−0.726266 + 0.687414i \(0.758746\pi\)
\(762\) 0 0
\(763\) −2.35572 + 40.4461i −0.0852827 + 1.46425i
\(764\) −9.31937 + 3.39197i −0.337163 + 0.122717i
\(765\) 0 0
\(766\) −29.9206 10.8902i −1.08108 0.393480i
\(767\) −9.06383 + 21.0123i −0.327276 + 0.758711i
\(768\) 0 0
\(769\) 25.7141 6.09434i 0.927273 0.219768i 0.260882 0.965371i \(-0.415987\pi\)
0.666390 + 0.745603i \(0.267838\pi\)
\(770\) −17.5813 + 4.16684i −0.633585 + 0.150162i
\(771\) 0 0
\(772\) 6.89908 15.9939i 0.248303 0.575632i
\(773\) 43.8623 + 15.9646i 1.57762 + 0.574205i 0.974684 0.223587i \(-0.0717768\pi\)
0.602932 + 0.797793i \(0.293999\pi\)
\(774\) 0 0
\(775\) 7.28781 2.65254i 0.261786 0.0952822i
\(776\) 0.272072 4.67129i 0.00976681 0.167690i
\(777\) 0 0
\(778\) −8.50777 19.7232i −0.305018 0.707112i
\(779\) −0.493332 8.47018i −0.0176754 0.303476i
\(780\) 0 0
\(781\) 12.0985 12.8237i 0.432919 0.458868i
\(782\) 9.46281 + 16.3901i 0.338389 + 0.586107i
\(783\) 0 0
\(784\) −7.71437 + 13.3617i −0.275513 + 0.477203i
\(785\) −1.01476 3.38954i −0.0362183 0.120978i
\(786\) 0 0
\(787\) 15.5522 10.2289i 0.554377 0.364619i −0.241197 0.970476i \(-0.577540\pi\)
0.795574 + 0.605857i \(0.207170\pi\)
\(788\) −20.1412 2.35416i −0.717499 0.0838636i
\(789\) 0 0
\(790\) −4.16326 + 2.09087i −0.148122 + 0.0743898i
\(791\) 4.38220 24.8527i 0.155813 0.883660i
\(792\) 0 0
\(793\) 3.34348 + 18.9618i 0.118731 + 0.673355i
\(794\) −2.34221 3.14614i −0.0831221 0.111652i
\(795\) 0 0
\(796\) 3.58592 + 3.80085i 0.127099 + 0.134717i
\(797\) −5.36478 + 17.9196i −0.190030 + 0.634746i 0.808876 + 0.587980i \(0.200077\pi\)
−0.998906 + 0.0467657i \(0.985109\pi\)
\(798\) 0 0
\(799\) −20.6958 + 2.41900i −0.732166 + 0.0855779i
\(800\) 3.20989 2.69342i 0.113487 0.0952267i
\(801\) 0 0
\(802\) −19.6341 16.4750i −0.693305 0.581752i
\(803\) 5.08614 + 3.34521i 0.179486 + 0.118050i
\(804\) 0 0
\(805\) −19.3523 + 25.9946i −0.682079 + 0.916191i
\(806\) −10.1271 5.08605i −0.356714 0.179148i
\(807\) 0 0
\(808\) −11.6769 2.76748i −0.410793 0.0973598i
\(809\) −0.742090 −0.0260905 −0.0130452 0.999915i \(-0.504153\pi\)
−0.0130452 + 0.999915i \(0.504153\pi\)
\(810\) 0 0
\(811\) 54.1951 1.90305 0.951524 0.307575i \(-0.0995176\pi\)
0.951524 + 0.307575i \(0.0995176\pi\)
\(812\) 14.0595 + 3.33216i 0.493391 + 0.116936i
\(813\) 0 0
\(814\) 33.9585 + 17.0546i 1.19025 + 0.597764i
\(815\) 5.90958 7.93794i 0.207003 0.278054i
\(816\) 0 0
\(817\) 3.66878 + 2.41299i 0.128354 + 0.0844199i
\(818\) 10.7659 + 9.03370i 0.376423 + 0.315856i
\(819\) 0 0
\(820\) 3.57591 3.00054i 0.124876 0.104784i
\(821\) −22.7451 + 2.65852i −0.793809 + 0.0927830i −0.503326 0.864097i \(-0.667890\pi\)
−0.290484 + 0.956880i \(0.593816\pi\)
\(822\) 0 0
\(823\) −10.4292 + 34.8359i −0.363539 + 1.21430i 0.559250 + 0.828999i \(0.311089\pi\)
−0.922789 + 0.385306i \(0.874096\pi\)
\(824\) −4.88717 5.18010i −0.170253 0.180457i
\(825\) 0 0
\(826\) 10.5698 + 14.1977i 0.367771 + 0.494002i
\(827\) 5.01639 + 28.4493i 0.174437 + 0.989281i 0.938792 + 0.344485i \(0.111946\pi\)
−0.764355 + 0.644796i \(0.776942\pi\)
\(828\) 0 0
\(829\) 1.94646 11.0389i 0.0676032 0.383397i −0.932168 0.362025i \(-0.882086\pi\)
0.999772 0.0213718i \(-0.00680336\pi\)
\(830\) 2.17778 1.09372i 0.0755917 0.0379636i
\(831\) 0 0
\(832\) −6.08145 0.710819i −0.210836 0.0246432i
\(833\) −32.0823 + 21.1008i −1.11158 + 0.731101i
\(834\) 0 0
\(835\) 4.14526 + 13.8461i 0.143453 + 0.479165i
\(836\) −3.46721 + 6.00539i −0.119916 + 0.207701i
\(837\) 0 0
\(838\) 20.1541 + 34.9080i 0.696213 + 1.20588i
\(839\) −9.69596 + 10.2771i −0.334742 + 0.354806i −0.872779 0.488116i \(-0.837684\pi\)
0.538037 + 0.842921i \(0.319166\pi\)
\(840\) 0 0
\(841\) 1.14497 + 19.6584i 0.0394818 + 0.677877i
\(842\) −6.96509 16.1469i −0.240033 0.556459i
\(843\) 0 0
\(844\) 0.582090 9.99410i 0.0200364 0.344011i
\(845\) 20.7084 7.53724i 0.712391 0.259289i
\(846\) 0 0
\(847\) −31.0392 11.2973i −1.06652 0.388181i
\(848\) −0.883610 + 2.04844i −0.0303433 + 0.0703436i
\(849\) 0 0
\(850\) 10.1476 2.40503i 0.348060 0.0824917i
\(851\) 66.3206 15.7183i 2.27344 0.538815i
\(852\) 0 0
\(853\) 1.24036 2.87547i 0.0424690 0.0984543i −0.895661 0.444737i \(-0.853297\pi\)
0.938130 + 0.346283i \(0.112556\pi\)
\(854\) 13.9947 + 5.09365i 0.478889 + 0.174301i
\(855\) 0 0
\(856\) −8.53939 + 3.10808i −0.291870 + 0.106232i
\(857\) −1.40729 + 24.1622i −0.0480721 + 0.825365i 0.884981 + 0.465627i \(0.154171\pi\)
−0.933053 + 0.359738i \(0.882866\pi\)
\(858\) 0 0
\(859\) −16.7443 38.8176i −0.571308 1.32444i −0.921724 0.387846i \(-0.873219\pi\)
0.350416 0.936594i \(-0.386040\pi\)
\(860\) 0.140474 + 2.41185i 0.00479013 + 0.0822434i
\(861\) 0 0
\(862\) −16.9081 + 17.9215i −0.575892 + 0.610410i
\(863\) −26.7136 46.2693i −0.909341 1.57502i −0.814982 0.579486i \(-0.803253\pi\)
−0.0943581 0.995538i \(-0.530080\pi\)
\(864\) 0 0
\(865\) −5.21267 + 9.02861i −0.177236 + 0.306982i
\(866\) −4.47761 14.9563i −0.152155 0.508234i
\(867\) 0 0
\(868\) −7.32348 + 4.81673i −0.248575 + 0.163490i
\(869\) −21.8008 2.54815i −0.739543 0.0864402i
\(870\) 0 0
\(871\) −26.2155 + 13.1659i −0.888278 + 0.446110i
\(872\) −1.48552 + 8.42483i −0.0503062 + 0.285301i
\(873\) 0 0
\(874\) 2.15976 + 12.2486i 0.0730550 + 0.414316i
\(875\) 23.3885 + 31.4162i 0.790676 + 1.06206i
\(876\) 0 0
\(877\) 4.64672 + 4.92524i 0.156909 + 0.166314i 0.801059 0.598585i \(-0.204270\pi\)
−0.644150 + 0.764899i \(0.722789\pi\)
\(878\) 9.09533 30.3805i 0.306952 1.02529i
\(879\) 0 0
\(880\) −3.78938 + 0.442915i −0.127740 + 0.0149307i
\(881\) 30.0377 25.2046i 1.01199 0.849164i 0.0233941 0.999726i \(-0.492553\pi\)
0.988601 + 0.150562i \(0.0481083\pi\)
\(882\) 0 0
\(883\) −28.9431 24.2861i −0.974012 0.817293i 0.00916322 0.999958i \(-0.497083\pi\)
−0.983175 + 0.182665i \(0.941528\pi\)
\(884\) −12.7317 8.37380i −0.428215 0.281641i
\(885\) 0 0
\(886\) 9.12452 12.2564i 0.306544 0.411760i
\(887\) 19.6726 + 9.87993i 0.660540 + 0.331736i 0.747293 0.664494i \(-0.231353\pi\)
−0.0867535 + 0.996230i \(0.527649\pi\)
\(888\) 0 0
\(889\) 10.2346 + 2.42564i 0.343257 + 0.0813533i
\(890\) −14.7978 −0.496023
\(891\) 0 0
\(892\) 22.6665 0.758931
\(893\) −13.3244 3.15794i −0.445884 0.105677i
\(894\) 0 0
\(895\) 5.52240 + 2.77346i 0.184594 + 0.0927064i
\(896\) −2.82808 + 3.79877i −0.0944796 + 0.126908i
\(897\) 0 0
\(898\) −5.69760 3.74737i −0.190131 0.125051i
\(899\) 4.32576 + 3.62975i 0.144272 + 0.121059i
\(900\) 0 0
\(901\) −4.25330 + 3.56894i −0.141698 + 0.118899i
\(902\) 21.8440 2.55319i 0.727324 0.0850120i
\(903\) 0 0
\(904\) 1.52828 5.10482i 0.0508299 0.169784i
\(905\) −14.7757 15.6613i −0.491159 0.520598i
\(906\) 0 0
\(907\) 12.6817 + 17.0345i 0.421089 + 0.565620i 0.961157 0.276001i \(-0.0890092\pi\)
−0.540069 + 0.841621i \(0.681602\pi\)
\(908\) −0.501245 2.84270i −0.0166344 0.0943384i
\(909\) 0 0
\(910\) 4.53118 25.6976i 0.150207 0.851867i
\(911\) −38.1183 + 19.1437i −1.26292 + 0.634260i −0.949025 0.315199i \(-0.897929\pi\)
−0.313890 + 0.949459i \(0.601632\pi\)
\(912\) 0 0
\(913\) 11.4039 + 1.33292i 0.377414 + 0.0441133i
\(914\) −5.34565 + 3.51589i −0.176818 + 0.116295i
\(915\) 0 0
\(916\) 5.53371 + 18.4839i 0.182839 + 0.610724i
\(917\) −2.57850 + 4.46609i −0.0851496 + 0.147483i
\(918\) 0 0
\(919\) −3.54171 6.13441i −0.116830 0.202356i 0.801680 0.597754i \(-0.203940\pi\)
−0.918510 + 0.395398i \(0.870607\pi\)
\(920\) −4.69589 + 4.97735i −0.154819 + 0.164098i
\(921\) 0 0
\(922\) −0.104173 1.78859i −0.00343077 0.0589040i
\(923\) 10.0847 + 23.3789i 0.331941 + 0.769525i
\(924\) 0 0
\(925\) 2.18377 37.4939i 0.0718020 1.23279i
\(926\) −17.9799 + 6.54416i −0.590857 + 0.215054i
\(927\) 0 0
\(928\) 2.86695 + 1.04348i 0.0941122 + 0.0342540i
\(929\) 0.339206 0.786369i 0.0111290 0.0257999i −0.912561 0.408941i \(-0.865898\pi\)
0.923690 + 0.383141i \(0.125158\pi\)
\(930\) 0 0
\(931\) −24.5552 + 5.81969i −0.804764 + 0.190733i
\(932\) −26.4980 + 6.28013i −0.867969 + 0.205713i
\(933\) 0 0
\(934\) −0.436493 + 1.01190i −0.0142825 + 0.0331105i
\(935\) −8.92268 3.24759i −0.291803 0.106208i
\(936\) 0 0
\(937\) 15.4751 5.63247i 0.505549 0.184005i −0.0766392 0.997059i \(-0.524419\pi\)
0.582188 + 0.813054i \(0.302197\pi\)
\(938\) −1.31935 + 22.6523i −0.0430782 + 0.739624i
\(939\) 0 0
\(940\) −2.98403 6.91775i −0.0973282 0.225632i
\(941\) 3.32253 + 57.0457i 0.108312 + 1.85964i 0.417551 + 0.908653i \(0.362888\pi\)
−0.309240 + 0.950984i \(0.600075\pi\)
\(942\) 0 0
\(943\) 27.0695 28.6920i 0.881504 0.934340i
\(944\) 1.86873 + 3.23673i 0.0608219 + 0.105347i
\(945\) 0 0
\(946\) −5.69116 + 9.85738i −0.185036 + 0.320491i
\(947\) −8.19001 27.3565i −0.266139 0.888968i −0.981703 0.190420i \(-0.939015\pi\)
0.715563 0.698548i \(-0.246170\pi\)
\(948\) 0 0
\(949\) −7.34533 + 4.83110i −0.238440 + 0.156824i
\(950\) 6.80722 + 0.795650i 0.220855 + 0.0258143i
\(951\) 0 0
\(952\) −10.5331 + 5.28992i −0.341379 + 0.171447i
\(953\) 8.34796 47.3436i 0.270417 1.53361i −0.482737 0.875766i \(-0.660357\pi\)
0.753154 0.657845i \(-0.228532\pi\)
\(954\) 0 0
\(955\) −1.54973 8.78895i −0.0501481 0.284404i
\(956\) −4.72354 6.34481i −0.152770 0.205206i
\(957\) 0 0
\(958\) 23.3863 + 24.7881i 0.755578 + 0.800866i
\(959\) 8.23819 27.5175i 0.266025 0.888586i
\(960\) 0 0
\(961\) 27.3879 3.20118i 0.883479 0.103264i
\(962\) −42.0404 + 35.2761i −1.35544 + 1.13735i
\(963\) 0 0
\(964\) −0.332067 0.278638i −0.0106952 0.00897432i
\(965\) 13.0959 + 8.61328i 0.421570 + 0.277271i
\(966\) 0 0
\(967\) −3.37172 + 4.52900i −0.108427 + 0.145643i −0.853024 0.521871i \(-0.825234\pi\)
0.744597 + 0.667514i \(0.232642\pi\)
\(968\) −6.23277 3.13022i −0.200329 0.100609i
\(969\) 0 0
\(970\) 4.09723 + 0.971061i 0.131554 + 0.0311789i
\(971\) −11.5616 −0.371028 −0.185514 0.982642i \(-0.559395\pi\)
−0.185514 + 0.982642i \(0.559395\pi\)
\(972\) 0 0
\(973\) 66.8229 2.14225
\(974\) 6.11584 + 1.44948i 0.195964 + 0.0464443i
\(975\) 0 0
\(976\) 2.81018 + 1.41133i 0.0899517 + 0.0451755i
\(977\) 8.12127 10.9088i 0.259822 0.349002i −0.653001 0.757357i \(-0.726490\pi\)
0.912823 + 0.408355i \(0.133898\pi\)
\(978\) 0 0
\(979\) −58.2482 38.3104i −1.86162 1.22441i
\(980\) −10.6358 8.92448i −0.339747 0.285082i
\(981\) 0 0
\(982\) 30.8862 25.9166i 0.985619 0.827033i
\(983\) 16.7654 1.95959i 0.534732 0.0625012i 0.155558 0.987827i \(-0.450282\pi\)
0.379174 + 0.925325i \(0.376208\pi\)
\(984\) 0 0
\(985\) 5.23359 17.4814i 0.166756 0.557004i
\(986\) 5.21081 + 5.52314i 0.165946 + 0.175893i
\(987\) 0 0
\(988\) −5.98031 8.03294i −0.190259 0.255562i
\(989\) 3.54508 + 20.1052i 0.112727 + 0.639307i
\(990\) 0 0
\(991\) −5.98687 + 33.9532i −0.190179 + 1.07856i 0.728939 + 0.684579i \(0.240014\pi\)
−0.919118 + 0.393982i \(0.871097\pi\)
\(992\) −1.65399 + 0.830667i −0.0525143 + 0.0263737i
\(993\) 0 0
\(994\) 19.5605 + 2.28630i 0.620423 + 0.0725170i
\(995\) −3.92869 + 2.58394i −0.124548 + 0.0819165i
\(996\) 0 0
\(997\) 4.82965 + 16.1322i 0.152957 + 0.510910i 0.999780 0.0209632i \(-0.00667330\pi\)
−0.846824 + 0.531874i \(0.821488\pi\)
\(998\) 10.8601 18.8102i 0.343770 0.595427i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.g.b.451.2 90
3.2 odd 2 162.2.g.b.97.5 90
81.5 odd 54 162.2.g.b.157.5 yes 90
81.76 even 27 inner 486.2.g.b.361.2 90
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.g.b.97.5 90 3.2 odd 2
162.2.g.b.157.5 yes 90 81.5 odd 54
486.2.g.b.361.2 90 81.76 even 27 inner
486.2.g.b.451.2 90 1.1 even 1 trivial