Properties

Label 486.2.g.b.253.2
Level $486$
Weight $2$
Character 486.253
Analytic conductor $3.881$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(19,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([52]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 162)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 253.2
Character \(\chi\) \(=\) 486.253
Dual form 486.2.g.b.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.893633 - 0.448799i) q^{2} +(0.597159 + 0.802123i) q^{4} +(-0.664151 - 2.21842i) q^{5} +(-0.590051 - 1.36789i) q^{7} +(-0.173648 - 0.984808i) q^{8} +(-0.402118 + 2.28052i) q^{10} +(4.28069 - 1.01454i) q^{11} +(0.407438 + 0.267976i) q^{13} +(-0.0866199 + 1.48721i) q^{14} +(-0.286803 + 0.957990i) q^{16} +(-6.18123 + 2.24978i) q^{17} +(-6.76026 - 2.46053i) q^{19} +(1.38284 - 1.85748i) q^{20} +(-4.28069 - 1.01454i) q^{22} +(1.15348 - 2.67407i) q^{23} +(-0.302850 + 0.199188i) q^{25} +(-0.243833 - 0.422330i) q^{26} +(0.744864 - 1.29014i) q^{28} +(-0.382974 - 6.57542i) q^{29} +(-1.78001 + 0.208053i) q^{31} +(0.686242 - 0.727374i) q^{32} +(6.53345 + 0.763651i) q^{34} +(-2.64267 + 2.21747i) q^{35} +(-3.51174 - 2.94670i) q^{37} +(4.93690 + 5.23281i) q^{38} +(-2.06939 + 1.03929i) q^{40} +(7.03828 - 3.53476i) q^{41} +(-0.304424 - 0.322671i) q^{43} +(3.37004 + 2.82780i) q^{44} +(-2.23091 + 1.87195i) q^{46} +(-7.76840 - 0.907996i) q^{47} +(3.28072 - 3.47736i) q^{49} +(0.360032 - 0.0420817i) q^{50} +(0.0283552 + 0.486840i) q^{52} +(-0.984340 + 1.70493i) q^{53} +(-5.09371 - 8.82256i) q^{55} +(-1.24465 + 0.818618i) q^{56} +(-2.60880 + 6.04789i) q^{58} +(-12.3643 - 2.93038i) q^{59} +(4.60541 - 6.18613i) q^{61} +(1.68405 + 0.612943i) q^{62} +(-0.939693 + 0.342020i) q^{64} +(0.323883 - 1.08185i) q^{65} +(-0.221954 + 3.81081i) q^{67} +(-5.49578 - 3.61463i) q^{68} +(3.35678 - 0.795571i) q^{70} +(-1.34489 + 7.62726i) q^{71} +(1.74940 + 9.92135i) q^{73} +(1.81573 + 4.20933i) q^{74} +(-2.06330 - 6.89189i) q^{76} +(-3.91361 - 5.25689i) q^{77} +(15.0035 + 7.53506i) q^{79} +2.31570 q^{80} -7.87604 q^{82} +(4.65331 + 2.33698i) q^{83} +(9.09624 + 12.2184i) q^{85} +(0.127229 + 0.424975i) q^{86} +(-1.74246 - 4.03949i) q^{88} +(0.537926 + 3.05073i) q^{89} +(0.126153 - 0.715451i) q^{91} +(2.83374 - 0.671609i) q^{92} +(6.53459 + 4.29787i) q^{94} +(-0.968660 + 16.6313i) q^{95} +(0.403864 - 1.34900i) q^{97} +(-4.49240 + 1.63510i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 18 q^{13} + 9 q^{20} - 27 q^{23} - 18 q^{25} + 27 q^{26} - 18 q^{28} + 27 q^{29} + 54 q^{31} + 27 q^{35} + 18 q^{38} + 9 q^{41} - 36 q^{43} + 18 q^{46} + 27 q^{47} + 36 q^{52} + 27 q^{53} - 54 q^{55}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{4}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.893633 0.448799i −0.631894 0.317349i
\(3\) 0 0
\(4\) 0.597159 + 0.802123i 0.298579 + 0.401062i
\(5\) −0.664151 2.21842i −0.297017 0.992107i −0.968066 0.250694i \(-0.919341\pi\)
0.671049 0.741413i \(-0.265844\pi\)
\(6\) 0 0
\(7\) −0.590051 1.36789i −0.223018 0.517014i 0.769567 0.638566i \(-0.220472\pi\)
−0.992585 + 0.121552i \(0.961213\pi\)
\(8\) −0.173648 0.984808i −0.0613939 0.348182i
\(9\) 0 0
\(10\) −0.402118 + 2.28052i −0.127161 + 0.721165i
\(11\) 4.28069 1.01454i 1.29068 0.305896i 0.472739 0.881202i \(-0.343265\pi\)
0.817938 + 0.575306i \(0.195117\pi\)
\(12\) 0 0
\(13\) 0.407438 + 0.267976i 0.113003 + 0.0743233i 0.604752 0.796413i \(-0.293272\pi\)
−0.491749 + 0.870737i \(0.663642\pi\)
\(14\) −0.0866199 + 1.48721i −0.0231502 + 0.397473i
\(15\) 0 0
\(16\) −0.286803 + 0.957990i −0.0717008 + 0.239497i
\(17\) −6.18123 + 2.24978i −1.49917 + 0.545653i −0.955845 0.293871i \(-0.905056\pi\)
−0.543323 + 0.839524i \(0.682834\pi\)
\(18\) 0 0
\(19\) −6.76026 2.46053i −1.55091 0.564485i −0.582279 0.812989i \(-0.697839\pi\)
−0.968631 + 0.248504i \(0.920061\pi\)
\(20\) 1.38284 1.85748i 0.309213 0.415345i
\(21\) 0 0
\(22\) −4.28069 1.01454i −0.912647 0.216301i
\(23\) 1.15348 2.67407i 0.240517 0.557582i −0.754611 0.656173i \(-0.772174\pi\)
0.995128 + 0.0985910i \(0.0314336\pi\)
\(24\) 0 0
\(25\) −0.302850 + 0.199188i −0.0605701 + 0.0398376i
\(26\) −0.243833 0.422330i −0.0478195 0.0828258i
\(27\) 0 0
\(28\) 0.744864 1.29014i 0.140766 0.243814i
\(29\) −0.382974 6.57542i −0.0711166 1.22102i −0.825428 0.564508i \(-0.809066\pi\)
0.754311 0.656517i \(-0.227971\pi\)
\(30\) 0 0
\(31\) −1.78001 + 0.208053i −0.319699 + 0.0373674i −0.274429 0.961607i \(-0.588489\pi\)
−0.0452698 + 0.998975i \(0.514415\pi\)
\(32\) 0.686242 0.727374i 0.121312 0.128583i
\(33\) 0 0
\(34\) 6.53345 + 0.763651i 1.12048 + 0.130965i
\(35\) −2.64267 + 2.21747i −0.446694 + 0.374820i
\(36\) 0 0
\(37\) −3.51174 2.94670i −0.577326 0.484434i 0.306742 0.951793i \(-0.400761\pi\)
−0.884068 + 0.467359i \(0.845206\pi\)
\(38\) 4.93690 + 5.23281i 0.800871 + 0.848874i
\(39\) 0 0
\(40\) −2.06939 + 1.03929i −0.327199 + 0.164326i
\(41\) 7.03828 3.53476i 1.09920 0.552037i 0.195713 0.980661i \(-0.437298\pi\)
0.903483 + 0.428625i \(0.141002\pi\)
\(42\) 0 0
\(43\) −0.304424 0.322671i −0.0464243 0.0492069i 0.703745 0.710452i \(-0.251510\pi\)
−0.750170 + 0.661246i \(0.770028\pi\)
\(44\) 3.37004 + 2.82780i 0.508053 + 0.426307i
\(45\) 0 0
\(46\) −2.23091 + 1.87195i −0.328929 + 0.276004i
\(47\) −7.76840 0.907996i −1.13314 0.132445i −0.471216 0.882018i \(-0.656185\pi\)
−0.661922 + 0.749573i \(0.730259\pi\)
\(48\) 0 0
\(49\) 3.28072 3.47736i 0.468675 0.496766i
\(50\) 0.360032 0.0420817i 0.0509162 0.00595126i
\(51\) 0 0
\(52\) 0.0283552 + 0.486840i 0.00393216 + 0.0675126i
\(53\) −0.984340 + 1.70493i −0.135209 + 0.234190i −0.925677 0.378314i \(-0.876504\pi\)
0.790468 + 0.612503i \(0.209837\pi\)
\(54\) 0 0
\(55\) −5.09371 8.82256i −0.686836 1.18963i
\(56\) −1.24465 + 0.818618i −0.166323 + 0.109392i
\(57\) 0 0
\(58\) −2.60880 + 6.04789i −0.342553 + 0.794126i
\(59\) −12.3643 2.93038i −1.60969 0.381503i −0.675240 0.737598i \(-0.735960\pi\)
−0.934450 + 0.356095i \(0.884108\pi\)
\(60\) 0 0
\(61\) 4.60541 6.18613i 0.589662 0.792053i −0.402711 0.915327i \(-0.631932\pi\)
0.992373 + 0.123274i \(0.0393394\pi\)
\(62\) 1.68405 + 0.612943i 0.213874 + 0.0778439i
\(63\) 0 0
\(64\) −0.939693 + 0.342020i −0.117462 + 0.0427525i
\(65\) 0.323883 1.08185i 0.0401728 0.134186i
\(66\) 0 0
\(67\) −0.221954 + 3.81081i −0.0271160 + 0.465564i 0.957231 + 0.289324i \(0.0934305\pi\)
−0.984347 + 0.176240i \(0.943606\pi\)
\(68\) −5.49578 3.61463i −0.666461 0.438338i
\(69\) 0 0
\(70\) 3.35678 0.795571i 0.401212 0.0950889i
\(71\) −1.34489 + 7.62726i −0.159609 + 0.905189i 0.794841 + 0.606818i \(0.207554\pi\)
−0.954450 + 0.298371i \(0.903557\pi\)
\(72\) 0 0
\(73\) 1.74940 + 9.92135i 0.204752 + 1.16121i 0.897830 + 0.440343i \(0.145143\pi\)
−0.693078 + 0.720863i \(0.743746\pi\)
\(74\) 1.81573 + 4.20933i 0.211074 + 0.489325i
\(75\) 0 0
\(76\) −2.06330 6.89189i −0.236676 0.790554i
\(77\) −3.91361 5.25689i −0.445997 0.599078i
\(78\) 0 0
\(79\) 15.0035 + 7.53506i 1.68803 + 0.847761i 0.991481 + 0.130252i \(0.0415787\pi\)
0.696550 + 0.717509i \(0.254718\pi\)
\(80\) 2.31570 0.258904
\(81\) 0 0
\(82\) −7.87604 −0.869763
\(83\) 4.65331 + 2.33698i 0.510767 + 0.256517i 0.685465 0.728105i \(-0.259599\pi\)
−0.174698 + 0.984622i \(0.555895\pi\)
\(84\) 0 0
\(85\) 9.09624 + 12.2184i 0.986625 + 1.32527i
\(86\) 0.127229 + 0.424975i 0.0137195 + 0.0458262i
\(87\) 0 0
\(88\) −1.74246 4.03949i −0.185747 0.430611i
\(89\) 0.537926 + 3.05073i 0.0570200 + 0.323377i 0.999954 0.00960343i \(-0.00305691\pi\)
−0.942934 + 0.332980i \(0.891946\pi\)
\(90\) 0 0
\(91\) 0.126153 0.715451i 0.0132245 0.0749996i
\(92\) 2.83374 0.671609i 0.295438 0.0700201i
\(93\) 0 0
\(94\) 6.53459 + 4.29787i 0.673991 + 0.443291i
\(95\) −0.968660 + 16.6313i −0.0993825 + 1.70633i
\(96\) 0 0
\(97\) 0.403864 1.34900i 0.0410062 0.136970i −0.935035 0.354555i \(-0.884633\pi\)
0.976042 + 0.217584i \(0.0698177\pi\)
\(98\) −4.49240 + 1.63510i −0.453801 + 0.165170i
\(99\) 0 0
\(100\) −0.340623 0.123977i −0.0340623 0.0123977i
\(101\) 6.00167 8.06164i 0.597188 0.802163i −0.396053 0.918228i \(-0.629620\pi\)
0.993242 + 0.116064i \(0.0370279\pi\)
\(102\) 0 0
\(103\) −1.63242 0.386890i −0.160847 0.0381214i 0.149403 0.988776i \(-0.452265\pi\)
−0.310250 + 0.950655i \(0.600413\pi\)
\(104\) 0.193154 0.447782i 0.0189403 0.0439086i
\(105\) 0 0
\(106\) 1.64481 1.08181i 0.159758 0.105074i
\(107\) 6.16214 + 10.6731i 0.595717 + 1.03181i 0.993445 + 0.114309i \(0.0364653\pi\)
−0.397728 + 0.917503i \(0.630201\pi\)
\(108\) 0 0
\(109\) 9.54562 16.5335i 0.914305 1.58362i 0.106389 0.994325i \(-0.466071\pi\)
0.807916 0.589298i \(-0.200595\pi\)
\(110\) 0.592346 + 10.1702i 0.0564779 + 0.969689i
\(111\) 0 0
\(112\) 1.47965 0.172947i 0.139814 0.0163419i
\(113\) 5.52918 5.86059i 0.520142 0.551318i −0.413045 0.910711i \(-0.635535\pi\)
0.933186 + 0.359393i \(0.117016\pi\)
\(114\) 0 0
\(115\) −6.69829 0.782918i −0.624619 0.0730075i
\(116\) 5.04560 4.23376i 0.468472 0.393095i
\(117\) 0 0
\(118\) 9.73395 + 8.16776i 0.896083 + 0.751903i
\(119\) 6.72470 + 7.12777i 0.616452 + 0.653401i
\(120\) 0 0
\(121\) 7.46507 3.74910i 0.678643 0.340827i
\(122\) −6.89187 + 3.46123i −0.623961 + 0.313365i
\(123\) 0 0
\(124\) −1.22983 1.30355i −0.110442 0.117062i
\(125\) −8.22664 6.90297i −0.735813 0.617420i
\(126\) 0 0
\(127\) 14.4311 12.1091i 1.28055 1.07451i 0.287382 0.957816i \(-0.407215\pi\)
0.993168 0.116693i \(-0.0372293\pi\)
\(128\) 0.993238 + 0.116093i 0.0877907 + 0.0102613i
\(129\) 0 0
\(130\) −0.774964 + 0.821414i −0.0679689 + 0.0720428i
\(131\) 13.3322 1.55832i 1.16484 0.136151i 0.488383 0.872629i \(-0.337587\pi\)
0.676461 + 0.736479i \(0.263513\pi\)
\(132\) 0 0
\(133\) 0.623154 + 10.6991i 0.0540343 + 0.927733i
\(134\) 1.90863 3.30585i 0.164881 0.285582i
\(135\) 0 0
\(136\) 3.28896 + 5.69665i 0.282026 + 0.488484i
\(137\) −4.42901 + 2.91301i −0.378396 + 0.248875i −0.724432 0.689346i \(-0.757898\pi\)
0.346036 + 0.938221i \(0.387528\pi\)
\(138\) 0 0
\(139\) −7.14865 + 16.5724i −0.606340 + 1.40565i 0.287723 + 0.957714i \(0.407102\pi\)
−0.894063 + 0.447941i \(0.852157\pi\)
\(140\) −3.35678 0.795571i −0.283700 0.0672380i
\(141\) 0 0
\(142\) 4.62495 6.21238i 0.388117 0.521332i
\(143\) 2.01599 + 0.733761i 0.168586 + 0.0613601i
\(144\) 0 0
\(145\) −14.3327 + 5.21667i −1.19026 + 0.433221i
\(146\) 2.88937 9.65117i 0.239126 0.798737i
\(147\) 0 0
\(148\) 0.266550 4.57649i 0.0219103 0.376185i
\(149\) 14.7989 + 9.73339i 1.21237 + 0.797390i 0.984343 0.176264i \(-0.0564011\pi\)
0.228030 + 0.973654i \(0.426771\pi\)
\(150\) 0 0
\(151\) −2.32779 + 0.551696i −0.189433 + 0.0448964i −0.324237 0.945976i \(-0.605108\pi\)
0.134804 + 0.990872i \(0.456959\pi\)
\(152\) −1.24925 + 7.08482i −0.101327 + 0.574655i
\(153\) 0 0
\(154\) 1.13804 + 6.45415i 0.0917060 + 0.520091i
\(155\) 1.64374 + 3.81063i 0.132029 + 0.306077i
\(156\) 0 0
\(157\) 2.97910 + 9.95089i 0.237758 + 0.794167i 0.990698 + 0.136078i \(0.0434498\pi\)
−0.752940 + 0.658089i \(0.771365\pi\)
\(158\) −10.0259 13.4672i −0.797620 1.07139i
\(159\) 0 0
\(160\) −2.06939 1.03929i −0.163600 0.0821628i
\(161\) −4.33845 −0.341917
\(162\) 0 0
\(163\) −6.60659 −0.517468 −0.258734 0.965949i \(-0.583305\pi\)
−0.258734 + 0.965949i \(0.583305\pi\)
\(164\) 7.03828 + 3.53476i 0.549598 + 0.276018i
\(165\) 0 0
\(166\) −3.10951 4.17680i −0.241345 0.324183i
\(167\) −1.98331 6.62473i −0.153473 0.512637i 0.846326 0.532665i \(-0.178810\pi\)
−0.999799 + 0.0200284i \(0.993624\pi\)
\(168\) 0 0
\(169\) −5.05484 11.7184i −0.388834 0.901419i
\(170\) −2.64510 15.0011i −0.202870 1.15053i
\(171\) 0 0
\(172\) 0.0770323 0.436872i 0.00587365 0.0333112i
\(173\) 12.3276 2.92169i 0.937249 0.222132i 0.266516 0.963831i \(-0.414128\pi\)
0.670734 + 0.741698i \(0.265979\pi\)
\(174\) 0 0
\(175\) 0.451164 + 0.296735i 0.0341048 + 0.0224311i
\(176\) −0.255795 + 4.39183i −0.0192813 + 0.331047i
\(177\) 0 0
\(178\) 0.888457 2.96765i 0.0665926 0.222435i
\(179\) 0.951462 0.346304i 0.0711156 0.0258840i −0.306217 0.951962i \(-0.599063\pi\)
0.377333 + 0.926078i \(0.376841\pi\)
\(180\) 0 0
\(181\) 14.7137 + 5.35534i 1.09366 + 0.398059i 0.824975 0.565169i \(-0.191189\pi\)
0.268684 + 0.963228i \(0.413411\pi\)
\(182\) −0.433828 + 0.582733i −0.0321575 + 0.0431950i
\(183\) 0 0
\(184\) −2.83374 0.671609i −0.208906 0.0495117i
\(185\) −4.20469 + 9.74756i −0.309135 + 0.716655i
\(186\) 0 0
\(187\) −24.1774 + 15.9018i −1.76803 + 1.16285i
\(188\) −3.91064 6.77343i −0.285213 0.494003i
\(189\) 0 0
\(190\) 8.32972 14.4275i 0.604301 1.04668i
\(191\) 0.257431 + 4.41992i 0.0186271 + 0.319814i 0.994732 + 0.102513i \(0.0326884\pi\)
−0.976105 + 0.217301i \(0.930275\pi\)
\(192\) 0 0
\(193\) −18.8735 + 2.20600i −1.35855 + 0.158791i −0.763972 0.645250i \(-0.776753\pi\)
−0.594574 + 0.804041i \(0.702679\pi\)
\(194\) −0.966336 + 1.02426i −0.0693789 + 0.0735373i
\(195\) 0 0
\(196\) 4.74839 + 0.555007i 0.339171 + 0.0396433i
\(197\) 17.3672 14.5728i 1.23736 1.03827i 0.239637 0.970863i \(-0.422972\pi\)
0.997726 0.0674075i \(-0.0214728\pi\)
\(198\) 0 0
\(199\) −2.88695 2.42244i −0.204650 0.171722i 0.534702 0.845041i \(-0.320424\pi\)
−0.739352 + 0.673319i \(0.764868\pi\)
\(200\) 0.248751 + 0.263661i 0.0175894 + 0.0186436i
\(201\) 0 0
\(202\) −8.98134 + 4.51060i −0.631925 + 0.317365i
\(203\) −8.76848 + 4.40370i −0.615427 + 0.309079i
\(204\) 0 0
\(205\) −12.5161 13.2663i −0.874160 0.926555i
\(206\) 1.28515 + 1.07837i 0.0895403 + 0.0751333i
\(207\) 0 0
\(208\) −0.373573 + 0.313465i −0.0259026 + 0.0217349i
\(209\) −31.4349 3.67421i −2.17440 0.254151i
\(210\) 0 0
\(211\) 9.04987 9.59230i 0.623019 0.660361i −0.336606 0.941646i \(-0.609279\pi\)
0.959624 + 0.281284i \(0.0907604\pi\)
\(212\) −1.95537 + 0.228550i −0.134295 + 0.0156969i
\(213\) 0 0
\(214\) −0.716594 12.3034i −0.0489853 0.841046i
\(215\) −0.513636 + 0.889644i −0.0350297 + 0.0606732i
\(216\) 0 0
\(217\) 1.33489 + 2.31210i 0.0906182 + 0.156955i
\(218\) −15.9505 + 10.4908i −1.08030 + 0.710527i
\(219\) 0 0
\(220\) 4.03503 9.35425i 0.272042 0.630663i
\(221\) −3.12136 0.739775i −0.209965 0.0497627i
\(222\) 0 0
\(223\) −4.24353 + 5.70006i −0.284168 + 0.381704i −0.921171 0.389157i \(-0.872766\pi\)
0.637003 + 0.770861i \(0.280174\pi\)
\(224\) −1.39989 0.509517i −0.0935338 0.0340435i
\(225\) 0 0
\(226\) −7.57128 + 2.75572i −0.503634 + 0.183308i
\(227\) −0.642640 + 2.14657i −0.0426535 + 0.142473i −0.976664 0.214773i \(-0.931099\pi\)
0.934011 + 0.357246i \(0.116284\pi\)
\(228\) 0 0
\(229\) 0.903744 15.5167i 0.0597211 1.02537i −0.826745 0.562577i \(-0.809810\pi\)
0.886466 0.462794i \(-0.153153\pi\)
\(230\) 5.63444 + 3.70583i 0.371524 + 0.244355i
\(231\) 0 0
\(232\) −6.40902 + 1.51897i −0.420773 + 0.0997250i
\(233\) −1.36995 + 7.76937i −0.0897483 + 0.508988i 0.906482 + 0.422244i \(0.138757\pi\)
−0.996231 + 0.0867442i \(0.972354\pi\)
\(234\) 0 0
\(235\) 3.14508 + 17.8366i 0.205162 + 1.16353i
\(236\) −5.03290 11.6676i −0.327614 0.759494i
\(237\) 0 0
\(238\) −2.81048 9.38764i −0.182176 0.608511i
\(239\) −3.07871 4.13542i −0.199145 0.267498i 0.691321 0.722548i \(-0.257029\pi\)
−0.890466 + 0.455049i \(0.849622\pi\)
\(240\) 0 0
\(241\) −1.85788 0.933061i −0.119676 0.0601038i 0.387954 0.921679i \(-0.373182\pi\)
−0.507630 + 0.861575i \(0.669478\pi\)
\(242\) −8.35362 −0.536991
\(243\) 0 0
\(244\) 7.71220 0.493723
\(245\) −9.89315 4.96853i −0.632050 0.317428i
\(246\) 0 0
\(247\) −2.09502 2.81410i −0.133303 0.179057i
\(248\) 0.513987 + 1.71684i 0.0326382 + 0.109019i
\(249\) 0 0
\(250\) 4.25355 + 9.86083i 0.269018 + 0.623654i
\(251\) −3.84832 21.8249i −0.242904 1.37757i −0.825311 0.564678i \(-0.809000\pi\)
0.582408 0.812897i \(-0.302111\pi\)
\(252\) 0 0
\(253\) 2.22474 12.6171i 0.139868 0.793231i
\(254\) −18.3306 + 4.34444i −1.15017 + 0.272594i
\(255\) 0 0
\(256\) −0.835488 0.549509i −0.0522180 0.0343443i
\(257\) 0.653529 11.2207i 0.0407660 0.699925i −0.914574 0.404418i \(-0.867474\pi\)
0.955340 0.295507i \(-0.0954887\pi\)
\(258\) 0 0
\(259\) −1.95866 + 6.54238i −0.121705 + 0.406524i
\(260\) 1.06118 0.386239i 0.0658118 0.0239535i
\(261\) 0 0
\(262\) −12.6135 4.59094i −0.779264 0.283629i
\(263\) −0.769213 + 1.03323i −0.0474317 + 0.0637118i −0.825206 0.564832i \(-0.808941\pi\)
0.777775 + 0.628543i \(0.216349\pi\)
\(264\) 0 0
\(265\) 4.43599 + 1.05135i 0.272501 + 0.0645839i
\(266\) 4.24489 9.84077i 0.260271 0.603376i
\(267\) 0 0
\(268\) −3.18928 + 2.09762i −0.194816 + 0.128133i
\(269\) 8.37641 + 14.5084i 0.510719 + 0.884591i 0.999923 + 0.0124213i \(0.00395392\pi\)
−0.489204 + 0.872169i \(0.662713\pi\)
\(270\) 0 0
\(271\) −13.9516 + 24.1649i −0.847502 + 1.46792i 0.0359290 + 0.999354i \(0.488561\pi\)
−0.883431 + 0.468562i \(0.844772\pi\)
\(272\) −0.382472 6.56680i −0.0231908 0.398171i
\(273\) 0 0
\(274\) 5.26526 0.615421i 0.318086 0.0371790i
\(275\) −1.09432 + 1.15992i −0.0659902 + 0.0699456i
\(276\) 0 0
\(277\) 3.12877 + 0.365701i 0.187990 + 0.0219728i 0.209567 0.977794i \(-0.432795\pi\)
−0.0215771 + 0.999767i \(0.506869\pi\)
\(278\) 13.8260 11.6014i 0.829226 0.695803i
\(279\) 0 0
\(280\) 2.64267 + 2.21747i 0.157930 + 0.132519i
\(281\) 0.756901 + 0.802268i 0.0451529 + 0.0478593i 0.749556 0.661941i \(-0.230267\pi\)
−0.704403 + 0.709800i \(0.748785\pi\)
\(282\) 0 0
\(283\) 28.2064 14.1658i 1.67670 0.842068i 0.682941 0.730473i \(-0.260700\pi\)
0.993754 0.111595i \(-0.0355959\pi\)
\(284\) −6.92112 + 3.47592i −0.410693 + 0.206258i
\(285\) 0 0
\(286\) −1.47224 1.56049i −0.0870556 0.0922736i
\(287\) −8.98811 7.54192i −0.530551 0.445186i
\(288\) 0 0
\(289\) 20.1233 16.8855i 1.18372 0.993263i
\(290\) 15.1494 + 1.77071i 0.889603 + 0.103980i
\(291\) 0 0
\(292\) −6.91347 + 7.32785i −0.404580 + 0.428830i
\(293\) 28.2115 3.29745i 1.64813 0.192639i 0.759258 0.650790i \(-0.225562\pi\)
0.888874 + 0.458151i \(0.151488\pi\)
\(294\) 0 0
\(295\) 1.71092 + 29.3753i 0.0996135 + 1.71030i
\(296\) −2.29212 + 3.97008i −0.133227 + 0.230756i
\(297\) 0 0
\(298\) −8.85644 15.3398i −0.513040 0.888611i
\(299\) 1.18656 0.780412i 0.0686204 0.0451324i
\(300\) 0 0
\(301\) −0.261753 + 0.606812i −0.0150872 + 0.0349761i
\(302\) 2.32779 + 0.551696i 0.133949 + 0.0317465i
\(303\) 0 0
\(304\) 4.29603 5.77057i 0.246394 0.330965i
\(305\) −16.7821 6.10819i −0.960942 0.349754i
\(306\) 0 0
\(307\) −28.0570 + 10.2119i −1.60130 + 0.582824i −0.979692 0.200507i \(-0.935741\pi\)
−0.621604 + 0.783332i \(0.713519\pi\)
\(308\) 1.87963 6.27839i 0.107102 0.357745i
\(309\) 0 0
\(310\) 0.241303 4.14301i 0.0137051 0.235307i
\(311\) −1.52200 1.00103i −0.0863046 0.0567634i 0.505623 0.862754i \(-0.331263\pi\)
−0.591928 + 0.805991i \(0.701633\pi\)
\(312\) 0 0
\(313\) −4.20142 + 0.995754i −0.237478 + 0.0562833i −0.347631 0.937631i \(-0.613014\pi\)
0.110153 + 0.993915i \(0.464866\pi\)
\(314\) 1.80373 10.2295i 0.101790 0.577282i
\(315\) 0 0
\(316\) 2.91545 + 16.5343i 0.164007 + 0.930128i
\(317\) −12.9195 29.9507i −0.725630 1.68220i −0.731152 0.682215i \(-0.761017\pi\)
0.00552184 0.999985i \(-0.498242\pi\)
\(318\) 0 0
\(319\) −8.31044 27.7588i −0.465295 1.55419i
\(320\) 1.38284 + 1.85748i 0.0773032 + 0.103836i
\(321\) 0 0
\(322\) 3.87698 + 1.94709i 0.216055 + 0.108507i
\(323\) 47.3224 2.63309
\(324\) 0 0
\(325\) −0.176770 −0.00980546
\(326\) 5.90386 + 2.96503i 0.326985 + 0.164218i
\(327\) 0 0
\(328\) −4.70324 6.31755i −0.259693 0.348828i
\(329\) 3.34171 + 11.1621i 0.184234 + 0.615386i
\(330\) 0 0
\(331\) −3.78788 8.78130i −0.208201 0.482664i 0.781834 0.623487i \(-0.214284\pi\)
−0.990035 + 0.140823i \(0.955025\pi\)
\(332\) 0.904218 + 5.12807i 0.0496254 + 0.281440i
\(333\) 0 0
\(334\) −1.20082 + 6.81018i −0.0657059 + 0.372637i
\(335\) 8.60138 2.03856i 0.469944 0.111379i
\(336\) 0 0
\(337\) −13.9009 9.14276i −0.757230 0.498038i 0.111232 0.993794i \(-0.464520\pi\)
−0.868461 + 0.495757i \(0.834891\pi\)
\(338\) −0.742055 + 12.7406i −0.0403625 + 0.692997i
\(339\) 0 0
\(340\) −4.36874 + 14.5926i −0.236928 + 0.791395i
\(341\) −7.40859 + 2.69651i −0.401198 + 0.146024i
\(342\) 0 0
\(343\) −16.4917 6.00247i −0.890465 0.324103i
\(344\) −0.264906 + 0.355831i −0.0142828 + 0.0191851i
\(345\) 0 0
\(346\) −12.3276 2.92169i −0.662735 0.157071i
\(347\) −9.89690 + 22.9436i −0.531294 + 1.23168i 0.415429 + 0.909626i \(0.363632\pi\)
−0.946722 + 0.322051i \(0.895628\pi\)
\(348\) 0 0
\(349\) 17.1526 11.2815i 0.918160 0.603884i −3.99838e−5 1.00000i \(-0.500013\pi\)
0.918200 + 0.396116i \(0.129642\pi\)
\(350\) −0.270001 0.467655i −0.0144321 0.0249972i
\(351\) 0 0
\(352\) 2.19964 3.80988i 0.117241 0.203067i
\(353\) 1.05164 + 18.0559i 0.0559731 + 0.961021i 0.903046 + 0.429544i \(0.141326\pi\)
−0.847073 + 0.531477i \(0.821637\pi\)
\(354\) 0 0
\(355\) 17.8137 2.08212i 0.945452 0.110507i
\(356\) −2.12583 + 2.25325i −0.112669 + 0.119422i
\(357\) 0 0
\(358\) −1.00568 0.117547i −0.0531518 0.00621255i
\(359\) −23.7236 + 19.9065i −1.25209 + 1.05062i −0.255607 + 0.966781i \(0.582275\pi\)
−0.996479 + 0.0838438i \(0.973280\pi\)
\(360\) 0 0
\(361\) 25.0920 + 21.0547i 1.32063 + 1.10814i
\(362\) −10.7452 11.3892i −0.564753 0.598603i
\(363\) 0 0
\(364\) 0.649213 0.326047i 0.0340280 0.0170895i
\(365\) 20.8479 10.4702i 1.09123 0.548034i
\(366\) 0 0
\(367\) −5.49865 5.82823i −0.287027 0.304231i 0.567776 0.823183i \(-0.307804\pi\)
−0.854803 + 0.518952i \(0.826322\pi\)
\(368\) 2.23091 + 1.87195i 0.116294 + 0.0975823i
\(369\) 0 0
\(370\) 8.13214 6.82368i 0.422770 0.354746i
\(371\) 2.91296 + 0.340477i 0.151234 + 0.0176767i
\(372\) 0 0
\(373\) −15.3339 + 16.2530i −0.793962 + 0.841550i −0.990294 0.138987i \(-0.955615\pi\)
0.196332 + 0.980537i \(0.437097\pi\)
\(374\) 28.7424 3.35951i 1.48624 0.173716i
\(375\) 0 0
\(376\) 0.454767 + 7.80805i 0.0234528 + 0.402670i
\(377\) 1.60602 2.78170i 0.0827141 0.143265i
\(378\) 0 0
\(379\) 10.1868 + 17.6441i 0.523262 + 0.906317i 0.999633 + 0.0270727i \(0.00861857\pi\)
−0.476371 + 0.879244i \(0.658048\pi\)
\(380\) −13.9188 + 9.15451i −0.714017 + 0.469617i
\(381\) 0 0
\(382\) 1.75361 4.06532i 0.0897224 0.208000i
\(383\) −2.46010 0.583054i −0.125705 0.0297927i 0.167282 0.985909i \(-0.446501\pi\)
−0.292987 + 0.956116i \(0.594649\pi\)
\(384\) 0 0
\(385\) −9.06276 + 12.1734i −0.461881 + 0.620414i
\(386\) 17.8560 + 6.49907i 0.908848 + 0.330794i
\(387\) 0 0
\(388\) 1.32323 0.481618i 0.0671771 0.0244505i
\(389\) −4.54869 + 15.1937i −0.230628 + 0.770350i 0.761832 + 0.647775i \(0.224300\pi\)
−0.992459 + 0.122575i \(0.960885\pi\)
\(390\) 0 0
\(391\) −1.11385 + 19.1241i −0.0563299 + 0.967148i
\(392\) −3.99423 2.62704i −0.201739 0.132686i
\(393\) 0 0
\(394\) −22.0602 + 5.22836i −1.11138 + 0.263401i
\(395\) 6.75131 38.2886i 0.339695 1.92651i
\(396\) 0 0
\(397\) 5.19212 + 29.4460i 0.260585 + 1.47785i 0.781319 + 0.624132i \(0.214547\pi\)
−0.520734 + 0.853719i \(0.674341\pi\)
\(398\) 1.49268 + 3.46043i 0.0748214 + 0.173456i
\(399\) 0 0
\(400\) −0.103961 0.347255i −0.00519807 0.0173628i
\(401\) 5.58127 + 7.49695i 0.278715 + 0.374380i 0.919333 0.393480i \(-0.128729\pi\)
−0.640618 + 0.767860i \(0.721322\pi\)
\(402\) 0 0
\(403\) −0.780997 0.392231i −0.0389042 0.0195384i
\(404\) 10.0504 0.500025
\(405\) 0 0
\(406\) 9.81218 0.486970
\(407\) −18.0222 9.05110i −0.893328 0.448646i
\(408\) 0 0
\(409\) −0.379338 0.509540i −0.0187571 0.0251951i 0.792646 0.609683i \(-0.208703\pi\)
−0.811403 + 0.584487i \(0.801296\pi\)
\(410\) 5.23088 + 17.4724i 0.258335 + 0.862898i
\(411\) 0 0
\(412\) −0.664479 1.54043i −0.0327365 0.0758918i
\(413\) 3.28709 + 18.6420i 0.161747 + 0.917315i
\(414\) 0 0
\(415\) 2.09390 11.8751i 0.102786 0.582926i
\(416\) 0.474520 0.112463i 0.0232653 0.00551397i
\(417\) 0 0
\(418\) 26.4423 + 17.3914i 1.29333 + 0.850639i
\(419\) −0.398563 + 6.84305i −0.0194711 + 0.334305i 0.974479 + 0.224477i \(0.0720672\pi\)
−0.993951 + 0.109829i \(0.964970\pi\)
\(420\) 0 0
\(421\) 6.42595 21.4642i 0.313182 1.04610i −0.646007 0.763332i \(-0.723562\pi\)
0.959188 0.282768i \(-0.0912526\pi\)
\(422\) −12.3923 + 4.51042i −0.603247 + 0.219564i
\(423\) 0 0
\(424\) 1.84995 + 0.673328i 0.0898417 + 0.0326997i
\(425\) 1.42386 1.91257i 0.0690673 0.0927734i
\(426\) 0 0
\(427\) −11.1794 2.64956i −0.541008 0.128221i
\(428\) −4.88140 + 11.3164i −0.235951 + 0.546997i
\(429\) 0 0
\(430\) 0.858273 0.564495i 0.0413896 0.0272224i
\(431\) −7.62700 13.2103i −0.367379 0.636320i 0.621776 0.783196i \(-0.286412\pi\)
−0.989155 + 0.146876i \(0.953078\pi\)
\(432\) 0 0
\(433\) 8.83327 15.2997i 0.424500 0.735255i −0.571874 0.820342i \(-0.693783\pi\)
0.996374 + 0.0850866i \(0.0271167\pi\)
\(434\) −0.155234 2.66526i −0.00745146 0.127937i
\(435\) 0 0
\(436\) 18.9622 2.21636i 0.908123 0.106144i
\(437\) −14.3775 + 15.2392i −0.687767 + 0.728990i
\(438\) 0 0
\(439\) 23.6609 + 2.76556i 1.12927 + 0.131993i 0.660146 0.751137i \(-0.270494\pi\)
0.469127 + 0.883131i \(0.344569\pi\)
\(440\) −7.80401 + 6.54835i −0.372042 + 0.312180i
\(441\) 0 0
\(442\) 2.45734 + 2.06195i 0.116884 + 0.0980770i
\(443\) −10.1320 10.7393i −0.481385 0.510239i 0.440473 0.897766i \(-0.354811\pi\)
−0.921858 + 0.387527i \(0.873329\pi\)
\(444\) 0 0
\(445\) 6.41053 3.21949i 0.303888 0.152619i
\(446\) 6.35034 3.18926i 0.300697 0.151016i
\(447\) 0 0
\(448\) 1.02231 + 1.08359i 0.0482997 + 0.0511947i
\(449\) 8.26585 + 6.93587i 0.390090 + 0.327324i 0.816648 0.577136i \(-0.195830\pi\)
−0.426558 + 0.904460i \(0.640274\pi\)
\(450\) 0 0
\(451\) 26.5426 22.2719i 1.24984 1.04874i
\(452\) 8.00271 + 0.935383i 0.376416 + 0.0439967i
\(453\) 0 0
\(454\) 1.53766 1.62983i 0.0721660 0.0764915i
\(455\) −1.67096 + 0.195307i −0.0783356 + 0.00915612i
\(456\) 0 0
\(457\) −1.75430 30.1202i −0.0820627 1.40896i −0.748368 0.663284i \(-0.769162\pi\)
0.666305 0.745679i \(-0.267875\pi\)
\(458\) −7.77149 + 13.4606i −0.363138 + 0.628974i
\(459\) 0 0
\(460\) −3.37194 5.84038i −0.157218 0.272309i
\(461\) 16.9882 11.1733i 0.791219 0.520393i −0.0883926 0.996086i \(-0.528173\pi\)
0.879611 + 0.475693i \(0.157803\pi\)
\(462\) 0 0
\(463\) 8.36162 19.3844i 0.388597 0.900870i −0.605845 0.795583i \(-0.707165\pi\)
0.994442 0.105287i \(-0.0335760\pi\)
\(464\) 6.40902 + 1.51897i 0.297531 + 0.0705162i
\(465\) 0 0
\(466\) 4.71112 6.32813i 0.218238 0.293145i
\(467\) −16.2329 5.90831i −0.751171 0.273404i −0.0620726 0.998072i \(-0.519771\pi\)
−0.689098 + 0.724668i \(0.741993\pi\)
\(468\) 0 0
\(469\) 5.34374 1.94496i 0.246751 0.0898099i
\(470\) 5.19452 17.3509i 0.239605 0.800337i
\(471\) 0 0
\(472\) −0.738833 + 12.6853i −0.0340076 + 0.583887i
\(473\) −1.63051 1.07240i −0.0749710 0.0493092i
\(474\) 0 0
\(475\) 2.53745 0.601388i 0.116426 0.0275936i
\(476\) −1.70163 + 9.65044i −0.0779943 + 0.442327i
\(477\) 0 0
\(478\) 0.895260 + 5.07727i 0.0409482 + 0.232229i
\(479\) 8.46394 + 19.6216i 0.386727 + 0.896534i 0.994723 + 0.102594i \(0.0327144\pi\)
−0.607996 + 0.793940i \(0.708026\pi\)
\(480\) 0 0
\(481\) −0.641171 2.14166i −0.0292349 0.0976513i
\(482\) 1.24150 + 1.66763i 0.0565489 + 0.0759584i
\(483\) 0 0
\(484\) 7.46507 + 3.74910i 0.339321 + 0.170414i
\(485\) −3.26087 −0.148069
\(486\) 0 0
\(487\) −11.1991 −0.507482 −0.253741 0.967272i \(-0.581661\pi\)
−0.253741 + 0.967272i \(0.581661\pi\)
\(488\) −6.89187 3.46123i −0.311980 0.156682i
\(489\) 0 0
\(490\) 6.61097 + 8.88008i 0.298653 + 0.401161i
\(491\) 2.57840 + 8.61245i 0.116361 + 0.388674i 0.996252 0.0865028i \(-0.0275692\pi\)
−0.879890 + 0.475177i \(0.842384\pi\)
\(492\) 0 0
\(493\) 17.1605 + 39.7826i 0.772871 + 1.79172i
\(494\) 0.609213 + 3.45502i 0.0274098 + 0.155449i
\(495\) 0 0
\(496\) 0.311199 1.76490i 0.0139733 0.0792463i
\(497\) 11.2268 2.66081i 0.503592 0.119353i
\(498\) 0 0
\(499\) −1.29086 0.849012i −0.0577868 0.0380070i 0.520287 0.853992i \(-0.325825\pi\)
−0.578074 + 0.815985i \(0.696195\pi\)
\(500\) 0.624424 10.7209i 0.0279251 0.479455i
\(501\) 0 0
\(502\) −6.35601 + 21.2306i −0.283683 + 0.947566i
\(503\) 8.36142 3.04331i 0.372817 0.135694i −0.148815 0.988865i \(-0.547546\pi\)
0.521632 + 0.853171i \(0.325324\pi\)
\(504\) 0 0
\(505\) −21.8701 7.96007i −0.973207 0.354219i
\(506\) −7.65065 + 10.2766i −0.340113 + 0.456851i
\(507\) 0 0
\(508\) 18.3306 + 4.34444i 0.813290 + 0.192753i
\(509\) −5.04282 + 11.6906i −0.223519 + 0.518176i −0.992665 0.120898i \(-0.961423\pi\)
0.769146 + 0.639073i \(0.220682\pi\)
\(510\) 0 0
\(511\) 12.5391 8.24709i 0.554697 0.364830i
\(512\) 0.500000 + 0.866025i 0.0220971 + 0.0382733i
\(513\) 0 0
\(514\) −5.61983 + 9.73384i −0.247880 + 0.429341i
\(515\) 0.225888 + 3.87834i 0.00995380 + 0.170900i
\(516\) 0 0
\(517\) −34.1753 + 3.99452i −1.50303 + 0.175679i
\(518\) 4.68654 4.96744i 0.205915 0.218257i
\(519\) 0 0
\(520\) −1.12165 0.131102i −0.0491877 0.00574922i
\(521\) −13.0420 + 10.9435i −0.571380 + 0.479445i −0.882104 0.471056i \(-0.843873\pi\)
0.310724 + 0.950500i \(0.399429\pi\)
\(522\) 0 0
\(523\) −12.6277 10.5959i −0.552172 0.463327i 0.323504 0.946227i \(-0.395139\pi\)
−0.875676 + 0.482900i \(0.839584\pi\)
\(524\) 9.21142 + 9.76354i 0.402403 + 0.426522i
\(525\) 0 0
\(526\) 1.15111 0.578108i 0.0501907 0.0252067i
\(527\) 10.5346 5.29066i 0.458893 0.230465i
\(528\) 0 0
\(529\) 9.96344 + 10.5606i 0.433193 + 0.459158i
\(530\) −3.49230 2.93039i −0.151696 0.127288i
\(531\) 0 0
\(532\) −8.20991 + 6.88893i −0.355945 + 0.298673i
\(533\) 3.81490 + 0.445898i 0.165242 + 0.0193140i
\(534\) 0 0
\(535\) 19.5849 20.7588i 0.846730 0.897482i
\(536\) 3.79145 0.443157i 0.163766 0.0191415i
\(537\) 0 0
\(538\) −0.974090 16.7245i −0.0419960 0.721043i
\(539\) 10.5158 18.2140i 0.452949 0.784531i
\(540\) 0 0
\(541\) 22.2115 + 38.4714i 0.954947 + 1.65402i 0.734490 + 0.678620i \(0.237422\pi\)
0.220457 + 0.975397i \(0.429245\pi\)
\(542\) 23.3128 15.3331i 1.00137 0.658613i
\(543\) 0 0
\(544\) −2.60538 + 6.03996i −0.111705 + 0.258961i
\(545\) −43.0180 10.1954i −1.84269 0.436725i
\(546\) 0 0
\(547\) 7.39145 9.92844i 0.316036 0.424509i −0.615513 0.788127i \(-0.711051\pi\)
0.931548 + 0.363617i \(0.118458\pi\)
\(548\) −4.98141 1.81309i −0.212795 0.0774512i
\(549\) 0 0
\(550\) 1.49849 0.545407i 0.0638960 0.0232562i
\(551\) −13.5900 + 45.3938i −0.578954 + 1.93384i
\(552\) 0 0
\(553\) 1.45430 24.9693i 0.0618429 1.06180i
\(554\) −2.63185 1.73099i −0.111816 0.0735428i
\(555\) 0 0
\(556\) −17.5620 + 4.16227i −0.744795 + 0.176520i
\(557\) −1.00425 + 5.69536i −0.0425512 + 0.241320i −0.998664 0.0516799i \(-0.983542\pi\)
0.956112 + 0.293000i \(0.0946536\pi\)
\(558\) 0 0
\(559\) −0.0375659 0.213047i −0.00158887 0.00901093i
\(560\) −1.36638 3.16763i −0.0577402 0.133857i
\(561\) 0 0
\(562\) −0.316334 1.05663i −0.0133438 0.0445712i
\(563\) 0.346453 + 0.465367i 0.0146013 + 0.0196129i 0.809364 0.587308i \(-0.199812\pi\)
−0.794763 + 0.606920i \(0.792405\pi\)
\(564\) 0 0
\(565\) −16.6735 8.37373i −0.701458 0.352285i
\(566\) −31.5637 −1.32672
\(567\) 0 0
\(568\) 7.74492 0.324970
\(569\) 6.61617 + 3.32276i 0.277364 + 0.139298i 0.582044 0.813157i \(-0.302253\pi\)
−0.304680 + 0.952455i \(0.598549\pi\)
\(570\) 0 0
\(571\) −13.5093 18.1461i −0.565346 0.759391i 0.423891 0.905713i \(-0.360664\pi\)
−0.989237 + 0.146322i \(0.953256\pi\)
\(572\) 0.615300 + 2.05524i 0.0257270 + 0.0859341i
\(573\) 0 0
\(574\) 4.64726 + 10.7736i 0.193973 + 0.449680i
\(575\) 0.183310 + 1.03960i 0.00764455 + 0.0433544i
\(576\) 0 0
\(577\) 2.27449 12.8993i 0.0946884 0.537004i −0.900154 0.435572i \(-0.856546\pi\)
0.994842 0.101433i \(-0.0323427\pi\)
\(578\) −25.5610 + 6.05808i −1.06320 + 0.251983i
\(579\) 0 0
\(580\) −12.7433 8.38140i −0.529137 0.348019i
\(581\) 0.451046 7.74416i 0.0187125 0.321282i
\(582\) 0 0
\(583\) −2.48393 + 8.29692i −0.102874 + 0.343623i
\(584\) 9.46684 3.44565i 0.391741 0.142582i
\(585\) 0 0
\(586\) −26.6906 9.71458i −1.10258 0.401306i
\(587\) −16.7999 + 22.5661i −0.693404 + 0.931403i −0.999790 0.0205040i \(-0.993473\pi\)
0.306386 + 0.951907i \(0.400880\pi\)
\(588\) 0 0
\(589\) 12.5452 + 2.97328i 0.516917 + 0.122512i
\(590\) 11.6547 27.0186i 0.479816 1.11234i
\(591\) 0 0
\(592\) 3.83008 2.51909i 0.157415 0.103534i
\(593\) 0.451178 + 0.781463i 0.0185276 + 0.0320908i 0.875141 0.483869i \(-0.160769\pi\)
−0.856613 + 0.515960i \(0.827435\pi\)
\(594\) 0 0
\(595\) 11.3462 19.6521i 0.465147 0.805658i
\(596\) 1.02991 + 17.6829i 0.0421869 + 0.724321i
\(597\) 0 0
\(598\) −1.41060 + 0.164875i −0.0576835 + 0.00674224i
\(599\) 12.4157 13.1599i 0.507292 0.537698i −0.422218 0.906494i \(-0.638748\pi\)
0.929510 + 0.368796i \(0.120230\pi\)
\(600\) 0 0
\(601\) −33.5660 3.92330i −1.36918 0.160035i −0.600480 0.799640i \(-0.705024\pi\)
−0.768704 + 0.639605i \(0.779098\pi\)
\(602\) 0.506248 0.424792i 0.0206331 0.0173132i
\(603\) 0 0
\(604\) −1.83259 1.53772i −0.0745669 0.0625690i
\(605\) −13.2750 14.0707i −0.539706 0.572055i
\(606\) 0 0
\(607\) −15.0269 + 7.54680i −0.609924 + 0.306315i −0.726819 0.686829i \(-0.759002\pi\)
0.116895 + 0.993144i \(0.462706\pi\)
\(608\) −6.42890 + 3.22871i −0.260726 + 0.130942i
\(609\) 0 0
\(610\) 12.2557 + 12.9903i 0.496219 + 0.525961i
\(611\) −2.92182 2.45170i −0.118204 0.0991851i
\(612\) 0 0
\(613\) 9.62863 8.07938i 0.388897 0.326323i −0.427287 0.904116i \(-0.640530\pi\)
0.816183 + 0.577793i \(0.196086\pi\)
\(614\) 29.6557 + 3.46626i 1.19681 + 0.139887i
\(615\) 0 0
\(616\) −4.49744 + 4.76700i −0.181207 + 0.192068i
\(617\) −19.1926 + 2.24329i −0.772663 + 0.0903114i −0.493283 0.869869i \(-0.664203\pi\)
−0.279381 + 0.960180i \(0.590129\pi\)
\(618\) 0 0
\(619\) −0.922443 15.8377i −0.0370761 0.636572i −0.964748 0.263176i \(-0.915230\pi\)
0.927672 0.373397i \(-0.121807\pi\)
\(620\) −2.07502 + 3.59403i −0.0833347 + 0.144340i
\(621\) 0 0
\(622\) 0.910844 + 1.57763i 0.0365215 + 0.0632571i
\(623\) 3.85566 2.53591i 0.154474 0.101599i
\(624\) 0 0
\(625\) −10.5678 + 24.4989i −0.422713 + 0.979958i
\(626\) 4.20142 + 0.995754i 0.167922 + 0.0397983i
\(627\) 0 0
\(628\) −6.20284 + 8.33186i −0.247520 + 0.332478i
\(629\) 28.3363 + 10.3136i 1.12984 + 0.411229i
\(630\) 0 0
\(631\) −17.8744 + 6.50576i −0.711570 + 0.258990i −0.672343 0.740240i \(-0.734712\pi\)
−0.0392270 + 0.999230i \(0.512490\pi\)
\(632\) 4.81525 16.0841i 0.191540 0.639789i
\(633\) 0 0
\(634\) −1.89659 + 32.5632i −0.0753232 + 1.29325i
\(635\) −36.4475 23.9719i −1.44637 0.951295i
\(636\) 0 0
\(637\) 2.26854 0.537655i 0.0898830 0.0213027i
\(638\) −5.03165 + 28.5359i −0.199205 + 1.12975i
\(639\) 0 0
\(640\) −0.402118 2.28052i −0.0158951 0.0901456i
\(641\) −3.51399 8.14633i −0.138794 0.321761i 0.834615 0.550833i \(-0.185690\pi\)
−0.973409 + 0.229072i \(0.926431\pi\)
\(642\) 0 0
\(643\) 12.9312 + 43.1932i 0.509957 + 1.70337i 0.693582 + 0.720378i \(0.256031\pi\)
−0.183625 + 0.982996i \(0.558783\pi\)
\(644\) −2.59074 3.47997i −0.102089 0.137130i
\(645\) 0 0
\(646\) −42.2888 21.2382i −1.66383 0.835608i
\(647\) −3.10784 −0.122182 −0.0610909 0.998132i \(-0.519458\pi\)
−0.0610909 + 0.998132i \(0.519458\pi\)
\(648\) 0 0
\(649\) −55.9006 −2.19429
\(650\) 0.157968 + 0.0793344i 0.00619601 + 0.00311175i
\(651\) 0 0
\(652\) −3.94518 5.29930i −0.154505 0.207537i
\(653\) −11.3354 37.8629i −0.443588 1.48169i −0.829161 0.559010i \(-0.811181\pi\)
0.385572 0.922678i \(-0.374004\pi\)
\(654\) 0 0
\(655\) −12.3116 28.5416i −0.481055 1.11521i
\(656\) 1.36766 + 7.75638i 0.0533981 + 0.302836i
\(657\) 0 0
\(658\) 2.02328 11.4746i 0.0788755 0.447325i
\(659\) 27.9731 6.62974i 1.08968 0.258258i 0.353764 0.935335i \(-0.384902\pi\)
0.735913 + 0.677077i \(0.236753\pi\)
\(660\) 0 0
\(661\) 11.3890 + 7.49066i 0.442981 + 0.291353i 0.751338 0.659918i \(-0.229409\pi\)
−0.308357 + 0.951271i \(0.599779\pi\)
\(662\) −0.556064 + 9.54726i −0.0216121 + 0.371065i
\(663\) 0 0
\(664\) 1.49344 4.98843i 0.0579566 0.193588i
\(665\) 23.3213 8.48826i 0.904362 0.329161i
\(666\) 0 0
\(667\) −18.0249 6.56051i −0.697926 0.254024i
\(668\) 4.12950 5.54687i 0.159775 0.214615i
\(669\) 0 0
\(670\) −8.60138 2.03856i −0.332300 0.0787566i
\(671\) 13.4382 31.1533i 0.518777 1.20266i
\(672\) 0 0
\(673\) 23.5724 15.5038i 0.908650 0.597629i −0.00683660 0.999977i \(-0.502176\pi\)
0.915487 + 0.402348i \(0.131806\pi\)
\(674\) 8.31903 + 14.4090i 0.320437 + 0.555013i
\(675\) 0 0
\(676\) 6.38109 11.0524i 0.245427 0.425091i
\(677\) 0.00439596 + 0.0754757i 0.000168951 + 0.00290077i 0.998392 0.0566944i \(-0.0180561\pi\)
−0.998223 + 0.0595952i \(0.981019\pi\)
\(678\) 0 0
\(679\) −2.08359 + 0.243536i −0.0799607 + 0.00934606i
\(680\) 10.4532 11.0797i 0.400862 0.424889i
\(681\) 0 0
\(682\) 7.83074 + 0.915283i 0.299855 + 0.0350480i
\(683\) 14.4335 12.1112i 0.552283 0.463421i −0.323430 0.946252i \(-0.604836\pi\)
0.875713 + 0.482831i \(0.160392\pi\)
\(684\) 0 0
\(685\) 9.40381 + 7.89073i 0.359301 + 0.301489i
\(686\) 12.0436 + 12.7654i 0.459826 + 0.487387i
\(687\) 0 0
\(688\) 0.396425 0.199092i 0.0151136 0.00759032i
\(689\) −0.857937 + 0.430872i −0.0326848 + 0.0164149i
\(690\) 0 0
\(691\) 16.9118 + 17.9255i 0.643357 + 0.681918i 0.964189 0.265218i \(-0.0854439\pi\)
−0.320832 + 0.947136i \(0.603962\pi\)
\(692\) 9.70508 + 8.14353i 0.368932 + 0.309571i
\(693\) 0 0
\(694\) 19.1413 16.0614i 0.726592 0.609683i
\(695\) 41.5124 + 4.85210i 1.57465 + 0.184051i
\(696\) 0 0
\(697\) −35.5528 + 37.6838i −1.34666 + 1.42737i
\(698\) −20.3913 + 2.38340i −0.771821 + 0.0902130i
\(699\) 0 0
\(700\) 0.0313983 + 0.539088i 0.00118674 + 0.0203756i
\(701\) −1.67068 + 2.89370i −0.0631007 + 0.109294i −0.895850 0.444357i \(-0.853432\pi\)
0.832749 + 0.553650i \(0.186766\pi\)
\(702\) 0 0
\(703\) 16.4898 + 28.5612i 0.621925 + 1.07721i
\(704\) −3.67554 + 2.41744i −0.138527 + 0.0911107i
\(705\) 0 0
\(706\) 7.16371 16.6074i 0.269610 0.625026i
\(707\) −14.5687 3.45285i −0.547914 0.129858i
\(708\) 0 0
\(709\) 6.61150 8.88078i 0.248300 0.333525i −0.660447 0.750873i \(-0.729633\pi\)
0.908747 + 0.417348i \(0.137040\pi\)
\(710\) −16.8533 6.13411i −0.632495 0.230209i
\(711\) 0 0
\(712\) 2.91097 1.05951i 0.109093 0.0397067i
\(713\) −1.49686 + 4.99985i −0.0560577 + 0.187246i
\(714\) 0 0
\(715\) 0.288866 4.95964i 0.0108030 0.185480i
\(716\) 0.845952 + 0.556392i 0.0316147 + 0.0207933i
\(717\) 0 0
\(718\) 30.1342 7.14194i 1.12460 0.266535i
\(719\) 5.92011 33.5746i 0.220783 1.25212i −0.649802 0.760104i \(-0.725148\pi\)
0.870585 0.492019i \(-0.163741\pi\)
\(720\) 0 0
\(721\) 0.433986 + 2.46125i 0.0161625 + 0.0916619i
\(722\) −12.9737 30.0764i −0.482832 1.11933i
\(723\) 0 0
\(724\) 4.49076 + 15.0002i 0.166898 + 0.557477i
\(725\) 1.42573 + 1.91508i 0.0529502 + 0.0711244i
\(726\) 0 0
\(727\) 40.5032 + 20.3415i 1.50218 + 0.754423i 0.994261 0.106981i \(-0.0341185\pi\)
0.507919 + 0.861405i \(0.330415\pi\)
\(728\) −0.726488 −0.0269254
\(729\) 0 0
\(730\) −23.3293 −0.863457
\(731\) 2.60766 + 1.30961i 0.0964477 + 0.0484379i
\(732\) 0 0
\(733\) −1.17522 1.57859i −0.0434077 0.0583067i 0.779889 0.625917i \(-0.215275\pi\)
−0.823297 + 0.567611i \(0.807868\pi\)
\(734\) 2.29807 + 7.67608i 0.0848232 + 0.283329i
\(735\) 0 0
\(736\) −1.15348 2.67407i −0.0425178 0.0985674i
\(737\) 2.91611 + 16.5381i 0.107416 + 0.609188i
\(738\) 0 0
\(739\) 5.15688 29.2461i 0.189699 1.07584i −0.730069 0.683373i \(-0.760512\pi\)
0.919768 0.392463i \(-0.128377\pi\)
\(740\) −10.3296 + 2.44816i −0.379724 + 0.0899963i
\(741\) 0 0
\(742\) −2.45031 1.61160i −0.0899539 0.0591636i
\(743\) 0.258982 4.44654i 0.00950111 0.163128i −0.990220 0.139514i \(-0.955446\pi\)
0.999721 0.0236135i \(-0.00751710\pi\)
\(744\) 0 0
\(745\) 11.7640 39.2946i 0.431001 1.43964i
\(746\) 20.9973 7.64238i 0.768765 0.279807i
\(747\) 0 0
\(748\) −27.1929 9.89742i −0.994272 0.361885i
\(749\) 10.9637 14.7268i 0.400606 0.538107i
\(750\) 0 0
\(751\) 12.0048 + 2.84520i 0.438063 + 0.103823i 0.443729 0.896161i \(-0.353655\pi\)
−0.00566597 + 0.999984i \(0.501804\pi\)
\(752\) 3.09785 7.18163i 0.112967 0.261887i
\(753\) 0 0
\(754\) −2.68362 + 1.76504i −0.0977316 + 0.0642791i
\(755\) 2.76990 + 4.79760i 0.100807 + 0.174603i
\(756\) 0 0
\(757\) −11.3233 + 19.6125i −0.411551 + 0.712827i −0.995060 0.0992801i \(-0.968346\pi\)
0.583509 + 0.812107i \(0.301679\pi\)
\(758\) −1.18462 20.3392i −0.0430275 0.738753i
\(759\) 0 0
\(760\) 16.5468 1.93404i 0.600215 0.0701551i
\(761\) 7.24273 7.67684i 0.262549 0.278285i −0.582667 0.812711i \(-0.697991\pi\)
0.845215 + 0.534426i \(0.179472\pi\)
\(762\) 0 0
\(763\) −28.2484 3.30177i −1.02266 0.119532i
\(764\) −3.39160 + 2.84589i −0.122704 + 0.102961i
\(765\) 0 0
\(766\) 1.93675 + 1.62513i 0.0699776 + 0.0587182i
\(767\) −4.25240 4.50728i −0.153545 0.162748i
\(768\) 0 0
\(769\) −36.5243 + 18.3432i −1.31710 + 0.661473i −0.961922 0.273326i \(-0.911876\pi\)
−0.355179 + 0.934798i \(0.615580\pi\)
\(770\) 13.5622 6.81119i 0.488747 0.245458i
\(771\) 0 0
\(772\) −13.0400 13.8216i −0.469319 0.497449i
\(773\) −24.8151 20.8223i −0.892537 0.748928i 0.0761803 0.997094i \(-0.475728\pi\)
−0.968717 + 0.248167i \(0.920172\pi\)
\(774\) 0 0
\(775\) 0.497634 0.417565i 0.0178756 0.0149994i
\(776\) −1.39864 0.163477i −0.0502081 0.00586848i
\(777\) 0 0
\(778\) 10.8838 11.5361i 0.390202 0.413590i
\(779\) −56.2780 + 6.57795i −2.01637 + 0.235680i
\(780\) 0 0
\(781\) 1.98111 + 34.0144i 0.0708898 + 1.21713i
\(782\) 9.57826 16.5900i 0.342518 0.593258i
\(783\) 0 0
\(784\) 2.39036 + 4.14022i 0.0853699 + 0.147865i
\(785\) 20.0967 13.2178i 0.717281 0.471763i
\(786\) 0 0
\(787\) 4.22566 9.79619i 0.150629 0.349196i −0.826149 0.563452i \(-0.809473\pi\)
0.976778 + 0.214255i \(0.0687324\pi\)
\(788\) 22.0602 + 5.22836i 0.785861 + 0.186252i
\(789\) 0 0
\(790\) −23.2171 + 31.1859i −0.826026 + 1.10955i
\(791\) −11.2791 4.10527i −0.401040 0.145967i
\(792\) 0 0
\(793\) 3.53416 1.28633i 0.125502 0.0456788i
\(794\) 8.57548 28.6441i 0.304333 1.01654i
\(795\) 0 0
\(796\) 0.219127 3.76227i 0.00776675 0.133350i
\(797\) −15.7578 10.3641i −0.558169 0.367114i 0.238860 0.971054i \(-0.423226\pi\)
−0.797030 + 0.603940i \(0.793597\pi\)
\(798\) 0 0
\(799\) 50.0611 11.8647i 1.77103 0.419743i
\(800\) −0.0629446 + 0.356976i −0.00222543 + 0.0126210i
\(801\) 0 0
\(802\) −1.62298 9.20438i −0.0573095 0.325018i
\(803\) 17.5543 + 40.6954i 0.619477 + 1.43611i
\(804\) 0 0
\(805\) 2.88138 + 9.62449i 0.101555 + 0.339219i
\(806\) 0.521891 + 0.701021i 0.0183828 + 0.0246924i
\(807\) 0 0
\(808\) −8.98134 4.51060i −0.315963 0.158682i
\(809\) −42.8188 −1.50543 −0.752715 0.658347i \(-0.771256\pi\)
−0.752715 + 0.658347i \(0.771256\pi\)
\(810\) 0 0
\(811\) 12.5236 0.439761 0.219881 0.975527i \(-0.429433\pi\)
0.219881 + 0.975527i \(0.429433\pi\)
\(812\) −8.76848 4.40370i −0.307713 0.154540i
\(813\) 0 0
\(814\) 12.0431 + 16.1767i 0.422111 + 0.566994i
\(815\) 4.38777 + 14.6562i 0.153697 + 0.513384i
\(816\) 0 0
\(817\) 1.26404 + 2.93039i 0.0442233 + 0.102521i
\(818\) 0.110308 + 0.625588i 0.00385683 + 0.0218732i
\(819\) 0 0
\(820\) 3.16709 17.9615i 0.110600 0.627242i
\(821\) −21.5050 + 5.09678i −0.750530 + 0.177879i −0.588041 0.808831i \(-0.700101\pi\)
−0.162490 + 0.986710i \(0.551952\pi\)
\(822\) 0 0
\(823\) −0.0154692 0.0101742i −0.000539222 0.000354652i 0.549239 0.835665i \(-0.314918\pi\)
−0.549779 + 0.835310i \(0.685288\pi\)
\(824\) −0.0975460 + 1.67480i −0.00339818 + 0.0583444i
\(825\) 0 0
\(826\) 5.42908 18.1344i 0.188902 0.630976i
\(827\) 5.05612 1.84028i 0.175819 0.0639927i −0.252611 0.967568i \(-0.581289\pi\)
0.428429 + 0.903575i \(0.359067\pi\)
\(828\) 0 0
\(829\) −21.3345 7.76512i −0.740978 0.269694i −0.0561737 0.998421i \(-0.517890\pi\)
−0.684804 + 0.728727i \(0.740112\pi\)
\(830\) −7.20071 + 9.67224i −0.249940 + 0.335728i
\(831\) 0 0
\(832\) −0.474520 0.112463i −0.0164510 0.00389896i
\(833\) −12.4556 + 28.8753i −0.431561 + 1.00047i
\(834\) 0 0
\(835\) −13.3792 + 8.79964i −0.463007 + 0.304524i
\(836\) −15.8244 27.4087i −0.547300 0.947951i
\(837\) 0 0
\(838\) 3.42733 5.93630i 0.118395 0.205066i
\(839\) −1.28480 22.0592i −0.0443564 0.761569i −0.945012 0.327036i \(-0.893950\pi\)
0.900656 0.434534i \(-0.143087\pi\)
\(840\) 0 0
\(841\) −14.2855 + 1.66974i −0.492605 + 0.0575772i
\(842\) −15.3755 + 16.2971i −0.529876 + 0.561636i
\(843\) 0 0
\(844\) 13.0984 + 1.53099i 0.450866 + 0.0526987i
\(845\) −22.6392 + 18.9966i −0.778814 + 0.653502i
\(846\) 0 0
\(847\) −9.53313 7.99924i −0.327562 0.274857i
\(848\) −1.35099 1.43197i −0.0463932 0.0491739i
\(849\) 0 0
\(850\) −2.13077 + 1.07011i −0.0730847 + 0.0367045i
\(851\) −11.9304 + 5.99167i −0.408968 + 0.205392i
\(852\) 0 0
\(853\) −5.27828 5.59465i −0.180725 0.191557i 0.630678 0.776045i \(-0.282777\pi\)
−0.811403 + 0.584488i \(0.801295\pi\)
\(854\) 8.80114 + 7.38503i 0.301169 + 0.252711i
\(855\) 0 0
\(856\) 9.44095 7.92190i 0.322685 0.270765i
\(857\) 17.3892 + 2.03251i 0.594004 + 0.0694291i 0.407783 0.913079i \(-0.366302\pi\)
0.186221 + 0.982508i \(0.440376\pi\)
\(858\) 0 0
\(859\) −5.20412 + 5.51605i −0.177562 + 0.188205i −0.810042 0.586372i \(-0.800556\pi\)
0.632480 + 0.774577i \(0.282037\pi\)
\(860\) −1.02033 + 0.119259i −0.0347928 + 0.00406670i
\(861\) 0 0
\(862\) 0.886941 + 15.2282i 0.0302093 + 0.518674i
\(863\) −13.9025 + 24.0798i −0.473245 + 0.819685i −0.999531 0.0306232i \(-0.990251\pi\)
0.526286 + 0.850308i \(0.323584\pi\)
\(864\) 0 0
\(865\) −14.6689 25.4073i −0.498758 0.863875i
\(866\) −14.7602 + 9.70792i −0.501571 + 0.329888i
\(867\) 0 0
\(868\) −1.05745 + 2.45143i −0.0358920 + 0.0832071i
\(869\) 71.8702 + 17.0335i 2.43803 + 0.577824i
\(870\) 0 0
\(871\) −1.11164 + 1.49319i −0.0376664 + 0.0505948i
\(872\) −17.9399 6.52959i −0.607522 0.221120i
\(873\) 0 0
\(874\) 19.6875 7.16567i 0.665940 0.242382i
\(875\) −4.58838 + 15.3263i −0.155116 + 0.518122i
\(876\) 0 0
\(877\) −2.12328 + 36.4552i −0.0716979 + 1.23101i 0.750138 + 0.661282i \(0.229987\pi\)
−0.821836 + 0.569725i \(0.807050\pi\)
\(878\) −19.9030 13.0904i −0.671693 0.441779i
\(879\) 0 0
\(880\) 9.91281 2.34938i 0.334161 0.0791976i
\(881\) −6.68482 + 37.9115i −0.225217 + 1.27727i 0.637052 + 0.770821i \(0.280154\pi\)
−0.862269 + 0.506450i \(0.830957\pi\)
\(882\) 0 0
\(883\) 1.47794 + 8.38181i 0.0497366 + 0.282070i 0.999525 0.0308231i \(-0.00981285\pi\)
−0.949788 + 0.312893i \(0.898702\pi\)
\(884\) −1.27055 2.94548i −0.0427334 0.0990671i
\(885\) 0 0
\(886\) 4.23449 + 14.1442i 0.142261 + 0.475184i
\(887\) −23.2390 31.2154i −0.780289 1.04811i −0.997407 0.0719647i \(-0.977073\pi\)
0.217118 0.976145i \(-0.430334\pi\)
\(888\) 0 0
\(889\) −25.0790 12.5951i −0.841123 0.422428i
\(890\) −7.17357 −0.240459
\(891\) 0 0
\(892\) −7.10621 −0.237933
\(893\) 50.2822 + 25.2527i 1.68263 + 0.845049i
\(894\) 0 0
\(895\) −1.40016 1.88074i −0.0468023 0.0628663i
\(896\) −0.427259 1.42714i −0.0142737 0.0476775i
\(897\) 0 0
\(898\) −4.27382 9.90783i −0.142619 0.330629i
\(899\) 2.04973 + 11.6246i 0.0683624 + 0.387703i
\(900\) 0 0
\(901\) 2.24871 12.7531i 0.0749155 0.424867i
\(902\) −33.7149 + 7.99058i −1.12258 + 0.266057i
\(903\) 0 0
\(904\) −6.73169 4.42750i −0.223893 0.147256i
\(905\) 2.10829 36.1979i 0.0700818 1.20326i
\(906\) 0 0
\(907\) 0.490184 1.63733i 0.0162763 0.0543666i −0.949466 0.313871i \(-0.898374\pi\)
0.965742 + 0.259504i \(0.0835592\pi\)
\(908\) −2.10557 + 0.766364i −0.0698757 + 0.0254327i
\(909\) 0 0
\(910\) 1.58087 + 0.575391i 0.0524055 + 0.0190740i
\(911\) 9.37413 12.5916i 0.310579 0.417180i −0.619238 0.785204i \(-0.712558\pi\)
0.929816 + 0.368024i \(0.119966\pi\)
\(912\) 0 0
\(913\) 22.2903 + 5.28291i 0.737703 + 0.174839i
\(914\) −11.9502 + 27.7037i −0.395278 + 0.916357i
\(915\) 0 0
\(916\) 12.9860 8.54101i 0.429069 0.282203i
\(917\) −9.99831 17.3176i −0.330173 0.571877i
\(918\) 0 0
\(919\) −11.2459 + 19.4785i −0.370969 + 0.642537i −0.989715 0.143054i \(-0.954308\pi\)
0.618746 + 0.785591i \(0.287641\pi\)
\(920\) 0.392122 + 6.73248i 0.0129279 + 0.221963i
\(921\) 0 0
\(922\) −20.1958 + 2.36055i −0.665112 + 0.0777405i
\(923\) −2.59189 + 2.74724i −0.0853130 + 0.0904265i
\(924\) 0 0
\(925\) 1.65048 + 0.192913i 0.0542674 + 0.00634294i
\(926\) −16.1719 + 13.5699i −0.531442 + 0.445933i
\(927\) 0 0
\(928\) −5.04560 4.23376i −0.165630 0.138980i
\(929\) −37.6794 39.9379i −1.23622 1.31032i −0.934084 0.357055i \(-0.883781\pi\)
−0.302138 0.953264i \(-0.597700\pi\)
\(930\) 0 0
\(931\) −30.7347 + 15.4356i −1.00729 + 0.505880i
\(932\) −7.05007 + 3.54068i −0.230933 + 0.115979i
\(933\) 0 0
\(934\) 11.8546 + 12.5652i 0.387896 + 0.411146i
\(935\) 51.3342 + 43.0745i 1.67881 + 1.40869i
\(936\) 0 0
\(937\) −7.52251 + 6.31214i −0.245750 + 0.206209i −0.757340 0.653021i \(-0.773501\pi\)
0.511590 + 0.859230i \(0.329057\pi\)
\(938\) −5.64823 0.660184i −0.184421 0.0215558i
\(939\) 0 0
\(940\) −12.4291 + 13.1740i −0.405391 + 0.429689i
\(941\) 22.4201 2.62054i 0.730875 0.0854271i 0.257488 0.966281i \(-0.417105\pi\)
0.473387 + 0.880854i \(0.343031\pi\)
\(942\) 0 0
\(943\) −1.33366 22.8981i −0.0434301 0.745665i
\(944\) 6.35339 11.0044i 0.206785 0.358162i
\(945\) 0 0
\(946\) 0.975784 + 1.69011i 0.0317255 + 0.0549501i
\(947\) 36.6967 24.1358i 1.19248 0.784308i 0.211305 0.977420i \(-0.432229\pi\)
0.981177 + 0.193112i \(0.0618582\pi\)
\(948\) 0 0
\(949\) −1.94591 + 4.51113i −0.0631670 + 0.146438i
\(950\) −2.53745 0.601388i −0.0823259 0.0195116i
\(951\) 0 0
\(952\) 5.85175 7.86026i 0.189656 0.254753i
\(953\) 26.3447 + 9.58870i 0.853389 + 0.310608i 0.731421 0.681926i \(-0.238857\pi\)
0.121968 + 0.992534i \(0.461079\pi\)
\(954\) 0 0
\(955\) 9.63427 3.50659i 0.311758 0.113471i
\(956\) 1.47864 4.93901i 0.0478227 0.159739i
\(957\) 0 0
\(958\) 1.24251 21.3331i 0.0401438 0.689242i
\(959\) 6.59802 + 4.33959i 0.213061 + 0.140133i
\(960\) 0 0
\(961\) −27.0392 + 6.40842i −0.872234 + 0.206723i
\(962\) −0.388204 + 2.20161i −0.0125162 + 0.0709829i
\(963\) 0 0
\(964\) −0.361018 2.04743i −0.0116276 0.0659434i
\(965\) 17.4287 + 40.4043i 0.561050 + 1.30066i
\(966\) 0 0
\(967\) 4.56167 + 15.2370i 0.146693 + 0.489990i 0.999479 0.0322708i \(-0.0102739\pi\)
−0.852786 + 0.522261i \(0.825089\pi\)
\(968\) −4.98844 6.70063i −0.160334 0.215366i
\(969\) 0 0
\(970\) 2.91402 + 1.46348i 0.0935637 + 0.0469894i
\(971\) −15.4071 −0.494438 −0.247219 0.968960i \(-0.579517\pi\)
−0.247219 + 0.968960i \(0.579517\pi\)
\(972\) 0 0
\(973\) 26.8873 0.861969
\(974\) 10.0079 + 5.02617i 0.320674 + 0.161049i
\(975\) 0 0
\(976\) 4.60541 + 6.18613i 0.147415 + 0.198013i
\(977\) 8.32046 + 27.7923i 0.266195 + 0.889154i 0.981682 + 0.190527i \(0.0610198\pi\)
−0.715487 + 0.698626i \(0.753795\pi\)
\(978\) 0 0
\(979\) 5.39779 + 12.5135i 0.172514 + 0.399933i
\(980\) −1.92241 10.9025i −0.0614091 0.348268i
\(981\) 0 0
\(982\) 1.56112 8.85355i 0.0498173 0.282528i
\(983\) 28.8192 6.83027i 0.919189 0.217852i 0.256324 0.966591i \(-0.417489\pi\)
0.662865 + 0.748739i \(0.269340\pi\)
\(984\) 0 0
\(985\) −43.8631 28.8492i −1.39759 0.919212i
\(986\) 2.51918 43.2526i 0.0802270 1.37744i
\(987\) 0 0
\(988\) 1.00620 3.36093i 0.0320114 0.106926i
\(989\) −1.21399 + 0.441857i −0.0386027 + 0.0140502i
\(990\) 0 0
\(991\) −34.5253 12.5662i −1.09673 0.399178i −0.270622 0.962686i \(-0.587229\pi\)
−0.826111 + 0.563508i \(0.809452\pi\)
\(992\) −1.07018 + 1.43751i −0.0339784 + 0.0456408i
\(993\) 0 0
\(994\) −11.2268 2.66081i −0.356093 0.0843956i
\(995\) −3.45661 + 8.01332i −0.109582 + 0.254039i
\(996\) 0 0
\(997\) 30.2226 19.8777i 0.957158 0.629533i 0.0281546 0.999604i \(-0.491037\pi\)
0.929004 + 0.370071i \(0.120667\pi\)
\(998\) 0.772519 + 1.33804i 0.0244537 + 0.0423550i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.g.b.253.2 90
3.2 odd 2 162.2.g.b.13.4 90
81.25 even 27 inner 486.2.g.b.73.2 90
81.56 odd 54 162.2.g.b.25.4 yes 90
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.g.b.13.4 90 3.2 odd 2
162.2.g.b.25.4 yes 90 81.56 odd 54
486.2.g.b.73.2 90 81.25 even 27 inner
486.2.g.b.253.2 90 1.1 even 1 trivial