Properties

Label 486.2.g.a.253.4
Level $486$
Weight $2$
Character 486.253
Analytic conductor $3.881$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(19,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([52]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 162)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 253.4
Character \(\chi\) \(=\) 486.253
Dual form 486.2.g.a.73.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.893633 + 0.448799i) q^{2} +(0.597159 + 0.802123i) q^{4} +(0.750365 + 2.50640i) q^{5} +(0.318489 + 0.738341i) q^{7} +(0.173648 + 0.984808i) q^{8} +(-0.454317 + 2.57656i) q^{10} +(-0.151352 + 0.0358710i) q^{11} +(-0.574171 - 0.377638i) q^{13} +(-0.0467545 + 0.802743i) q^{14} +(-0.286803 + 0.957990i) q^{16} +(-0.0626772 + 0.0228126i) q^{17} +(-0.221311 - 0.0805504i) q^{19} +(-1.56235 + 2.09860i) q^{20} +(-0.151352 - 0.0358710i) q^{22} +(-3.45177 + 8.00209i) q^{23} +(-1.54153 + 1.01388i) q^{25} +(-0.343614 - 0.595158i) q^{26} +(-0.402052 + 0.696374i) q^{28} +(-0.585239 - 10.0482i) q^{29} +(7.28783 - 0.851825i) q^{31} +(-0.686242 + 0.727374i) q^{32} +(-0.0662487 - 0.00774336i) q^{34} +(-1.61159 + 1.35229i) q^{35} +(6.12996 + 5.14365i) q^{37} +(-0.161619 - 0.171306i) q^{38} +(-2.33802 + 1.17420i) q^{40} +(4.49262 - 2.25628i) q^{41} +(2.28836 + 2.42552i) q^{43} +(-0.119154 - 0.0999819i) q^{44} +(-6.67595 + 5.60178i) q^{46} +(-12.4934 - 1.46027i) q^{47} +(4.35998 - 4.62131i) q^{49} +(-1.83259 + 0.214199i) q^{50} +(-0.0399588 - 0.686066i) q^{52} +(3.27068 - 5.66499i) q^{53} +(-0.203476 - 0.352430i) q^{55} +(-0.671819 + 0.441862i) q^{56} +(3.98662 - 9.24202i) q^{58} +(7.05313 + 1.67162i) q^{59} +(-3.70223 + 4.97296i) q^{61} +(6.89494 + 2.50955i) q^{62} +(-0.939693 + 0.342020i) q^{64} +(0.515673 - 1.72247i) q^{65} +(0.484143 - 8.31242i) q^{67} +(-0.0557268 - 0.0366521i) q^{68} +(-2.04708 + 0.485166i) q^{70} +(0.683417 - 3.87585i) q^{71} +(-1.74184 - 9.87849i) q^{73} +(3.16947 + 7.34766i) q^{74} +(-0.0675461 - 0.225620i) q^{76} +(-0.0746888 - 0.100325i) q^{77} +(-15.0576 - 7.56219i) q^{79} -2.61631 q^{80} +5.02737 q^{82} +(-1.94848 - 0.978564i) q^{83} +(-0.104208 - 0.139976i) q^{85} +(0.956381 + 3.19454i) q^{86} +(-0.0616079 - 0.142823i) q^{88} +(0.587729 + 3.33317i) q^{89} +(0.0959586 - 0.544208i) q^{91} +(-8.47992 + 2.00978i) q^{92} +(-10.5091 - 6.91197i) q^{94} +(0.0358275 - 0.615134i) q^{95} +(2.07475 - 6.93014i) q^{97} +(5.97026 - 2.17300i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 18 q^{13} + 9 q^{20} + 81 q^{23} + 18 q^{25} + 27 q^{26} + 18 q^{28} + 27 q^{29} - 54 q^{31} + 27 q^{35} - 9 q^{38} + 9 q^{41} + 36 q^{43} - 18 q^{46} + 27 q^{47} - 36 q^{52} + 27 q^{53} + 54 q^{55}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{4}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.893633 + 0.448799i 0.631894 + 0.317349i
\(3\) 0 0
\(4\) 0.597159 + 0.802123i 0.298579 + 0.401062i
\(5\) 0.750365 + 2.50640i 0.335574 + 1.12089i 0.944732 + 0.327845i \(0.106322\pi\)
−0.609158 + 0.793049i \(0.708492\pi\)
\(6\) 0 0
\(7\) 0.318489 + 0.738341i 0.120378 + 0.279067i 0.967741 0.251947i \(-0.0810707\pi\)
−0.847364 + 0.531013i \(0.821811\pi\)
\(8\) 0.173648 + 0.984808i 0.0613939 + 0.348182i
\(9\) 0 0
\(10\) −0.454317 + 2.57656i −0.143668 + 0.814780i
\(11\) −0.151352 + 0.0358710i −0.0456342 + 0.0108155i −0.253370 0.967370i \(-0.581539\pi\)
0.207735 + 0.978185i \(0.433391\pi\)
\(12\) 0 0
\(13\) −0.574171 0.377638i −0.159246 0.104738i 0.467385 0.884054i \(-0.345196\pi\)
−0.626631 + 0.779316i \(0.715567\pi\)
\(14\) −0.0467545 + 0.802743i −0.0124957 + 0.214542i
\(15\) 0 0
\(16\) −0.286803 + 0.957990i −0.0717008 + 0.239497i
\(17\) −0.0626772 + 0.0228126i −0.0152015 + 0.00553288i −0.349610 0.936895i \(-0.613686\pi\)
0.334408 + 0.942428i \(0.391464\pi\)
\(18\) 0 0
\(19\) −0.221311 0.0805504i −0.0507721 0.0184795i 0.316509 0.948589i \(-0.397489\pi\)
−0.367281 + 0.930110i \(0.619711\pi\)
\(20\) −1.56235 + 2.09860i −0.349352 + 0.469261i
\(21\) 0 0
\(22\) −0.151352 0.0358710i −0.0322683 0.00764772i
\(23\) −3.45177 + 8.00209i −0.719743 + 1.66855i 0.0236702 + 0.999720i \(0.492465\pi\)
−0.743413 + 0.668832i \(0.766794\pi\)
\(24\) 0 0
\(25\) −1.54153 + 1.01388i −0.308306 + 0.202776i
\(26\) −0.343614 0.595158i −0.0673883 0.116720i
\(27\) 0 0
\(28\) −0.402052 + 0.696374i −0.0759807 + 0.131602i
\(29\) −0.585239 10.0482i −0.108676 1.86590i −0.409622 0.912255i \(-0.634339\pi\)
0.300946 0.953641i \(-0.402698\pi\)
\(30\) 0 0
\(31\) 7.28783 0.851825i 1.30893 0.152992i 0.567140 0.823621i \(-0.308050\pi\)
0.741793 + 0.670629i \(0.233976\pi\)
\(32\) −0.686242 + 0.727374i −0.121312 + 0.128583i
\(33\) 0 0
\(34\) −0.0662487 0.00774336i −0.0113616 0.00132798i
\(35\) −1.61159 + 1.35229i −0.272409 + 0.228578i
\(36\) 0 0
\(37\) 6.12996 + 5.14365i 1.00776 + 0.845611i 0.988040 0.154195i \(-0.0492783\pi\)
0.0197193 + 0.999806i \(0.493723\pi\)
\(38\) −0.161619 0.171306i −0.0262181 0.0277896i
\(39\) 0 0
\(40\) −2.33802 + 1.17420i −0.369673 + 0.185657i
\(41\) 4.49262 2.25628i 0.701630 0.352372i −0.0619553 0.998079i \(-0.519734\pi\)
0.763585 + 0.645707i \(0.223437\pi\)
\(42\) 0 0
\(43\) 2.28836 + 2.42552i 0.348971 + 0.369888i 0.877954 0.478744i \(-0.158908\pi\)
−0.528983 + 0.848632i \(0.677426\pi\)
\(44\) −0.119154 0.0999819i −0.0179631 0.0150728i
\(45\) 0 0
\(46\) −6.67595 + 5.60178i −0.984314 + 0.825938i
\(47\) −12.4934 1.46027i −1.82235 0.213002i −0.864968 0.501827i \(-0.832662\pi\)
−0.957382 + 0.288824i \(0.906736\pi\)
\(48\) 0 0
\(49\) 4.35998 4.62131i 0.622854 0.660187i
\(50\) −1.83259 + 0.214199i −0.259167 + 0.0302923i
\(51\) 0 0
\(52\) −0.0399588 0.686066i −0.00554129 0.0951403i
\(53\) 3.27068 5.66499i 0.449263 0.778146i −0.549075 0.835773i \(-0.685020\pi\)
0.998338 + 0.0576268i \(0.0183533\pi\)
\(54\) 0 0
\(55\) −0.203476 0.352430i −0.0274367 0.0475217i
\(56\) −0.671819 + 0.441862i −0.0897756 + 0.0590463i
\(57\) 0 0
\(58\) 3.98662 9.24202i 0.523469 1.21354i
\(59\) 7.05313 + 1.67162i 0.918239 + 0.217627i 0.662450 0.749106i \(-0.269517\pi\)
0.255789 + 0.966733i \(0.417665\pi\)
\(60\) 0 0
\(61\) −3.70223 + 4.97296i −0.474023 + 0.636723i −0.973250 0.229748i \(-0.926210\pi\)
0.499228 + 0.866471i \(0.333617\pi\)
\(62\) 6.89494 + 2.50955i 0.875658 + 0.318714i
\(63\) 0 0
\(64\) −0.939693 + 0.342020i −0.117462 + 0.0427525i
\(65\) 0.515673 1.72247i 0.0639613 0.213646i
\(66\) 0 0
\(67\) 0.484143 8.31242i 0.0591475 1.01552i −0.829959 0.557824i \(-0.811636\pi\)
0.889107 0.457700i \(-0.151326\pi\)
\(68\) −0.0557268 0.0366521i −0.00675787 0.00444472i
\(69\) 0 0
\(70\) −2.04708 + 0.485166i −0.244672 + 0.0579884i
\(71\) 0.683417 3.87585i 0.0811066 0.459979i −0.917022 0.398836i \(-0.869414\pi\)
0.998129 0.0611428i \(-0.0194745\pi\)
\(72\) 0 0
\(73\) −1.74184 9.87849i −0.203867 1.15619i −0.899212 0.437513i \(-0.855859\pi\)
0.695344 0.718677i \(-0.255252\pi\)
\(74\) 3.16947 + 7.34766i 0.368443 + 0.854148i
\(75\) 0 0
\(76\) −0.0675461 0.225620i −0.00774807 0.0258804i
\(77\) −0.0746888 0.100325i −0.00851158 0.0114330i
\(78\) 0 0
\(79\) −15.0576 7.56219i −1.69411 0.850812i −0.990058 0.140661i \(-0.955077\pi\)
−0.704049 0.710151i \(-0.748627\pi\)
\(80\) −2.61631 −0.292512
\(81\) 0 0
\(82\) 5.02737 0.555180
\(83\) −1.94848 0.978564i −0.213874 0.107411i 0.338637 0.940917i \(-0.390034\pi\)
−0.552511 + 0.833506i \(0.686330\pi\)
\(84\) 0 0
\(85\) −0.104208 0.139976i −0.0113030 0.0151825i
\(86\) 0.956381 + 3.19454i 0.103129 + 0.344476i
\(87\) 0 0
\(88\) −0.0616079 0.142823i −0.00656743 0.0152250i
\(89\) 0.587729 + 3.33317i 0.0622991 + 0.353316i 0.999983 + 0.00582641i \(0.00185461\pi\)
−0.937684 + 0.347489i \(0.887034\pi\)
\(90\) 0 0
\(91\) 0.0959586 0.544208i 0.0100592 0.0570485i
\(92\) −8.47992 + 2.00978i −0.884093 + 0.209534i
\(93\) 0 0
\(94\) −10.5091 6.91197i −1.08394 0.712916i
\(95\) 0.0358275 0.615134i 0.00367582 0.0631114i
\(96\) 0 0
\(97\) 2.07475 6.93014i 0.210659 0.703649i −0.785717 0.618586i \(-0.787706\pi\)
0.996376 0.0850629i \(-0.0271091\pi\)
\(98\) 5.97026 2.17300i 0.603087 0.219506i
\(99\) 0 0
\(100\) −1.73379 0.631050i −0.173379 0.0631050i
\(101\) 4.13021 5.54784i 0.410971 0.552030i −0.547653 0.836706i \(-0.684478\pi\)
0.958624 + 0.284676i \(0.0918858\pi\)
\(102\) 0 0
\(103\) 12.1774 + 2.88610i 1.19988 + 0.284376i 0.781504 0.623900i \(-0.214453\pi\)
0.418372 + 0.908276i \(0.362601\pi\)
\(104\) 0.272197 0.631025i 0.0266912 0.0618771i
\(105\) 0 0
\(106\) 5.46523 3.59454i 0.530830 0.349133i
\(107\) −4.44410 7.69740i −0.429627 0.744136i 0.567213 0.823571i \(-0.308022\pi\)
−0.996840 + 0.0794354i \(0.974688\pi\)
\(108\) 0 0
\(109\) −5.81125 + 10.0654i −0.556617 + 0.964089i 0.441158 + 0.897429i \(0.354568\pi\)
−0.997776 + 0.0666601i \(0.978766\pi\)
\(110\) −0.0236621 0.406263i −0.00225610 0.0387357i
\(111\) 0 0
\(112\) −0.798667 + 0.0933508i −0.0754669 + 0.00882082i
\(113\) 8.52356 9.03445i 0.801829 0.849889i −0.189420 0.981896i \(-0.560661\pi\)
0.991249 + 0.132007i \(0.0421422\pi\)
\(114\) 0 0
\(115\) −22.6465 2.64700i −2.11180 0.246834i
\(116\) 7.71038 6.46978i 0.715891 0.600704i
\(117\) 0 0
\(118\) 5.55268 + 4.65925i 0.511166 + 0.428919i
\(119\) −0.0368055 0.0390116i −0.00337396 0.00357619i
\(120\) 0 0
\(121\) −9.80834 + 4.92593i −0.891667 + 0.447812i
\(122\) −5.54030 + 2.78244i −0.501595 + 0.251911i
\(123\) 0 0
\(124\) 5.03526 + 5.33706i 0.452180 + 0.479282i
\(125\) 6.32314 + 5.30575i 0.565559 + 0.474561i
\(126\) 0 0
\(127\) −5.95411 + 4.99609i −0.528342 + 0.443331i −0.867528 0.497388i \(-0.834293\pi\)
0.339187 + 0.940719i \(0.389848\pi\)
\(128\) −0.993238 0.116093i −0.0877907 0.0102613i
\(129\) 0 0
\(130\) 1.23386 1.30782i 0.108217 0.114703i
\(131\) −9.32278 + 1.08968i −0.814535 + 0.0952055i −0.513152 0.858298i \(-0.671522\pi\)
−0.301383 + 0.953503i \(0.597448\pi\)
\(132\) 0 0
\(133\) −0.0110113 0.189057i −0.000954803 0.0163933i
\(134\) 4.16325 7.21096i 0.359650 0.622932i
\(135\) 0 0
\(136\) −0.0333499 0.0577636i −0.00285973 0.00495319i
\(137\) 12.8062 8.42278i 1.09411 0.719606i 0.131721 0.991287i \(-0.457950\pi\)
0.962388 + 0.271680i \(0.0875793\pi\)
\(138\) 0 0
\(139\) −1.56019 + 3.61692i −0.132333 + 0.306783i −0.971480 0.237122i \(-0.923796\pi\)
0.839146 + 0.543906i \(0.183055\pi\)
\(140\) −2.04708 0.485166i −0.173009 0.0410040i
\(141\) 0 0
\(142\) 2.35020 3.15687i 0.197224 0.264918i
\(143\) 0.100448 + 0.0365601i 0.00839988 + 0.00305731i
\(144\) 0 0
\(145\) 24.7455 9.00663i 2.05500 0.747960i
\(146\) 2.87689 9.60948i 0.238093 0.795286i
\(147\) 0 0
\(148\) −0.465281 + 7.98856i −0.0382458 + 0.656656i
\(149\) 1.25658 + 0.826467i 0.102943 + 0.0677068i 0.599937 0.800047i \(-0.295192\pi\)
−0.496994 + 0.867754i \(0.665563\pi\)
\(150\) 0 0
\(151\) 12.7162 3.01380i 1.03483 0.245259i 0.322106 0.946704i \(-0.395609\pi\)
0.712724 + 0.701444i \(0.247461\pi\)
\(152\) 0.0408965 0.231936i 0.00331715 0.0188125i
\(153\) 0 0
\(154\) −0.0217188 0.123174i −0.00175015 0.00992561i
\(155\) 7.60355 + 17.6270i 0.610732 + 1.41583i
\(156\) 0 0
\(157\) 5.80940 + 19.4048i 0.463641 + 1.54867i 0.795869 + 0.605469i \(0.207014\pi\)
−0.332228 + 0.943199i \(0.607800\pi\)
\(158\) −10.0620 13.5156i −0.800491 1.07525i
\(159\) 0 0
\(160\) −2.33802 1.17420i −0.184837 0.0928284i
\(161\) −7.00763 −0.552278
\(162\) 0 0
\(163\) −1.85361 −0.145186 −0.0725930 0.997362i \(-0.523127\pi\)
−0.0725930 + 0.997362i \(0.523127\pi\)
\(164\) 4.49262 + 2.25628i 0.350815 + 0.176186i
\(165\) 0 0
\(166\) −1.30205 1.74895i −0.101058 0.135745i
\(167\) 3.60077 + 12.0274i 0.278636 + 0.930709i 0.976688 + 0.214662i \(0.0688650\pi\)
−0.698053 + 0.716047i \(0.745950\pi\)
\(168\) 0 0
\(169\) −4.96198 11.5032i −0.381690 0.884858i
\(170\) −0.0303028 0.171856i −0.00232412 0.0131807i
\(171\) 0 0
\(172\) −0.579051 + 3.28396i −0.0441523 + 0.250400i
\(173\) −10.6230 + 2.51769i −0.807650 + 0.191416i −0.613643 0.789584i \(-0.710297\pi\)
−0.194007 + 0.981000i \(0.562148\pi\)
\(174\) 0 0
\(175\) −1.23955 0.815265i −0.0937012 0.0616282i
\(176\) 0.00904409 0.155281i 0.000681724 0.0117048i
\(177\) 0 0
\(178\) −0.970712 + 3.24241i −0.0727580 + 0.243029i
\(179\) 8.73770 3.18026i 0.653087 0.237704i 0.00583785 0.999983i \(-0.498142\pi\)
0.647249 + 0.762279i \(0.275920\pi\)
\(180\) 0 0
\(181\) 14.1384 + 5.14597i 1.05090 + 0.382497i 0.809003 0.587804i \(-0.200007\pi\)
0.241899 + 0.970301i \(0.422230\pi\)
\(182\) 0.329992 0.443256i 0.0244606 0.0328563i
\(183\) 0 0
\(184\) −8.47992 2.00978i −0.625148 0.148163i
\(185\) −8.29231 + 19.2237i −0.609663 + 1.41336i
\(186\) 0 0
\(187\) 0.00866798 0.00570102i 0.000633866 0.000416900i
\(188\) −6.28923 10.8933i −0.458689 0.794473i
\(189\) 0 0
\(190\) 0.308088 0.533624i 0.0223511 0.0387132i
\(191\) −0.434148 7.45404i −0.0314139 0.539355i −0.976901 0.213694i \(-0.931450\pi\)
0.945487 0.325661i \(-0.105587\pi\)
\(192\) 0 0
\(193\) −12.3408 + 1.44244i −0.888313 + 0.103829i −0.547995 0.836481i \(-0.684609\pi\)
−0.340318 + 0.940310i \(0.610535\pi\)
\(194\) 4.96430 5.26186i 0.356416 0.377779i
\(195\) 0 0
\(196\) 6.31046 + 0.737587i 0.450747 + 0.0526848i
\(197\) −15.5743 + 13.0684i −1.10962 + 0.931083i −0.998034 0.0626719i \(-0.980038\pi\)
−0.111587 + 0.993755i \(0.535593\pi\)
\(198\) 0 0
\(199\) −17.7742 14.9143i −1.25998 1.05725i −0.995684 0.0928038i \(-0.970417\pi\)
−0.264293 0.964443i \(-0.585139\pi\)
\(200\) −1.26616 1.34205i −0.0895311 0.0948974i
\(201\) 0 0
\(202\) 6.18076 3.10409i 0.434876 0.218403i
\(203\) 7.23258 3.63234i 0.507627 0.254940i
\(204\) 0 0
\(205\) 9.02624 + 9.56725i 0.630420 + 0.668206i
\(206\) 9.58685 + 8.04433i 0.667948 + 0.560475i
\(207\) 0 0
\(208\) 0.526448 0.441742i 0.0365026 0.0306293i
\(209\) 0.0363851 + 0.00425281i 0.00251681 + 0.000294173i
\(210\) 0 0
\(211\) −12.8338 + 13.6031i −0.883519 + 0.936475i −0.998380 0.0569065i \(-0.981876\pi\)
0.114861 + 0.993382i \(0.463358\pi\)
\(212\) 6.49714 0.759406i 0.446225 0.0521562i
\(213\) 0 0
\(214\) −0.516802 8.87315i −0.0353279 0.606556i
\(215\) −4.36220 + 7.55556i −0.297500 + 0.515285i
\(216\) 0 0
\(217\) 2.95003 + 5.10961i 0.200261 + 0.346863i
\(218\) −9.71046 + 6.38667i −0.657676 + 0.432560i
\(219\) 0 0
\(220\) 0.161185 0.373670i 0.0108671 0.0251928i
\(221\) 0.0446024 + 0.0105710i 0.00300028 + 0.000711080i
\(222\) 0 0
\(223\) −5.57356 + 7.48658i −0.373233 + 0.501339i −0.948566 0.316581i \(-0.897465\pi\)
0.575333 + 0.817919i \(0.304873\pi\)
\(224\) −0.755610 0.275020i −0.0504863 0.0183755i
\(225\) 0 0
\(226\) 11.6716 4.24811i 0.776382 0.282580i
\(227\) −6.03211 + 20.1487i −0.400365 + 1.33731i 0.485851 + 0.874042i \(0.338510\pi\)
−0.886216 + 0.463272i \(0.846675\pi\)
\(228\) 0 0
\(229\) 0.524687 9.00853i 0.0346723 0.595301i −0.935566 0.353151i \(-0.885110\pi\)
0.970239 0.242150i \(-0.0778526\pi\)
\(230\) −19.0497 12.5292i −1.25610 0.826149i
\(231\) 0 0
\(232\) 9.79388 2.32119i 0.643000 0.152394i
\(233\) −1.51248 + 8.57770i −0.0990858 + 0.561944i 0.894333 + 0.447403i \(0.147651\pi\)
−0.993419 + 0.114541i \(0.963460\pi\)
\(234\) 0 0
\(235\) −5.71461 32.4091i −0.372780 2.11414i
\(236\) 2.87099 + 6.65570i 0.186885 + 0.433249i
\(237\) 0 0
\(238\) −0.0153823 0.0513803i −0.000997084 0.00333049i
\(239\) −14.8965 20.0094i −0.963572 1.29430i −0.955703 0.294332i \(-0.904903\pi\)
−0.00786849 0.999969i \(-0.502505\pi\)
\(240\) 0 0
\(241\) 17.6807 + 8.87956i 1.13891 + 0.571983i 0.915331 0.402703i \(-0.131929\pi\)
0.223581 + 0.974685i \(0.428225\pi\)
\(242\) −10.9758 −0.705552
\(243\) 0 0
\(244\) −6.19975 −0.396898
\(245\) 14.8544 + 7.46016i 0.949013 + 0.476612i
\(246\) 0 0
\(247\) 0.0966512 + 0.129825i 0.00614977 + 0.00826057i
\(248\) 2.10440 + 7.02919i 0.133630 + 0.446354i
\(249\) 0 0
\(250\) 3.26935 + 7.57921i 0.206772 + 0.479351i
\(251\) 2.82742 + 16.0351i 0.178465 + 1.01213i 0.934068 + 0.357096i \(0.116233\pi\)
−0.755602 + 0.655031i \(0.772656\pi\)
\(252\) 0 0
\(253\) 0.235387 1.33495i 0.0147987 0.0839274i
\(254\) −7.56303 + 1.79247i −0.474546 + 0.112470i
\(255\) 0 0
\(256\) −0.835488 0.549509i −0.0522180 0.0343443i
\(257\) 0.122334 2.10039i 0.00763099 0.131019i −0.992341 0.123529i \(-0.960579\pi\)
0.999972 0.00748998i \(-0.00238416\pi\)
\(258\) 0 0
\(259\) −1.84544 + 6.16420i −0.114670 + 0.383025i
\(260\) 1.68957 0.614953i 0.104783 0.0381378i
\(261\) 0 0
\(262\) −8.82019 3.21029i −0.544913 0.198332i
\(263\) −3.53716 + 4.75123i −0.218111 + 0.292973i −0.897689 0.440629i \(-0.854755\pi\)
0.679579 + 0.733603i \(0.262163\pi\)
\(264\) 0 0
\(265\) 16.6529 + 3.94681i 1.02298 + 0.242451i
\(266\) 0.0750086 0.173889i 0.00459907 0.0106618i
\(267\) 0 0
\(268\) 6.95669 4.57549i 0.424948 0.279492i
\(269\) −1.86000 3.22161i −0.113406 0.196425i 0.803735 0.594987i \(-0.202843\pi\)
−0.917141 + 0.398562i \(0.869509\pi\)
\(270\) 0 0
\(271\) −9.85402 + 17.0677i −0.598589 + 1.03679i 0.394441 + 0.918921i \(0.370938\pi\)
−0.993030 + 0.117865i \(0.962395\pi\)
\(272\) −0.00387824 0.0665869i −0.000235153 0.00403742i
\(273\) 0 0
\(274\) 15.2242 1.77945i 0.919727 0.107501i
\(275\) 0.196944 0.208748i 0.0118762 0.0125880i
\(276\) 0 0
\(277\) −3.12717 0.365514i −0.187893 0.0219616i 0.0216257 0.999766i \(-0.493116\pi\)
−0.209519 + 0.977805i \(0.567190\pi\)
\(278\) −3.01751 + 2.53199i −0.180978 + 0.151859i
\(279\) 0 0
\(280\) −1.61159 1.35229i −0.0963110 0.0808145i
\(281\) −14.6740 15.5535i −0.875377 0.927845i 0.122533 0.992464i \(-0.460898\pi\)
−0.997910 + 0.0646194i \(0.979417\pi\)
\(282\) 0 0
\(283\) −9.73365 + 4.88842i −0.578606 + 0.290587i −0.713933 0.700214i \(-0.753088\pi\)
0.135327 + 0.990801i \(0.456791\pi\)
\(284\) 3.51702 1.76631i 0.208696 0.104811i
\(285\) 0 0
\(286\) 0.0733555 + 0.0777522i 0.00433760 + 0.00459759i
\(287\) 3.09676 + 2.59849i 0.182796 + 0.153384i
\(288\) 0 0
\(289\) −13.0193 + 10.9245i −0.765844 + 0.642619i
\(290\) 26.1556 + 3.05715i 1.53591 + 0.179522i
\(291\) 0 0
\(292\) 6.88361 7.29620i 0.402833 0.426978i
\(293\) 20.1441 2.35451i 1.17683 0.137552i 0.494888 0.868957i \(-0.335209\pi\)
0.681943 + 0.731405i \(0.261135\pi\)
\(294\) 0 0
\(295\) 1.10268 + 18.9322i 0.0642004 + 1.10228i
\(296\) −4.00105 + 6.93002i −0.232556 + 0.402799i
\(297\) 0 0
\(298\) 0.752005 + 1.30251i 0.0435625 + 0.0754524i
\(299\) 5.00380 3.29105i 0.289377 0.190327i
\(300\) 0 0
\(301\) −1.06204 + 2.46209i −0.0612151 + 0.141913i
\(302\) 12.7162 + 3.01380i 0.731735 + 0.173424i
\(303\) 0 0
\(304\) 0.140639 0.188911i 0.00806620 0.0108348i
\(305\) −15.2422 5.54772i −0.872768 0.317662i
\(306\) 0 0
\(307\) 4.98325 1.81375i 0.284409 0.103516i −0.195877 0.980629i \(-0.562755\pi\)
0.480286 + 0.877112i \(0.340533\pi\)
\(308\) 0.0358715 0.119819i 0.00204397 0.00682734i
\(309\) 0 0
\(310\) −1.11621 + 19.1645i −0.0633963 + 1.08847i
\(311\) −3.54349 2.33059i −0.200933 0.132156i 0.445055 0.895503i \(-0.353184\pi\)
−0.645988 + 0.763347i \(0.723554\pi\)
\(312\) 0 0
\(313\) 4.47705 1.06108i 0.253058 0.0599758i −0.102129 0.994771i \(-0.532565\pi\)
0.355187 + 0.934795i \(0.384417\pi\)
\(314\) −3.51737 + 19.9480i −0.198496 + 1.12573i
\(315\) 0 0
\(316\) −2.92594 16.5938i −0.164597 0.933476i
\(317\) 2.50285 + 5.80226i 0.140574 + 0.325887i 0.973930 0.226850i \(-0.0728427\pi\)
−0.833356 + 0.552737i \(0.813583\pi\)
\(318\) 0 0
\(319\) 0.449014 + 1.49981i 0.0251400 + 0.0839733i
\(320\) −1.56235 2.09860i −0.0873381 0.117315i
\(321\) 0 0
\(322\) −6.26224 3.14502i −0.348981 0.175265i
\(323\) 0.0157087 0.000874055
\(324\) 0 0
\(325\) 1.26798 0.0703350
\(326\) −1.65645 0.831899i −0.0917421 0.0460746i
\(327\) 0 0
\(328\) 3.00214 + 4.03257i 0.165765 + 0.222661i
\(329\) −2.90084 9.68947i −0.159928 0.534198i
\(330\) 0 0
\(331\) 6.35611 + 14.7351i 0.349363 + 0.809915i 0.998775 + 0.0494782i \(0.0157558\pi\)
−0.649412 + 0.760437i \(0.724985\pi\)
\(332\) −0.378623 2.14728i −0.0207797 0.117847i
\(333\) 0 0
\(334\) −2.18013 + 12.3641i −0.119291 + 0.676534i
\(335\) 21.1975 5.02390i 1.15814 0.274485i
\(336\) 0 0
\(337\) 2.25984 + 1.48632i 0.123101 + 0.0809650i 0.609566 0.792735i \(-0.291344\pi\)
−0.486465 + 0.873700i \(0.661714\pi\)
\(338\) 0.728422 12.5065i 0.0396209 0.680265i
\(339\) 0 0
\(340\) 0.0500492 0.167176i 0.00271430 0.00906638i
\(341\) −1.07247 + 0.390347i −0.0580774 + 0.0211385i
\(342\) 0 0
\(343\) 10.0900 + 3.67245i 0.544808 + 0.198294i
\(344\) −1.99130 + 2.67478i −0.107364 + 0.144214i
\(345\) 0 0
\(346\) −10.6230 2.51769i −0.571095 0.135352i
\(347\) −3.72033 + 8.62470i −0.199718 + 0.462998i −0.988413 0.151786i \(-0.951498\pi\)
0.788696 + 0.614784i \(0.210757\pi\)
\(348\) 0 0
\(349\) 17.9125 11.7812i 0.958834 0.630635i 0.0293780 0.999568i \(-0.490647\pi\)
0.929456 + 0.368933i \(0.120277\pi\)
\(350\) −0.741812 1.28486i −0.0396515 0.0686785i
\(351\) 0 0
\(352\) 0.0777721 0.134705i 0.00414527 0.00717981i
\(353\) −0.436688 7.49765i −0.0232426 0.399060i −0.989786 0.142558i \(-0.954467\pi\)
0.966544 0.256501i \(-0.0825698\pi\)
\(354\) 0 0
\(355\) 10.2272 1.19539i 0.542804 0.0634447i
\(356\) −2.32265 + 2.46186i −0.123100 + 0.130479i
\(357\) 0 0
\(358\) 9.23560 + 1.07949i 0.488116 + 0.0570526i
\(359\) −15.7373 + 13.2052i −0.830584 + 0.696943i −0.955425 0.295234i \(-0.904602\pi\)
0.124841 + 0.992177i \(0.460158\pi\)
\(360\) 0 0
\(361\) −14.5124 12.1773i −0.763808 0.640911i
\(362\) 10.3251 + 10.9439i 0.542673 + 0.575200i
\(363\) 0 0
\(364\) 0.493824 0.248008i 0.0258834 0.0129991i
\(365\) 23.4524 11.7782i 1.22755 0.616501i
\(366\) 0 0
\(367\) 10.6543 + 11.2929i 0.556149 + 0.589483i 0.943055 0.332636i \(-0.107938\pi\)
−0.386907 + 0.922119i \(0.626456\pi\)
\(368\) −6.67595 5.60178i −0.348008 0.292013i
\(369\) 0 0
\(370\) −16.0379 + 13.4574i −0.833769 + 0.699615i
\(371\) 5.22437 + 0.610641i 0.271236 + 0.0317029i
\(372\) 0 0
\(373\) −12.2810 + 13.0171i −0.635887 + 0.674001i −0.962539 0.271144i \(-0.912598\pi\)
0.326652 + 0.945145i \(0.394080\pi\)
\(374\) 0.0103046 0.00120444i 0.000532839 6.22799e-5i
\(375\) 0 0
\(376\) −0.731372 12.5572i −0.0377176 0.647587i
\(377\) −3.45854 + 5.99038i −0.178124 + 0.308520i
\(378\) 0 0
\(379\) −2.29993 3.98360i −0.118140 0.204624i 0.800891 0.598810i \(-0.204360\pi\)
−0.919030 + 0.394187i \(0.871026\pi\)
\(380\) 0.514808 0.338594i 0.0264091 0.0173695i
\(381\) 0 0
\(382\) 2.95740 6.85601i 0.151314 0.350784i
\(383\) −25.0504 5.93707i −1.28002 0.303370i −0.466298 0.884627i \(-0.654413\pi\)
−0.813720 + 0.581258i \(0.802561\pi\)
\(384\) 0 0
\(385\) 0.195409 0.262480i 0.00995896 0.0133772i
\(386\) −11.6755 4.24955i −0.594270 0.216296i
\(387\) 0 0
\(388\) 6.79778 2.47419i 0.345105 0.125608i
\(389\) −2.20453 + 7.36366i −0.111774 + 0.373352i −0.995513 0.0946293i \(-0.969833\pi\)
0.883738 + 0.467981i \(0.155019\pi\)
\(390\) 0 0
\(391\) 0.0337982 0.580293i 0.00170925 0.0293467i
\(392\) 5.30820 + 3.49126i 0.268105 + 0.176335i
\(393\) 0 0
\(394\) −19.7828 + 4.68860i −0.996641 + 0.236208i
\(395\) 7.65516 43.4146i 0.385173 2.18442i
\(396\) 0 0
\(397\) −2.12664 12.0608i −0.106733 0.605312i −0.990514 0.137412i \(-0.956122\pi\)
0.883781 0.467900i \(-0.154989\pi\)
\(398\) −9.19005 21.3049i −0.460656 1.06792i
\(399\) 0 0
\(400\) −0.529171 1.76755i −0.0264585 0.0883777i
\(401\) 14.2180 + 19.0981i 0.710014 + 0.953714i 0.999994 0.00331841i \(-0.00105629\pi\)
−0.289981 + 0.957033i \(0.593649\pi\)
\(402\) 0 0
\(403\) −4.50615 2.26307i −0.224467 0.112732i
\(404\) 6.91644 0.344106
\(405\) 0 0
\(406\) 8.09346 0.401672
\(407\) −1.11229 0.558612i −0.0551340 0.0276893i
\(408\) 0 0
\(409\) −18.3025 24.5846i −0.905002 1.21563i −0.975916 0.218146i \(-0.929999\pi\)
0.0709147 0.997482i \(-0.477408\pi\)
\(410\) 3.77237 + 12.6006i 0.186304 + 0.622298i
\(411\) 0 0
\(412\) 4.95684 + 11.4912i 0.244206 + 0.566133i
\(413\) 1.01212 + 5.74001i 0.0498031 + 0.282447i
\(414\) 0 0
\(415\) 0.990595 5.61794i 0.0486264 0.275774i
\(416\) 0.668705 0.158486i 0.0327859 0.00777041i
\(417\) 0 0
\(418\) 0.0306063 + 0.0201301i 0.00149700 + 0.000984593i
\(419\) 1.12397 19.2978i 0.0549094 0.942759i −0.852557 0.522634i \(-0.824949\pi\)
0.907466 0.420125i \(-0.138014\pi\)
\(420\) 0 0
\(421\) 3.40157 11.3620i 0.165782 0.553752i −0.834215 0.551440i \(-0.814079\pi\)
0.999997 0.00231247i \(-0.000736082\pi\)
\(422\) −17.5738 + 6.39634i −0.855479 + 0.311369i
\(423\) 0 0
\(424\) 6.14687 + 2.23728i 0.298519 + 0.108652i
\(425\) 0.0734895 0.0987136i 0.00356477 0.00478831i
\(426\) 0 0
\(427\) −4.85087 1.14968i −0.234750 0.0556367i
\(428\) 3.52043 8.16128i 0.170167 0.394490i
\(429\) 0 0
\(430\) −7.28913 + 4.79414i −0.351513 + 0.231194i
\(431\) 9.72386 + 16.8422i 0.468382 + 0.811261i 0.999347 0.0361326i \(-0.0115039\pi\)
−0.530965 + 0.847394i \(0.678171\pi\)
\(432\) 0 0
\(433\) −2.82936 + 4.90059i −0.135970 + 0.235507i −0.925968 0.377603i \(-0.876748\pi\)
0.789997 + 0.613110i \(0.210082\pi\)
\(434\) 0.343058 + 5.89008i 0.0164673 + 0.282733i
\(435\) 0 0
\(436\) −11.5439 + 1.34929i −0.552854 + 0.0646193i
\(437\) 1.40848 1.49291i 0.0673770 0.0714154i
\(438\) 0 0
\(439\) 12.2169 + 1.42795i 0.583079 + 0.0681521i 0.402519 0.915412i \(-0.368135\pi\)
0.180560 + 0.983564i \(0.442209\pi\)
\(440\) 0.311743 0.261583i 0.0148618 0.0124705i
\(441\) 0 0
\(442\) 0.0351139 + 0.0294641i 0.00167020 + 0.00140146i
\(443\) 7.25165 + 7.68630i 0.344536 + 0.365187i 0.876351 0.481674i \(-0.159971\pi\)
−0.531814 + 0.846861i \(0.678490\pi\)
\(444\) 0 0
\(445\) −7.91324 + 3.97418i −0.375124 + 0.188394i
\(446\) −8.34068 + 4.18885i −0.394943 + 0.198348i
\(447\) 0 0
\(448\) −0.551810 0.584884i −0.0260705 0.0276332i
\(449\) −30.8275 25.8673i −1.45484 1.22075i −0.928952 0.370201i \(-0.879289\pi\)
−0.525887 0.850554i \(-0.676267\pi\)
\(450\) 0 0
\(451\) −0.599030 + 0.502646i −0.0282072 + 0.0236687i
\(452\) 12.3367 + 1.44195i 0.580267 + 0.0678235i
\(453\) 0 0
\(454\) −14.4332 + 15.2983i −0.677384 + 0.717985i
\(455\) 1.43600 0.167845i 0.0673209 0.00786869i
\(456\) 0 0
\(457\) −2.17275 37.3047i −0.101637 1.74504i −0.535924 0.844266i \(-0.680037\pi\)
0.434287 0.900774i \(-0.357000\pi\)
\(458\) 4.51190 7.81484i 0.210827 0.365164i
\(459\) 0 0
\(460\) −11.4003 19.7460i −0.531543 0.920660i
\(461\) 31.2142 20.5299i 1.45379 0.956173i 0.455983 0.889988i \(-0.349288\pi\)
0.997807 0.0661850i \(-0.0210828\pi\)
\(462\) 0 0
\(463\) 9.18807 21.3003i 0.427006 0.989911i −0.559892 0.828566i \(-0.689157\pi\)
0.986898 0.161345i \(-0.0515833\pi\)
\(464\) 9.79388 + 2.32119i 0.454670 + 0.107759i
\(465\) 0 0
\(466\) −5.20127 + 6.98651i −0.240944 + 0.323644i
\(467\) −0.406622 0.147998i −0.0188162 0.00684855i 0.332595 0.943070i \(-0.392076\pi\)
−0.351411 + 0.936221i \(0.614298\pi\)
\(468\) 0 0
\(469\) 6.29159 2.28995i 0.290519 0.105740i
\(470\) 9.43844 31.5266i 0.435363 1.45421i
\(471\) 0 0
\(472\) −0.421463 + 7.23625i −0.0193994 + 0.333075i
\(473\) −0.433352 0.285020i −0.0199256 0.0131052i
\(474\) 0 0
\(475\) 0.422825 0.100211i 0.0194006 0.00459802i
\(476\) 0.00931336 0.0528187i 0.000426877 0.00242094i
\(477\) 0 0
\(478\) −4.33175 24.5666i −0.198130 1.12365i
\(479\) −5.09110 11.8025i −0.232618 0.539270i 0.761425 0.648253i \(-0.224500\pi\)
−0.994044 + 0.108983i \(0.965241\pi\)
\(480\) 0 0
\(481\) −1.57721 5.26825i −0.0719146 0.240211i
\(482\) 11.8149 + 15.8701i 0.538153 + 0.722865i
\(483\) 0 0
\(484\) −9.80834 4.92593i −0.445834 0.223906i
\(485\) 18.9265 0.859408
\(486\) 0 0
\(487\) 8.21477 0.372247 0.186123 0.982526i \(-0.440408\pi\)
0.186123 + 0.982526i \(0.440408\pi\)
\(488\) −5.54030 2.78244i −0.250798 0.125955i
\(489\) 0 0
\(490\) 9.92626 + 13.3333i 0.448423 + 0.602337i
\(491\) −4.27347 14.2744i −0.192859 0.644194i −0.998648 0.0519904i \(-0.983443\pi\)
0.805789 0.592203i \(-0.201742\pi\)
\(492\) 0 0
\(493\) 0.265906 + 0.616440i 0.0119758 + 0.0277631i
\(494\) 0.0281053 + 0.159393i 0.00126452 + 0.00717143i
\(495\) 0 0
\(496\) −1.27413 + 7.22597i −0.0572103 + 0.324456i
\(497\) 3.07936 0.729821i 0.138128 0.0327370i
\(498\) 0 0
\(499\) −8.57019 5.63670i −0.383654 0.252333i 0.343002 0.939335i \(-0.388556\pi\)
−0.726656 + 0.687001i \(0.758927\pi\)
\(500\) −0.479944 + 8.24031i −0.0214637 + 0.368518i
\(501\) 0 0
\(502\) −4.66987 + 15.5984i −0.208426 + 0.696192i
\(503\) 15.4431 5.62083i 0.688574 0.250620i 0.0260494 0.999661i \(-0.491707\pi\)
0.662524 + 0.749040i \(0.269485\pi\)
\(504\) 0 0
\(505\) 17.0042 + 6.18904i 0.756679 + 0.275409i
\(506\) 0.809473 1.08731i 0.0359855 0.0483369i
\(507\) 0 0
\(508\) −7.56303 1.79247i −0.335555 0.0795280i
\(509\) −2.34085 + 5.42671i −0.103757 + 0.240535i −0.962184 0.272400i \(-0.912183\pi\)
0.858428 + 0.512935i \(0.171442\pi\)
\(510\) 0 0
\(511\) 6.73894 4.43227i 0.298113 0.196072i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) 0 0
\(514\) 1.05198 1.82208i 0.0464007 0.0803684i
\(515\) 1.90380 + 32.6870i 0.0838916 + 1.44036i
\(516\) 0 0
\(517\) 1.94328 0.227137i 0.0854652 0.00998945i
\(518\) −4.41563 + 4.68030i −0.194012 + 0.205641i
\(519\) 0 0
\(520\) 1.78584 + 0.208735i 0.0783145 + 0.00915365i
\(521\) 12.0595 10.1191i 0.528335 0.443325i −0.339191 0.940717i \(-0.610153\pi\)
0.867526 + 0.497392i \(0.165709\pi\)
\(522\) 0 0
\(523\) −32.0731 26.9125i −1.40246 1.17680i −0.959996 0.280015i \(-0.909661\pi\)
−0.442462 0.896787i \(-0.645895\pi\)
\(524\) −6.44123 6.82731i −0.281387 0.298252i
\(525\) 0 0
\(526\) −5.29327 + 2.65838i −0.230797 + 0.115911i
\(527\) −0.437349 + 0.219645i −0.0190512 + 0.00956787i
\(528\) 0 0
\(529\) −36.3353 38.5131i −1.57979 1.67448i
\(530\) 13.1103 + 11.0008i 0.569473 + 0.477845i
\(531\) 0 0
\(532\) 0.145072 0.121730i 0.00628965 0.00527764i
\(533\) −3.43159 0.401096i −0.148639 0.0173734i
\(534\) 0 0
\(535\) 15.9580 16.9145i 0.689926 0.731279i
\(536\) 8.27020 0.966648i 0.357218 0.0417528i
\(537\) 0 0
\(538\) −0.216298 3.71370i −0.00932528 0.160109i
\(539\) −0.494119 + 0.855839i −0.0212832 + 0.0368636i
\(540\) 0 0
\(541\) −1.64686 2.85244i −0.0708039 0.122636i 0.828450 0.560063i \(-0.189223\pi\)
−0.899254 + 0.437427i \(0.855890\pi\)
\(542\) −16.4658 + 10.8297i −0.707268 + 0.465177i
\(543\) 0 0
\(544\) 0.0264184 0.0612448i 0.00113268 0.00262585i
\(545\) −29.5884 7.01258i −1.26743 0.300386i
\(546\) 0 0
\(547\) 4.94084 6.63669i 0.211255 0.283765i −0.683848 0.729625i \(-0.739695\pi\)
0.895103 + 0.445860i \(0.147102\pi\)
\(548\) 14.4034 + 5.24243i 0.615285 + 0.223945i
\(549\) 0 0
\(550\) 0.269682 0.0981561i 0.0114993 0.00418539i
\(551\) −0.679864 + 2.27091i −0.0289632 + 0.0967438i
\(552\) 0 0
\(553\) 0.787805 13.5261i 0.0335009 0.575188i
\(554\) −2.63050 1.73011i −0.111759 0.0735052i
\(555\) 0 0
\(556\) −3.83290 + 0.908413i −0.162551 + 0.0385253i
\(557\) −1.30921 + 7.42492i −0.0554732 + 0.314604i −0.999900 0.0141167i \(-0.995506\pi\)
0.944427 + 0.328721i \(0.106617\pi\)
\(558\) 0 0
\(559\) −0.397941 2.25683i −0.0168311 0.0954539i
\(560\) −0.833266 1.93173i −0.0352119 0.0816304i
\(561\) 0 0
\(562\) −6.13275 20.4848i −0.258694 0.864099i
\(563\) −17.9766 24.1468i −0.757625 1.01767i −0.998885 0.0472070i \(-0.984968\pi\)
0.241260 0.970461i \(-0.422439\pi\)
\(564\) 0 0
\(565\) 29.0397 + 14.5843i 1.22171 + 0.613565i
\(566\) −10.8922 −0.457835
\(567\) 0 0
\(568\) 3.93564 0.165136
\(569\) −31.1284 15.6333i −1.30497 0.655381i −0.345827 0.938298i \(-0.612402\pi\)
−0.959144 + 0.282917i \(0.908698\pi\)
\(570\) 0 0
\(571\) 3.98459 + 5.35223i 0.166750 + 0.223984i 0.877642 0.479318i \(-0.159116\pi\)
−0.710892 + 0.703302i \(0.751708\pi\)
\(572\) 0.0306577 + 0.102404i 0.00128186 + 0.00428172i
\(573\) 0 0
\(574\) 1.60116 + 3.71191i 0.0668313 + 0.154932i
\(575\) −2.79216 15.8351i −0.116441 0.660371i
\(576\) 0 0
\(577\) −6.28429 + 35.6400i −0.261619 + 1.48371i 0.516875 + 0.856061i \(0.327095\pi\)
−0.778494 + 0.627652i \(0.784016\pi\)
\(578\) −16.5374 + 3.91944i −0.687867 + 0.163027i
\(579\) 0 0
\(580\) 22.0014 + 14.4706i 0.913560 + 0.600858i
\(581\) 0.101944 1.75031i 0.00422934 0.0726149i
\(582\) 0 0
\(583\) −0.291814 + 0.974727i −0.0120857 + 0.0403691i
\(584\) 9.42595 3.43076i 0.390048 0.141966i
\(585\) 0 0
\(586\) 19.0581 + 6.93659i 0.787284 + 0.286548i
\(587\) −17.3965 + 23.3675i −0.718030 + 0.964482i 0.281957 + 0.959427i \(0.409016\pi\)
−0.999987 + 0.00505460i \(0.998391\pi\)
\(588\) 0 0
\(589\) −1.68149 0.398520i −0.0692845 0.0164207i
\(590\) −7.51139 + 17.4134i −0.309239 + 0.716897i
\(591\) 0 0
\(592\) −6.68566 + 4.39723i −0.274779 + 0.180725i
\(593\) 4.61527 + 7.99387i 0.189526 + 0.328269i 0.945092 0.326803i \(-0.105971\pi\)
−0.755566 + 0.655072i \(0.772638\pi\)
\(594\) 0 0
\(595\) 0.0701609 0.121522i 0.00287631 0.00498192i
\(596\) 0.0874504 + 1.50147i 0.00358211 + 0.0615024i
\(597\) 0 0
\(598\) 5.94859 0.695290i 0.243256 0.0284325i
\(599\) 0.807714 0.856127i 0.0330023 0.0349804i −0.710662 0.703533i \(-0.751605\pi\)
0.743664 + 0.668553i \(0.233086\pi\)
\(600\) 0 0
\(601\) 16.3686 + 1.91321i 0.667688 + 0.0780416i 0.443183 0.896431i \(-0.353849\pi\)
0.224506 + 0.974473i \(0.427923\pi\)
\(602\) −2.05406 + 1.72356i −0.0837172 + 0.0702471i
\(603\) 0 0
\(604\) 10.0110 + 8.40025i 0.407343 + 0.341801i
\(605\) −19.7062 20.8873i −0.801170 0.849190i
\(606\) 0 0
\(607\) 32.1650 16.1539i 1.30554 0.655665i 0.346261 0.938138i \(-0.387451\pi\)
0.959275 + 0.282473i \(0.0911548\pi\)
\(608\) 0.210463 0.105698i 0.00853539 0.00428664i
\(609\) 0 0
\(610\) −11.1312 11.7983i −0.450687 0.477700i
\(611\) 6.62190 + 5.55643i 0.267893 + 0.224789i
\(612\) 0 0
\(613\) −22.8633 + 19.1846i −0.923441 + 0.774859i −0.974628 0.223830i \(-0.928144\pi\)
0.0511868 + 0.998689i \(0.483700\pi\)
\(614\) 5.26721 + 0.615648i 0.212567 + 0.0248455i
\(615\) 0 0
\(616\) 0.0858308 0.0909753i 0.00345822 0.00366550i
\(617\) 4.99903 0.584303i 0.201253 0.0235231i −0.0148690 0.999889i \(-0.504733\pi\)
0.216122 + 0.976366i \(0.430659\pi\)
\(618\) 0 0
\(619\) 1.28092 + 21.9925i 0.0514844 + 0.883954i 0.920882 + 0.389841i \(0.127470\pi\)
−0.869398 + 0.494113i \(0.835493\pi\)
\(620\) −9.59850 + 16.6251i −0.385485 + 0.667680i
\(621\) 0 0
\(622\) −2.12061 3.67301i −0.0850288 0.147274i
\(623\) −2.27383 + 1.49552i −0.0910992 + 0.0599169i
\(624\) 0 0
\(625\) −12.2076 + 28.3004i −0.488304 + 1.13202i
\(626\) 4.47705 + 1.06108i 0.178939 + 0.0424093i
\(627\) 0 0
\(628\) −12.0959 + 16.2476i −0.482678 + 0.648349i
\(629\) −0.501549 0.182549i −0.0199981 0.00727871i
\(630\) 0 0
\(631\) −28.2782 + 10.2924i −1.12574 + 0.409735i −0.836743 0.547595i \(-0.815543\pi\)
−0.288995 + 0.957331i \(0.593321\pi\)
\(632\) 4.83258 16.1420i 0.192230 0.642092i
\(633\) 0 0
\(634\) −0.367420 + 6.30836i −0.0145921 + 0.250537i
\(635\) −16.9899 11.1745i −0.674225 0.443445i
\(636\) 0 0
\(637\) −4.24856 + 1.00693i −0.168334 + 0.0398959i
\(638\) −0.271861 + 1.54180i −0.0107631 + 0.0610404i
\(639\) 0 0
\(640\) −0.454317 2.57656i −0.0179585 0.101847i
\(641\) −11.6997 27.1229i −0.462109 1.07129i −0.976846 0.213942i \(-0.931370\pi\)
0.514737 0.857348i \(-0.327890\pi\)
\(642\) 0 0
\(643\) 1.81855 + 6.07439i 0.0717167 + 0.239550i 0.986331 0.164778i \(-0.0526906\pi\)
−0.914614 + 0.404328i \(0.867505\pi\)
\(644\) −4.18466 5.62098i −0.164899 0.221498i
\(645\) 0 0
\(646\) 0.0140378 + 0.00705005i 0.000552310 + 0.000277381i
\(647\) 34.8610 1.37053 0.685264 0.728295i \(-0.259687\pi\)
0.685264 + 0.728295i \(0.259687\pi\)
\(648\) 0 0
\(649\) −1.12746 −0.0442568
\(650\) 1.13311 + 0.569069i 0.0444443 + 0.0223207i
\(651\) 0 0
\(652\) −1.10690 1.48682i −0.0433495 0.0582285i
\(653\) 4.91627 + 16.4215i 0.192389 + 0.642623i 0.998692 + 0.0511212i \(0.0162795\pi\)
−0.806304 + 0.591502i \(0.798535\pi\)
\(654\) 0 0
\(655\) −9.72665 22.5489i −0.380052 0.881059i
\(656\) 0.872994 + 4.95099i 0.0340847 + 0.193304i
\(657\) 0 0
\(658\) 1.75634 9.96072i 0.0684694 0.388309i
\(659\) 24.3229 5.76463i 0.947484 0.224558i 0.272305 0.962211i \(-0.412214\pi\)
0.675180 + 0.737653i \(0.264066\pi\)
\(660\) 0 0
\(661\) −0.607381 0.399481i −0.0236244 0.0155380i 0.537642 0.843173i \(-0.319315\pi\)
−0.561266 + 0.827635i \(0.689686\pi\)
\(662\) −0.933082 + 16.0204i −0.0362652 + 0.622650i
\(663\) 0 0
\(664\) 0.625347 2.08880i 0.0242682 0.0810613i
\(665\) 0.465589 0.169461i 0.0180548 0.00657140i
\(666\) 0 0
\(667\) 82.4265 + 30.0008i 3.19156 + 1.16163i
\(668\) −7.49723 + 10.0705i −0.290077 + 0.389640i
\(669\) 0 0
\(670\) 21.1975 + 5.02390i 0.818930 + 0.194090i
\(671\) 0.381954 0.885468i 0.0147452 0.0341831i
\(672\) 0 0
\(673\) −37.1257 + 24.4179i −1.43109 + 0.941242i −0.431861 + 0.901940i \(0.642143\pi\)
−0.999227 + 0.0393018i \(0.987487\pi\)
\(674\) 1.35241 + 2.34244i 0.0520928 + 0.0902274i
\(675\) 0 0
\(676\) 6.26386 10.8493i 0.240918 0.417282i
\(677\) 2.61091 + 44.8277i 0.100346 + 1.72287i 0.554703 + 0.832048i \(0.312832\pi\)
−0.454358 + 0.890819i \(0.650131\pi\)
\(678\) 0 0
\(679\) 5.77759 0.675304i 0.221724 0.0259158i
\(680\) 0.119754 0.126932i 0.00459235 0.00486761i
\(681\) 0 0
\(682\) −1.13358 0.132497i −0.0434070 0.00507355i
\(683\) 16.4909 13.8375i 0.631007 0.529478i −0.270235 0.962795i \(-0.587101\pi\)
0.901242 + 0.433317i \(0.142657\pi\)
\(684\) 0 0
\(685\) 30.7201 + 25.7773i 1.17376 + 0.984899i
\(686\) 7.36854 + 7.81020i 0.281332 + 0.298195i
\(687\) 0 0
\(688\) −2.97993 + 1.49658i −0.113609 + 0.0570565i
\(689\) −4.01725 + 2.01754i −0.153045 + 0.0768621i
\(690\) 0 0
\(691\) 21.7759 + 23.0811i 0.828393 + 0.878045i 0.994137 0.108124i \(-0.0344842\pi\)
−0.165745 + 0.986169i \(0.553003\pi\)
\(692\) −8.36310 7.01747i −0.317917 0.266764i
\(693\) 0 0
\(694\) −7.19537 + 6.03763i −0.273132 + 0.229185i
\(695\) −10.2361 1.19643i −0.388279 0.0453833i
\(696\) 0 0
\(697\) −0.230113 + 0.243906i −0.00871617 + 0.00923860i
\(698\) 21.2946 2.48898i 0.806012 0.0942093i
\(699\) 0 0
\(700\) −0.0862651 1.48111i −0.00326051 0.0559809i
\(701\) 11.1884 19.3789i 0.422580 0.731929i −0.573611 0.819128i \(-0.694458\pi\)
0.996191 + 0.0871983i \(0.0277914\pi\)
\(702\) 0 0
\(703\) −0.942302 1.63212i −0.0355396 0.0615564i
\(704\) 0.129955 0.0854730i 0.00489788 0.00322138i
\(705\) 0 0
\(706\) 2.97470 6.89613i 0.111954 0.259539i
\(707\) 5.41162 + 1.28258i 0.203525 + 0.0482363i
\(708\) 0 0
\(709\) 2.37201 3.18616i 0.0890826 0.119659i −0.755347 0.655324i \(-0.772532\pi\)
0.844430 + 0.535666i \(0.179939\pi\)
\(710\) 9.67587 + 3.52173i 0.363129 + 0.132168i
\(711\) 0 0
\(712\) −3.18048 + 1.15760i −0.119193 + 0.0433829i
\(713\) −18.3395 + 61.2582i −0.686820 + 2.29414i
\(714\) 0 0
\(715\) −0.0162613 + 0.279196i −0.000608138 + 0.0104413i
\(716\) 7.76876 + 5.10959i 0.290332 + 0.190954i
\(717\) 0 0
\(718\) −19.9899 + 4.73769i −0.746015 + 0.176809i
\(719\) 3.47213 19.6915i 0.129489 0.734367i −0.849051 0.528310i \(-0.822826\pi\)
0.978540 0.206057i \(-0.0660632\pi\)
\(720\) 0 0
\(721\) 1.74745 + 9.91028i 0.0650784 + 0.369078i
\(722\) −7.50355 17.3952i −0.279253 0.647381i
\(723\) 0 0
\(724\) 4.31519 + 14.4137i 0.160373 + 0.535682i
\(725\) 11.0898 + 14.8962i 0.411865 + 0.553230i
\(726\) 0 0
\(727\) 0.370860 + 0.186253i 0.0137545 + 0.00690774i 0.455663 0.890152i \(-0.349402\pi\)
−0.441909 + 0.897060i \(0.645698\pi\)
\(728\) 0.552603 0.0204808
\(729\) 0 0
\(730\) 26.2439 0.971329
\(731\) −0.198760 0.0998212i −0.00735142 0.00369202i
\(732\) 0 0
\(733\) −4.44910 5.97617i −0.164331 0.220735i 0.712328 0.701846i \(-0.247641\pi\)
−0.876660 + 0.481111i \(0.840233\pi\)
\(734\) 4.45278 + 14.8733i 0.164355 + 0.548984i
\(735\) 0 0
\(736\) −3.45177 8.00209i −0.127234 0.294961i
\(737\) 0.224899 + 1.27546i 0.00828425 + 0.0469823i
\(738\) 0 0
\(739\) −1.13092 + 6.41379i −0.0416017 + 0.235935i −0.998518 0.0544304i \(-0.982666\pi\)
0.956916 + 0.290365i \(0.0937768\pi\)
\(740\) −20.3716 + 4.82816i −0.748876 + 0.177487i
\(741\) 0 0
\(742\) 4.39461 + 2.89038i 0.161331 + 0.106109i
\(743\) −1.62467 + 27.8945i −0.0596033 + 1.02335i 0.827408 + 0.561602i \(0.189815\pi\)
−0.887011 + 0.461748i \(0.847222\pi\)
\(744\) 0 0
\(745\) −1.12856 + 3.76964i −0.0413471 + 0.138109i
\(746\) −16.8168 + 6.12081i −0.615706 + 0.224099i
\(747\) 0 0
\(748\) 0.00974908 + 0.00354838i 0.000356462 + 0.000129741i
\(749\) 4.26791 5.73280i 0.155946 0.209472i
\(750\) 0 0
\(751\) −28.3649 6.72261i −1.03505 0.245312i −0.322233 0.946660i \(-0.604433\pi\)
−0.712818 + 0.701349i \(0.752581\pi\)
\(752\) 4.98207 11.5497i 0.181677 0.421176i
\(753\) 0 0
\(754\) −5.77914 + 3.80100i −0.210464 + 0.138424i
\(755\) 17.0956 + 29.6104i 0.622171 + 1.07763i
\(756\) 0 0
\(757\) −26.9567 + 46.6904i −0.979758 + 1.69699i −0.316511 + 0.948589i \(0.602512\pi\)
−0.663246 + 0.748401i \(0.730822\pi\)
\(758\) −0.267458 4.59208i −0.00971453 0.166792i
\(759\) 0 0
\(760\) 0.612010 0.0715337i 0.0221999 0.00259480i
\(761\) −13.9480 + 14.7840i −0.505614 + 0.535920i −0.929025 0.370018i \(-0.879351\pi\)
0.423410 + 0.905938i \(0.360833\pi\)
\(762\) 0 0
\(763\) −9.28251 1.08497i −0.336049 0.0392786i
\(764\) 5.71980 4.79948i 0.206935 0.173639i
\(765\) 0 0
\(766\) −19.7213 16.5482i −0.712561 0.597910i
\(767\) −3.41843 3.62333i −0.123433 0.130831i
\(768\) 0 0
\(769\) 35.7884 17.9736i 1.29056 0.648145i 0.334801 0.942289i \(-0.391331\pi\)
0.955761 + 0.294144i \(0.0950346\pi\)
\(770\) 0.292425 0.146861i 0.0105383 0.00529251i
\(771\) 0 0
\(772\) −8.52645 9.03751i −0.306874 0.325267i
\(773\) 15.5681 + 13.0632i 0.559945 + 0.469850i 0.878292 0.478124i \(-0.158683\pi\)
−0.318347 + 0.947974i \(0.603128\pi\)
\(774\) 0 0
\(775\) −10.3708 + 8.70210i −0.372529 + 0.312589i
\(776\) 7.18513 + 0.839822i 0.257931 + 0.0301478i
\(777\) 0 0
\(778\) −5.27485 + 5.59101i −0.189112 + 0.200447i
\(779\) −1.17601 + 0.137456i −0.0421349 + 0.00492486i
\(780\) 0 0
\(781\) 0.0355943 + 0.611130i 0.00127366 + 0.0218680i
\(782\) 0.290638 0.503400i 0.0103932 0.0180016i
\(783\) 0 0
\(784\) 3.17671 + 5.50222i 0.113454 + 0.196508i
\(785\) −44.2768 + 29.1213i −1.58031 + 1.03938i
\(786\) 0 0
\(787\) −3.04443 + 7.05779i −0.108522 + 0.251583i −0.963820 0.266554i \(-0.914115\pi\)
0.855298 + 0.518137i \(0.173374\pi\)
\(788\) −19.7828 4.68860i −0.704731 0.167024i
\(789\) 0 0
\(790\) 26.3253 35.3611i 0.936613 1.25809i
\(791\) 9.38516 + 3.41592i 0.333698 + 0.121456i
\(792\) 0 0
\(793\) 4.00370 1.45723i 0.142176 0.0517477i
\(794\) 3.51243 11.7323i 0.124651 0.416365i
\(795\) 0 0
\(796\) 1.34911 23.1633i 0.0478178 0.821000i
\(797\) 30.6284 + 20.1446i 1.08492 + 0.713560i 0.960391 0.278656i \(-0.0898891\pi\)
0.124525 + 0.992217i \(0.460259\pi\)
\(798\) 0 0
\(799\) 0.816365 0.193482i 0.0288809 0.00684490i
\(800\) 0.320392 1.81703i 0.0113276 0.0642419i
\(801\) 0 0
\(802\) 4.13447 + 23.4477i 0.145993 + 0.827968i
\(803\) 0.617982 + 1.43264i 0.0218081 + 0.0505569i
\(804\) 0 0
\(805\) −5.25828 17.5639i −0.185330 0.619045i
\(806\) −3.01117 4.04471i −0.106064 0.142469i
\(807\) 0 0
\(808\) 6.18076 + 3.10409i 0.217438 + 0.109202i
\(809\) −32.5645 −1.14491 −0.572454 0.819937i \(-0.694008\pi\)
−0.572454 + 0.819937i \(0.694008\pi\)
\(810\) 0 0
\(811\) 36.0860 1.26715 0.633575 0.773681i \(-0.281587\pi\)
0.633575 + 0.773681i \(0.281587\pi\)
\(812\) 7.23258 + 3.63234i 0.253814 + 0.127470i
\(813\) 0 0
\(814\) −0.743272 0.998387i −0.0260517 0.0349934i
\(815\) −1.39089 4.64588i −0.0487206 0.162738i
\(816\) 0 0
\(817\) −0.311061 0.721121i −0.0108827 0.0252288i
\(818\) −5.32220 30.1837i −0.186086 1.05535i
\(819\) 0 0
\(820\) −2.28402 + 12.9533i −0.0797614 + 0.452350i
\(821\) 28.4772 6.74923i 0.993862 0.235550i 0.298657 0.954361i \(-0.403461\pi\)
0.695206 + 0.718811i \(0.255313\pi\)
\(822\) 0 0
\(823\) 25.8934 + 17.0304i 0.902588 + 0.593642i 0.913741 0.406296i \(-0.133180\pi\)
−0.0111532 + 0.999938i \(0.503550\pi\)
\(824\) −0.727668 + 12.4936i −0.0253495 + 0.435234i
\(825\) 0 0
\(826\) −1.67165 + 5.58369i −0.0581641 + 0.194282i
\(827\) 7.43214 2.70508i 0.258441 0.0940647i −0.209551 0.977798i \(-0.567200\pi\)
0.467991 + 0.883733i \(0.344978\pi\)
\(828\) 0 0
\(829\) 44.4988 + 16.1962i 1.54551 + 0.562518i 0.967358 0.253413i \(-0.0815532\pi\)
0.578148 + 0.815932i \(0.303775\pi\)
\(830\) 3.40656 4.57580i 0.118243 0.158828i
\(831\) 0 0
\(832\) 0.668705 + 0.158486i 0.0231832 + 0.00549451i
\(833\) −0.167847 + 0.389113i −0.00581556 + 0.0134820i
\(834\) 0 0
\(835\) −27.4435 + 18.0499i −0.949723 + 0.624643i
\(836\) 0.0183164 + 0.0317249i 0.000633486 + 0.00109723i
\(837\) 0 0
\(838\) 9.66525 16.7407i 0.333880 0.578298i
\(839\) −1.14559 19.6690i −0.0395502 0.679050i −0.958573 0.284846i \(-0.908057\pi\)
0.919023 0.394204i \(-0.128980\pi\)
\(840\) 0 0
\(841\) −71.8191 + 8.39445i −2.47652 + 0.289464i
\(842\) 8.13903 8.62687i 0.280490 0.297302i
\(843\) 0 0
\(844\) −18.5752 2.17113i −0.639385 0.0747333i
\(845\) 25.1081 21.0682i 0.863747 0.724769i
\(846\) 0 0
\(847\) −6.76087 5.67304i −0.232306 0.194928i
\(848\) 4.48896 + 4.75802i 0.154151 + 0.163391i
\(849\) 0 0
\(850\) 0.109975 0.0552316i 0.00377212 0.00189443i
\(851\) −62.3192 + 31.2979i −2.13627 + 1.07288i
\(852\) 0 0
\(853\) −38.5735 40.8855i −1.32073 1.39989i −0.858221 0.513280i \(-0.828430\pi\)
−0.462510 0.886614i \(-0.653051\pi\)
\(854\) −3.81892 3.20445i −0.130681 0.109654i
\(855\) 0 0
\(856\) 6.80875 5.71322i 0.232718 0.195274i
\(857\) −11.5778 1.35325i −0.395491 0.0462262i −0.0839765 0.996468i \(-0.526762\pi\)
−0.311514 + 0.950242i \(0.600836\pi\)
\(858\) 0 0
\(859\) 28.7098 30.4306i 0.979567 1.03828i −0.0196927 0.999806i \(-0.506269\pi\)
0.999260 0.0384741i \(-0.0122497\pi\)
\(860\) −8.66541 + 1.01284i −0.295488 + 0.0345376i
\(861\) 0 0
\(862\) 1.13078 + 19.4148i 0.0385147 + 0.661271i
\(863\) 3.21464 5.56792i 0.109428 0.189534i −0.806111 0.591765i \(-0.798432\pi\)
0.915539 + 0.402230i \(0.131765\pi\)
\(864\) 0 0
\(865\) −14.2814 24.7362i −0.485584 0.841055i
\(866\) −4.72779 + 3.10951i −0.160657 + 0.105666i
\(867\) 0 0
\(868\) −2.33690 + 5.41754i −0.0793194 + 0.183883i
\(869\) 2.55025 + 0.604420i 0.0865112 + 0.0205035i
\(870\) 0 0
\(871\) −3.41707 + 4.58992i −0.115783 + 0.155524i
\(872\) −10.9216 3.97513i −0.369852 0.134615i
\(873\) 0 0
\(874\) 1.92868 0.701983i 0.0652387 0.0237449i
\(875\) −1.90360 + 6.35846i −0.0643534 + 0.214955i
\(876\) 0 0
\(877\) −0.661751 + 11.3618i −0.0223457 + 0.383662i 0.968531 + 0.248892i \(0.0800665\pi\)
−0.990877 + 0.134770i \(0.956971\pi\)
\(878\) 10.2765 + 6.75897i 0.346816 + 0.228104i
\(879\) 0 0
\(880\) 0.395982 0.0938495i 0.0133486 0.00316367i
\(881\) −9.19564 + 52.1511i −0.309809 + 1.75701i 0.290148 + 0.956982i \(0.406295\pi\)
−0.599957 + 0.800032i \(0.704816\pi\)
\(882\) 0 0
\(883\) −5.69410 32.2928i −0.191622 1.08674i −0.917148 0.398546i \(-0.869515\pi\)
0.725526 0.688194i \(-0.241596\pi\)
\(884\) 0.0181555 + 0.0420892i 0.000610635 + 0.00141561i
\(885\) 0 0
\(886\) 3.03071 + 10.1233i 0.101819 + 0.340098i
\(887\) 18.9305 + 25.4280i 0.635623 + 0.853789i 0.996901 0.0786686i \(-0.0250669\pi\)
−0.361278 + 0.932458i \(0.617659\pi\)
\(888\) 0 0
\(889\) −5.58514 2.80496i −0.187320 0.0940754i
\(890\) −8.85514 −0.296825
\(891\) 0 0
\(892\) −9.33346 −0.312507
\(893\) 2.64730 + 1.32952i 0.0885884 + 0.0444908i
\(894\) 0 0
\(895\) 14.5275 + 19.5138i 0.485600 + 0.652274i
\(896\) −0.230620 0.770323i −0.00770446 0.0257347i
\(897\) 0 0
\(898\) −15.9392 36.9512i −0.531898 1.23308i
\(899\) −12.8244 72.7308i −0.427718 2.42571i
\(900\) 0 0
\(901\) −0.0757640 + 0.429679i −0.00252406 + 0.0143147i
\(902\) −0.760900 + 0.180337i −0.0253352 + 0.00600455i
\(903\) 0 0
\(904\) 10.3773 + 6.82525i 0.345144 + 0.227005i
\(905\) −2.28884 + 39.2979i −0.0760837 + 1.30631i
\(906\) 0 0
\(907\) 11.9961 40.0697i 0.398324 1.33049i −0.490179 0.871622i \(-0.663069\pi\)
0.888503 0.458872i \(-0.151746\pi\)
\(908\) −19.7638 + 7.19345i −0.655886 + 0.238723i
\(909\) 0 0
\(910\) 1.35859 + 0.494486i 0.0450368 + 0.0163921i
\(911\) 17.5501 23.5738i 0.581460 0.781036i −0.409911 0.912126i \(-0.634440\pi\)
0.991370 + 0.131090i \(0.0418476\pi\)
\(912\) 0 0
\(913\) 0.330008 + 0.0782132i 0.0109217 + 0.00258848i
\(914\) 14.8007 34.3118i 0.489563 1.13493i
\(915\) 0 0
\(916\) 7.53928 4.95866i 0.249105 0.163839i
\(917\) −3.77376 6.53634i −0.124620 0.215849i
\(918\) 0 0
\(919\) −5.37872 + 9.31622i −0.177428 + 0.307314i −0.940999 0.338410i \(-0.890111\pi\)
0.763571 + 0.645724i \(0.223444\pi\)
\(920\) −1.32574 22.7621i −0.0437084 0.750444i
\(921\) 0 0
\(922\) 37.1078 4.33729i 1.22208 0.142841i
\(923\) −1.85607 + 1.96732i −0.0610932 + 0.0647550i
\(924\) 0 0
\(925\) −14.6646 1.71404i −0.482168 0.0563574i
\(926\) 17.7703 14.9111i 0.583970 0.490009i
\(927\) 0 0
\(928\) 7.71038 + 6.46978i 0.253106 + 0.212381i
\(929\) 1.32318 + 1.40249i 0.0434121 + 0.0460141i 0.748716 0.662891i \(-0.230671\pi\)
−0.705304 + 0.708905i \(0.749189\pi\)
\(930\) 0 0
\(931\) −1.33716 + 0.671546i −0.0438236 + 0.0220090i
\(932\) −7.78356 + 3.90905i −0.254959 + 0.128045i
\(933\) 0 0
\(934\) −0.296949 0.314748i −0.00971647 0.0102989i
\(935\) 0.0207932 + 0.0174475i 0.000680009 + 0.000570596i
\(936\) 0 0
\(937\) −24.5880 + 20.6318i −0.803255 + 0.674011i −0.948988 0.315313i \(-0.897891\pi\)
0.145732 + 0.989324i \(0.453446\pi\)
\(938\) 6.65010 + 0.777286i 0.217134 + 0.0253793i
\(939\) 0 0
\(940\) 22.5836 23.9372i 0.736596 0.780746i
\(941\) −31.3900 + 3.66897i −1.02328 + 0.119605i −0.611147 0.791517i \(-0.709292\pi\)
−0.412137 + 0.911122i \(0.635218\pi\)
\(942\) 0 0
\(943\) 2.54748 + 43.7385i 0.0829574 + 1.42432i
\(944\) −3.62426 + 6.27739i −0.117959 + 0.204312i
\(945\) 0 0
\(946\) −0.259341 0.449191i −0.00843190 0.0146045i
\(947\) −23.3956 + 15.3875i −0.760256 + 0.500028i −0.869467 0.493990i \(-0.835538\pi\)
0.109211 + 0.994019i \(0.465167\pi\)
\(948\) 0 0
\(949\) −2.73038 + 6.32973i −0.0886319 + 0.205472i
\(950\) 0.422825 + 0.100211i 0.0137183 + 0.00325129i
\(951\) 0 0
\(952\) 0.0320277 0.0430207i 0.00103802 0.00139431i
\(953\) 20.1844 + 7.34651i 0.653836 + 0.237977i 0.647573 0.762004i \(-0.275784\pi\)
0.00626309 + 0.999980i \(0.498006\pi\)
\(954\) 0 0
\(955\) 18.3570 6.68140i 0.594018 0.216205i
\(956\) 7.15447 23.8976i 0.231392 0.772903i
\(957\) 0 0
\(958\) 0.747378 12.8320i 0.0241467 0.414583i
\(959\) 10.2975 + 6.77279i 0.332524 + 0.218705i
\(960\) 0 0
\(961\) 22.2225 5.26682i 0.716854 0.169897i
\(962\) 0.954939 5.41573i 0.0307885 0.174610i
\(963\) 0 0
\(964\) 3.43566 + 19.4846i 0.110655 + 0.627556i
\(965\) −12.8755 29.8487i −0.414476 0.960863i
\(966\) 0 0
\(967\) −11.4223 38.1531i −0.367316 1.22692i −0.919464 0.393174i \(-0.871377\pi\)
0.552148 0.833746i \(-0.313808\pi\)
\(968\) −6.55430 8.80395i −0.210663 0.282970i
\(969\) 0 0
\(970\) 16.9133 + 8.49419i 0.543054 + 0.272732i
\(971\) 33.1226 1.06295 0.531477 0.847073i \(-0.321637\pi\)
0.531477 + 0.847073i \(0.321637\pi\)
\(972\) 0 0
\(973\) −3.16743 −0.101543
\(974\) 7.34099 + 3.68678i 0.235220 + 0.118132i
\(975\) 0 0
\(976\) −3.70223 4.97296i −0.118506 0.159181i
\(977\) −15.6736 52.3535i −0.501444 1.67494i −0.715898 0.698204i \(-0.753983\pi\)
0.214455 0.976734i \(-0.431203\pi\)
\(978\) 0 0
\(979\) −0.208518 0.483399i −0.00666426 0.0154495i
\(980\) 2.88647 + 16.3700i 0.0922048 + 0.522919i
\(981\) 0 0
\(982\) 2.58742 14.6740i 0.0825678 0.468265i
\(983\) 21.2682 5.04066i 0.678351 0.160772i 0.123023 0.992404i \(-0.460741\pi\)
0.555328 + 0.831632i \(0.312593\pi\)
\(984\) 0 0
\(985\) −44.4409 29.2292i −1.41600 0.931321i
\(986\) −0.0390353 + 0.670210i −0.00124314 + 0.0213438i
\(987\) 0 0
\(988\) −0.0464196 + 0.155052i −0.00147681 + 0.00493287i
\(989\) −27.3081 + 9.93934i −0.868347 + 0.316053i
\(990\) 0 0
\(991\) −40.5755 14.7683i −1.28892 0.469130i −0.395550 0.918444i \(-0.629446\pi\)
−0.893374 + 0.449315i \(0.851668\pi\)
\(992\) −4.38162 + 5.88553i −0.139116 + 0.186866i
\(993\) 0 0
\(994\) 3.07936 + 0.729821i 0.0976713 + 0.0231485i
\(995\) 24.0440 55.7403i 0.762246 1.76708i
\(996\) 0 0
\(997\) 4.06161 2.67136i 0.128633 0.0846029i −0.483562 0.875310i \(-0.660657\pi\)
0.612195 + 0.790707i \(0.290287\pi\)
\(998\) −5.12885 8.88343i −0.162351 0.281200i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.g.a.253.4 72
3.2 odd 2 162.2.g.a.13.3 72
81.25 even 27 inner 486.2.g.a.73.4 72
81.56 odd 54 162.2.g.a.25.3 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.g.a.13.3 72 3.2 odd 2
162.2.g.a.25.3 yes 72 81.56 odd 54
486.2.g.a.73.4 72 81.25 even 27 inner
486.2.g.a.253.4 72 1.1 even 1 trivial