Properties

Label 486.2.g.a.253.3
Level $486$
Weight $2$
Character 486.253
Analytic conductor $3.881$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(19,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([52]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 162)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 253.3
Character \(\chi\) \(=\) 486.253
Dual form 486.2.g.a.73.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.893633 + 0.448799i) q^{2} +(0.597159 + 0.802123i) q^{4} +(0.267154 + 0.892356i) q^{5} +(1.11188 + 2.57764i) q^{7} +(0.173648 + 0.984808i) q^{8} +(-0.161751 + 0.917337i) q^{10} +(-4.46341 + 1.05785i) q^{11} +(1.47403 + 0.969483i) q^{13} +(-0.163226 + 2.80247i) q^{14} +(-0.286803 + 0.957990i) q^{16} +(-1.42569 + 0.518907i) q^{17} +(4.12421 + 1.50109i) q^{19} +(-0.556246 + 0.747168i) q^{20} +(-4.46341 - 1.05785i) q^{22} +(2.92223 - 6.77448i) q^{23} +(3.45251 - 2.27075i) q^{25} +(0.882135 + 1.52790i) q^{26} +(-1.40361 + 2.43113i) q^{28} +(0.418954 + 7.19315i) q^{29} +(-6.24778 + 0.730261i) q^{31} +(-0.686242 + 0.727374i) q^{32} +(-1.50693 - 0.176134i) q^{34} +(-2.00313 + 1.68082i) q^{35} +(-0.516723 - 0.433582i) q^{37} +(3.01184 + 3.19236i) q^{38} +(-0.832408 + 0.418051i) q^{40} +(8.46317 - 4.25037i) q^{41} +(3.77539 + 4.00168i) q^{43} +(-3.51389 - 2.94850i) q^{44} +(5.65178 - 4.74241i) q^{46} +(-5.01677 - 0.586377i) q^{47} +(-0.604237 + 0.640453i) q^{49} +(4.10439 - 0.479734i) q^{50} +(0.102583 + 1.76129i) q^{52} +(1.33883 - 2.31892i) q^{53} +(-2.13639 - 3.70034i) q^{55} +(-2.34540 + 1.54259i) q^{56} +(-2.85389 + 6.61606i) q^{58} +(-4.89941 - 1.16118i) q^{59} +(3.14866 - 4.22938i) q^{61} +(-5.91096 - 2.15141i) q^{62} +(-0.939693 + 0.342020i) q^{64} +(-0.471331 + 1.57436i) q^{65} +(0.832311 - 14.2902i) q^{67} +(-1.26759 - 0.833706i) q^{68} +(-2.54441 + 0.603036i) q^{70} +(0.0492509 - 0.279316i) q^{71} +(-2.01050 - 11.4021i) q^{73} +(-0.267169 - 0.619368i) q^{74} +(1.25875 + 4.20451i) q^{76} +(-7.68955 - 10.3289i) q^{77} +(3.17920 + 1.59665i) q^{79} -0.931488 q^{80} +9.47053 q^{82} +(9.56164 + 4.80204i) q^{83} +(-0.843927 - 1.13359i) q^{85} +(1.57786 + 5.27043i) q^{86} +(-1.81684 - 4.21191i) q^{88} +(-1.74720 - 9.90888i) q^{89} +(-0.860028 + 4.87746i) q^{91} +(7.17900 - 1.70145i) q^{92} +(-4.21999 - 2.77553i) q^{94} +(-0.237708 + 4.08128i) q^{95} +(-4.96298 + 16.5775i) q^{97} +(-0.827401 + 0.301149i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 18 q^{13} + 9 q^{20} + 81 q^{23} + 18 q^{25} + 27 q^{26} + 18 q^{28} + 27 q^{29} - 54 q^{31} + 27 q^{35} - 9 q^{38} + 9 q^{41} + 36 q^{43} - 18 q^{46} + 27 q^{47} - 36 q^{52} + 27 q^{53} + 54 q^{55}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{4}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.893633 + 0.448799i 0.631894 + 0.317349i
\(3\) 0 0
\(4\) 0.597159 + 0.802123i 0.298579 + 0.401062i
\(5\) 0.267154 + 0.892356i 0.119475 + 0.399074i 0.996716 0.0809762i \(-0.0258038\pi\)
−0.877241 + 0.480050i \(0.840619\pi\)
\(6\) 0 0
\(7\) 1.11188 + 2.57764i 0.420253 + 0.974255i 0.988476 + 0.151381i \(0.0483719\pi\)
−0.568223 + 0.822875i \(0.692369\pi\)
\(8\) 0.173648 + 0.984808i 0.0613939 + 0.348182i
\(9\) 0 0
\(10\) −0.161751 + 0.917337i −0.0511502 + 0.290087i
\(11\) −4.46341 + 1.05785i −1.34577 + 0.318953i −0.839471 0.543405i \(-0.817135\pi\)
−0.506299 + 0.862358i \(0.668987\pi\)
\(12\) 0 0
\(13\) 1.47403 + 0.969483i 0.408821 + 0.268886i 0.737219 0.675653i \(-0.236138\pi\)
−0.328398 + 0.944539i \(0.606509\pi\)
\(14\) −0.163226 + 2.80247i −0.0436239 + 0.748993i
\(15\) 0 0
\(16\) −0.286803 + 0.957990i −0.0717008 + 0.239497i
\(17\) −1.42569 + 0.518907i −0.345780 + 0.125854i −0.509071 0.860724i \(-0.670011\pi\)
0.163292 + 0.986578i \(0.447789\pi\)
\(18\) 0 0
\(19\) 4.12421 + 1.50109i 0.946158 + 0.344373i 0.768595 0.639736i \(-0.220956\pi\)
0.177563 + 0.984109i \(0.443179\pi\)
\(20\) −0.556246 + 0.747168i −0.124380 + 0.167072i
\(21\) 0 0
\(22\) −4.46341 1.05785i −0.951603 0.225534i
\(23\) 2.92223 6.77448i 0.609326 1.41258i −0.282088 0.959388i \(-0.591027\pi\)
0.891415 0.453189i \(-0.149714\pi\)
\(24\) 0 0
\(25\) 3.45251 2.27075i 0.690502 0.454151i
\(26\) 0.882135 + 1.52790i 0.173001 + 0.299646i
\(27\) 0 0
\(28\) −1.40361 + 2.43113i −0.265258 + 0.459440i
\(29\) 0.418954 + 7.19315i 0.0777977 + 1.33574i 0.780904 + 0.624651i \(0.214759\pi\)
−0.703107 + 0.711085i \(0.748204\pi\)
\(30\) 0 0
\(31\) −6.24778 + 0.730261i −1.12213 + 0.131159i −0.656863 0.754010i \(-0.728117\pi\)
−0.465271 + 0.885168i \(0.654043\pi\)
\(32\) −0.686242 + 0.727374i −0.121312 + 0.128583i
\(33\) 0 0
\(34\) −1.50693 0.176134i −0.258436 0.0302068i
\(35\) −2.00313 + 1.68082i −0.338590 + 0.284111i
\(36\) 0 0
\(37\) −0.516723 0.433582i −0.0849487 0.0712804i 0.599324 0.800506i \(-0.295436\pi\)
−0.684273 + 0.729226i \(0.739880\pi\)
\(38\) 3.01184 + 3.19236i 0.488585 + 0.517870i
\(39\) 0 0
\(40\) −0.832408 + 0.418051i −0.131615 + 0.0660997i
\(41\) 8.46317 4.25037i 1.32173 0.663796i 0.358763 0.933429i \(-0.383199\pi\)
0.962963 + 0.269633i \(0.0869025\pi\)
\(42\) 0 0
\(43\) 3.77539 + 4.00168i 0.575742 + 0.610251i 0.948152 0.317817i \(-0.102950\pi\)
−0.372410 + 0.928068i \(0.621468\pi\)
\(44\) −3.51389 2.94850i −0.529739 0.444504i
\(45\) 0 0
\(46\) 5.65178 4.74241i 0.833309 0.699230i
\(47\) −5.01677 0.586377i −0.731772 0.0855319i −0.257957 0.966156i \(-0.583049\pi\)
−0.473815 + 0.880625i \(0.657123\pi\)
\(48\) 0 0
\(49\) −0.604237 + 0.640453i −0.0863195 + 0.0914934i
\(50\) 4.10439 0.479734i 0.580448 0.0678447i
\(51\) 0 0
\(52\) 0.102583 + 1.76129i 0.0142257 + 0.244246i
\(53\) 1.33883 2.31892i 0.183903 0.318529i −0.759304 0.650737i \(-0.774460\pi\)
0.943206 + 0.332208i \(0.107794\pi\)
\(54\) 0 0
\(55\) −2.13639 3.70034i −0.288071 0.498954i
\(56\) −2.34540 + 1.54259i −0.313417 + 0.206138i
\(57\) 0 0
\(58\) −2.85389 + 6.61606i −0.374734 + 0.868732i
\(59\) −4.89941 1.16118i −0.637849 0.151173i −0.101048 0.994882i \(-0.532219\pi\)
−0.536802 + 0.843708i \(0.680368\pi\)
\(60\) 0 0
\(61\) 3.14866 4.22938i 0.403144 0.541517i −0.553472 0.832868i \(-0.686697\pi\)
0.956616 + 0.291351i \(0.0941048\pi\)
\(62\) −5.91096 2.15141i −0.750693 0.273230i
\(63\) 0 0
\(64\) −0.939693 + 0.342020i −0.117462 + 0.0427525i
\(65\) −0.471331 + 1.57436i −0.0584615 + 0.195275i
\(66\) 0 0
\(67\) 0.832311 14.2902i 0.101683 1.74583i −0.433554 0.901127i \(-0.642741\pi\)
0.535237 0.844702i \(-0.320222\pi\)
\(68\) −1.26759 0.833706i −0.153718 0.101102i
\(69\) 0 0
\(70\) −2.54441 + 0.603036i −0.304115 + 0.0720766i
\(71\) 0.0492509 0.279316i 0.00584501 0.0331487i −0.981746 0.190198i \(-0.939087\pi\)
0.987591 + 0.157049i \(0.0501981\pi\)
\(72\) 0 0
\(73\) −2.01050 11.4021i −0.235312 1.33452i −0.841957 0.539545i \(-0.818596\pi\)
0.606645 0.794973i \(-0.292515\pi\)
\(74\) −0.267169 0.619368i −0.0310578 0.0720000i
\(75\) 0 0
\(76\) 1.25875 + 4.20451i 0.144388 + 0.482290i
\(77\) −7.68955 10.3289i −0.876305 1.17708i
\(78\) 0 0
\(79\) 3.17920 + 1.59665i 0.357687 + 0.179637i 0.618563 0.785735i \(-0.287715\pi\)
−0.260876 + 0.965372i \(0.584011\pi\)
\(80\) −0.931488 −0.104144
\(81\) 0 0
\(82\) 9.47053 1.04584
\(83\) 9.56164 + 4.80204i 1.04953 + 0.527092i 0.888032 0.459782i \(-0.152072\pi\)
0.161494 + 0.986874i \(0.448369\pi\)
\(84\) 0 0
\(85\) −0.843927 1.13359i −0.0915368 0.122955i
\(86\) 1.57786 + 5.27043i 0.170145 + 0.568325i
\(87\) 0 0
\(88\) −1.81684 4.21191i −0.193676 0.448991i
\(89\) −1.74720 9.90888i −0.185203 1.05034i −0.925694 0.378273i \(-0.876518\pi\)
0.740491 0.672066i \(-0.234593\pi\)
\(90\) 0 0
\(91\) −0.860028 + 4.87746i −0.0901554 + 0.511297i
\(92\) 7.17900 1.70145i 0.748463 0.177389i
\(93\) 0 0
\(94\) −4.21999 2.77553i −0.435259 0.286274i
\(95\) −0.237708 + 4.08128i −0.0243883 + 0.418731i
\(96\) 0 0
\(97\) −4.96298 + 16.5775i −0.503914 + 1.68319i 0.205711 + 0.978613i \(0.434049\pi\)
−0.709626 + 0.704579i \(0.751136\pi\)
\(98\) −0.827401 + 0.301149i −0.0835801 + 0.0304207i
\(99\) 0 0
\(100\) 3.88312 + 1.41334i 0.388312 + 0.141334i
\(101\) 3.77928 5.07645i 0.376052 0.505126i −0.573298 0.819347i \(-0.694336\pi\)
0.949350 + 0.314222i \(0.101743\pi\)
\(102\) 0 0
\(103\) −18.1237 4.29540i −1.78578 0.423238i −0.801234 0.598350i \(-0.795823\pi\)
−0.984548 + 0.175112i \(0.943971\pi\)
\(104\) −0.698792 + 1.61998i −0.0685222 + 0.158852i
\(105\) 0 0
\(106\) 2.23715 1.47140i 0.217292 0.142915i
\(107\) 0.530621 + 0.919062i 0.0512970 + 0.0888491i 0.890534 0.454917i \(-0.150331\pi\)
−0.839237 + 0.543766i \(0.816998\pi\)
\(108\) 0 0
\(109\) 6.12250 10.6045i 0.586429 1.01573i −0.408266 0.912863i \(-0.633866\pi\)
0.994696 0.102863i \(-0.0328002\pi\)
\(110\) −0.248441 4.26556i −0.0236879 0.406705i
\(111\) 0 0
\(112\) −2.78824 + 0.325899i −0.263464 + 0.0307945i
\(113\) 4.67396 4.95410i 0.439689 0.466043i −0.469194 0.883095i \(-0.655455\pi\)
0.908882 + 0.417052i \(0.136937\pi\)
\(114\) 0 0
\(115\) 6.82593 + 0.797837i 0.636521 + 0.0743987i
\(116\) −5.51961 + 4.63151i −0.512483 + 0.430025i
\(117\) 0 0
\(118\) −3.85714 3.23652i −0.355078 0.297946i
\(119\) −2.92275 3.09794i −0.267928 0.283987i
\(120\) 0 0
\(121\) 8.97305 4.50643i 0.815732 0.409676i
\(122\) 4.71189 2.36640i 0.426594 0.214244i
\(123\) 0 0
\(124\) −4.31667 4.57541i −0.387649 0.410884i
\(125\) 6.51648 + 5.46797i 0.582851 + 0.489070i
\(126\) 0 0
\(127\) −6.52630 + 5.47622i −0.579116 + 0.485936i −0.884657 0.466243i \(-0.845607\pi\)
0.305541 + 0.952179i \(0.401163\pi\)
\(128\) −0.993238 0.116093i −0.0877907 0.0102613i
\(129\) 0 0
\(130\) −1.12777 + 1.19536i −0.0989117 + 0.104840i
\(131\) 15.8598 1.85375i 1.38568 0.161963i 0.609656 0.792666i \(-0.291308\pi\)
0.776024 + 0.630703i \(0.217234\pi\)
\(132\) 0 0
\(133\) 0.716379 + 12.2997i 0.0621179 + 1.06652i
\(134\) 7.15722 12.3967i 0.618290 1.07091i
\(135\) 0 0
\(136\) −0.758592 1.31392i −0.0650487 0.112668i
\(137\) −8.99273 + 5.91461i −0.768301 + 0.505319i −0.872129 0.489276i \(-0.837261\pi\)
0.103828 + 0.994595i \(0.466891\pi\)
\(138\) 0 0
\(139\) 2.55292 5.91833i 0.216536 0.501986i −0.774978 0.631988i \(-0.782239\pi\)
0.991514 + 0.130002i \(0.0414984\pi\)
\(140\) −2.54441 0.603036i −0.215042 0.0509659i
\(141\) 0 0
\(142\) 0.169369 0.227502i 0.0142131 0.0190916i
\(143\) −7.60475 2.76790i −0.635941 0.231464i
\(144\) 0 0
\(145\) −6.30693 + 2.29553i −0.523762 + 0.190634i
\(146\) 3.32061 11.0916i 0.274816 0.917949i
\(147\) 0 0
\(148\) 0.0392206 0.673392i 0.00322392 0.0553525i
\(149\) 0.0289210 + 0.0190217i 0.00236930 + 0.00155831i 0.550693 0.834708i \(-0.314363\pi\)
−0.548324 + 0.836266i \(0.684734\pi\)
\(150\) 0 0
\(151\) −22.1823 + 5.25731i −1.80517 + 0.427834i −0.988745 0.149613i \(-0.952197\pi\)
−0.816429 + 0.577446i \(0.804049\pi\)
\(152\) −0.762123 + 4.32221i −0.0618163 + 0.350578i
\(153\) 0 0
\(154\) −2.23605 12.6813i −0.180186 1.02189i
\(155\) −2.32077 5.38015i −0.186409 0.432144i
\(156\) 0 0
\(157\) 2.53198 + 8.45740i 0.202074 + 0.674974i 0.997612 + 0.0690700i \(0.0220032\pi\)
−0.795538 + 0.605904i \(0.792812\pi\)
\(158\) 2.12446 + 2.85364i 0.169013 + 0.227023i
\(159\) 0 0
\(160\) −0.832408 0.418051i −0.0658076 0.0330498i
\(161\) 20.7113 1.63228
\(162\) 0 0
\(163\) −21.2225 −1.66227 −0.831137 0.556067i \(-0.812310\pi\)
−0.831137 + 0.556067i \(0.812310\pi\)
\(164\) 8.46317 + 4.25037i 0.660863 + 0.331898i
\(165\) 0 0
\(166\) 6.38944 + 8.58251i 0.495917 + 0.666132i
\(167\) 4.59344 + 15.3431i 0.355451 + 1.18729i 0.929610 + 0.368544i \(0.120144\pi\)
−0.574159 + 0.818744i \(0.694671\pi\)
\(168\) 0 0
\(169\) −3.91618 9.07872i −0.301245 0.698363i
\(170\) −0.245406 1.39177i −0.0188218 0.106744i
\(171\) 0 0
\(172\) −0.955334 + 5.41797i −0.0728436 + 0.413116i
\(173\) 10.9871 2.60399i 0.835334 0.197978i 0.209376 0.977835i \(-0.432857\pi\)
0.625957 + 0.779857i \(0.284708\pi\)
\(174\) 0 0
\(175\) 9.69197 + 6.37451i 0.732644 + 0.481868i
\(176\) 0.266714 4.57930i 0.0201043 0.345177i
\(177\) 0 0
\(178\) 2.88574 9.63905i 0.216295 0.722477i
\(179\) −18.7430 + 6.82191i −1.40092 + 0.509893i −0.928451 0.371454i \(-0.878859\pi\)
−0.472469 + 0.881347i \(0.656637\pi\)
\(180\) 0 0
\(181\) 19.9989 + 7.27900i 1.48651 + 0.541044i 0.952527 0.304454i \(-0.0984739\pi\)
0.533979 + 0.845498i \(0.320696\pi\)
\(182\) −2.95755 + 3.97268i −0.219228 + 0.294474i
\(183\) 0 0
\(184\) 7.17900 + 1.70145i 0.529243 + 0.125433i
\(185\) 0.248865 0.576933i 0.0182969 0.0424170i
\(186\) 0 0
\(187\) 5.81450 3.82426i 0.425198 0.279657i
\(188\) −2.52546 4.37423i −0.184188 0.319024i
\(189\) 0 0
\(190\) −2.04410 + 3.54048i −0.148294 + 0.256854i
\(191\) 1.03657 + 17.7972i 0.0750033 + 1.28776i 0.800417 + 0.599444i \(0.204612\pi\)
−0.725414 + 0.688313i \(0.758351\pi\)
\(192\) 0 0
\(193\) 22.1969 2.59445i 1.59777 0.186753i 0.729904 0.683550i \(-0.239565\pi\)
0.867866 + 0.496798i \(0.165491\pi\)
\(194\) −11.8751 + 12.5868i −0.852579 + 0.903681i
\(195\) 0 0
\(196\) −0.874548 0.102220i −0.0624677 0.00730143i
\(197\) 3.12785 2.62458i 0.222850 0.186994i −0.524526 0.851394i \(-0.675758\pi\)
0.747377 + 0.664401i \(0.231313\pi\)
\(198\) 0 0
\(199\) −0.620215 0.520423i −0.0439659 0.0368918i 0.620540 0.784175i \(-0.286913\pi\)
−0.664506 + 0.747283i \(0.731358\pi\)
\(200\) 2.83578 + 3.00575i 0.200520 + 0.212538i
\(201\) 0 0
\(202\) 5.65559 2.84035i 0.397926 0.199846i
\(203\) −18.0755 + 9.07787i −1.26865 + 0.637141i
\(204\) 0 0
\(205\) 6.05381 + 6.41666i 0.422816 + 0.448159i
\(206\) −14.2682 11.9724i −0.994111 0.834158i
\(207\) 0 0
\(208\) −1.35151 + 1.13405i −0.0937103 + 0.0786323i
\(209\) −19.9960 2.33719i −1.38315 0.161667i
\(210\) 0 0
\(211\) −7.80319 + 8.27090i −0.537194 + 0.569392i −0.937940 0.346797i \(-0.887269\pi\)
0.400746 + 0.916189i \(0.368751\pi\)
\(212\) 2.65956 0.310858i 0.182659 0.0213498i
\(213\) 0 0
\(214\) 0.0617057 + 1.05945i 0.00421811 + 0.0724222i
\(215\) −2.56231 + 4.43806i −0.174748 + 0.302673i
\(216\) 0 0
\(217\) −8.82916 15.2925i −0.599362 1.03813i
\(218\) 10.2306 6.72874i 0.692900 0.455728i
\(219\) 0 0
\(220\) 1.69236 3.92334i 0.114099 0.264512i
\(221\) −2.60457 0.617295i −0.175202 0.0415237i
\(222\) 0 0
\(223\) 10.6088 14.2500i 0.710415 0.954252i −0.289581 0.957153i \(-0.593516\pi\)
0.999996 + 0.00290107i \(0.000923440\pi\)
\(224\) −2.63793 0.960127i −0.176254 0.0641512i
\(225\) 0 0
\(226\) 6.40020 2.32948i 0.425735 0.154955i
\(227\) −0.718661 + 2.40050i −0.0476992 + 0.159327i −0.978521 0.206147i \(-0.933908\pi\)
0.930822 + 0.365473i \(0.119093\pi\)
\(228\) 0 0
\(229\) −0.262629 + 4.50916i −0.0173550 + 0.297974i 0.978451 + 0.206480i \(0.0662010\pi\)
−0.995806 + 0.0914931i \(0.970836\pi\)
\(230\) 5.74181 + 3.77645i 0.378604 + 0.249011i
\(231\) 0 0
\(232\) −7.01112 + 1.66167i −0.460303 + 0.109094i
\(233\) −2.12497 + 12.0513i −0.139212 + 0.789508i 0.832622 + 0.553841i \(0.186839\pi\)
−0.971834 + 0.235667i \(0.924273\pi\)
\(234\) 0 0
\(235\) −0.816993 4.63340i −0.0532948 0.302250i
\(236\) −1.99432 4.62334i −0.129819 0.300954i
\(237\) 0 0
\(238\) −1.22152 4.08015i −0.0791791 0.264477i
\(239\) −15.8275 21.2601i −1.02380 1.37520i −0.924946 0.380098i \(-0.875890\pi\)
−0.0988519 0.995102i \(-0.531517\pi\)
\(240\) 0 0
\(241\) −4.87872 2.45019i −0.314266 0.157830i 0.284674 0.958625i \(-0.408115\pi\)
−0.598940 + 0.800794i \(0.704411\pi\)
\(242\) 10.0411 0.645466
\(243\) 0 0
\(244\) 5.27273 0.337552
\(245\) −0.732936 0.368094i −0.0468256 0.0235167i
\(246\) 0 0
\(247\) 4.62391 + 6.21099i 0.294212 + 0.395196i
\(248\) −1.80408 6.02605i −0.114559 0.382655i
\(249\) 0 0
\(250\) 3.36931 + 7.81095i 0.213094 + 0.494008i
\(251\) −0.521714 2.95878i −0.0329303 0.186757i 0.963906 0.266244i \(-0.0857828\pi\)
−0.996836 + 0.0794874i \(0.974672\pi\)
\(252\) 0 0
\(253\) −5.87673 + 33.3286i −0.369467 + 2.09535i
\(254\) −8.28984 + 1.96473i −0.520151 + 0.123278i
\(255\) 0 0
\(256\) −0.835488 0.549509i −0.0522180 0.0343443i
\(257\) −0.761444 + 13.0735i −0.0474975 + 0.815501i 0.887491 + 0.460824i \(0.152446\pi\)
−0.934989 + 0.354677i \(0.884591\pi\)
\(258\) 0 0
\(259\) 0.543081 1.81402i 0.0337454 0.112717i
\(260\) −1.54429 + 0.562075i −0.0957727 + 0.0348584i
\(261\) 0 0
\(262\) 15.0048 + 5.46131i 0.927001 + 0.337401i
\(263\) 1.87795 2.52252i 0.115799 0.155545i −0.740444 0.672118i \(-0.765385\pi\)
0.856244 + 0.516572i \(0.172792\pi\)
\(264\) 0 0
\(265\) 2.42698 + 0.575204i 0.149088 + 0.0353345i
\(266\) −4.87994 + 11.3130i −0.299208 + 0.693642i
\(267\) 0 0
\(268\) 11.9595 7.86592i 0.730545 0.480487i
\(269\) 10.1021 + 17.4974i 0.615938 + 1.06684i 0.990219 + 0.139520i \(0.0445560\pi\)
−0.374282 + 0.927315i \(0.622111\pi\)
\(270\) 0 0
\(271\) −14.8899 + 25.7901i −0.904500 + 1.56664i −0.0829129 + 0.996557i \(0.526422\pi\)
−0.821587 + 0.570083i \(0.806911\pi\)
\(272\) −0.0882164 1.51462i −0.00534890 0.0918371i
\(273\) 0 0
\(274\) −10.6907 + 1.24956i −0.645847 + 0.0754887i
\(275\) −13.0079 + 13.7875i −0.784404 + 0.831420i
\(276\) 0 0
\(277\) −4.36989 0.510767i −0.262561 0.0306890i −0.0162063 0.999869i \(-0.505159\pi\)
−0.246355 + 0.969180i \(0.579233\pi\)
\(278\) 4.93751 4.14306i 0.296132 0.248484i
\(279\) 0 0
\(280\) −2.00313 1.68082i −0.119710 0.100448i
\(281\) −19.4042 20.5672i −1.15755 1.22694i −0.969583 0.244762i \(-0.921290\pi\)
−0.187972 0.982174i \(-0.560191\pi\)
\(282\) 0 0
\(283\) 6.51124 3.27007i 0.387053 0.194385i −0.244622 0.969618i \(-0.578664\pi\)
0.631675 + 0.775233i \(0.282368\pi\)
\(284\) 0.253456 0.127291i 0.0150399 0.00755331i
\(285\) 0 0
\(286\) −5.55362 5.88650i −0.328393 0.348076i
\(287\) 20.3660 + 17.0891i 1.20217 + 1.00874i
\(288\) 0 0
\(289\) −11.2594 + 9.44779i −0.662320 + 0.555752i
\(290\) −6.66631 0.779180i −0.391459 0.0457550i
\(291\) 0 0
\(292\) 7.94532 8.42155i 0.464965 0.492834i
\(293\) 0.386477 0.0451727i 0.0225782 0.00263902i −0.104796 0.994494i \(-0.533419\pi\)
0.127375 + 0.991855i \(0.459345\pi\)
\(294\) 0 0
\(295\) −0.272709 4.68223i −0.0158777 0.272610i
\(296\) 0.337267 0.584163i 0.0196032 0.0339538i
\(297\) 0 0
\(298\) 0.0173079 + 0.0299781i 0.00100262 + 0.00173658i
\(299\) 10.8752 7.15272i 0.628928 0.413652i
\(300\) 0 0
\(301\) −6.11709 + 14.1810i −0.352583 + 0.817380i
\(302\) −22.1823 5.25731i −1.27645 0.302524i
\(303\) 0 0
\(304\) −2.62086 + 3.52043i −0.150317 + 0.201910i
\(305\) 4.61529 + 1.67983i 0.264271 + 0.0961866i
\(306\) 0 0
\(307\) 15.8628 5.77360i 0.905340 0.329517i 0.152949 0.988234i \(-0.451123\pi\)
0.752391 + 0.658717i \(0.228901\pi\)
\(308\) 3.69313 12.3359i 0.210436 0.702905i
\(309\) 0 0
\(310\) 0.340691 5.84944i 0.0193499 0.332226i
\(311\) 20.9613 + 13.7865i 1.18861 + 0.781760i 0.980533 0.196353i \(-0.0629100\pi\)
0.208074 + 0.978113i \(0.433280\pi\)
\(312\) 0 0
\(313\) 9.15572 2.16994i 0.517512 0.122653i 0.0364435 0.999336i \(-0.488397\pi\)
0.481068 + 0.876683i \(0.340249\pi\)
\(314\) −1.53301 + 8.69416i −0.0865130 + 0.490640i
\(315\) 0 0
\(316\) 0.617772 + 3.50356i 0.0347524 + 0.197091i
\(317\) 5.32798 + 12.3516i 0.299249 + 0.693737i 0.999803 0.0198626i \(-0.00632287\pi\)
−0.700554 + 0.713600i \(0.747064\pi\)
\(318\) 0 0
\(319\) −9.47923 31.6628i −0.530735 1.77278i
\(320\) −0.556246 0.747168i −0.0310951 0.0417680i
\(321\) 0 0
\(322\) 18.5083 + 9.29523i 1.03143 + 0.518003i
\(323\) −6.65875 −0.370503
\(324\) 0 0
\(325\) 7.29055 0.404407
\(326\) −18.9651 9.52464i −1.05038 0.527521i
\(327\) 0 0
\(328\) 5.65541 + 7.59653i 0.312268 + 0.419448i
\(329\) −4.06661 13.5834i −0.224199 0.748878i
\(330\) 0 0
\(331\) −5.56619 12.9039i −0.305946 0.709262i 0.693997 0.719978i \(-0.255848\pi\)
−0.999943 + 0.0107163i \(0.996589\pi\)
\(332\) 1.85799 + 10.5372i 0.101971 + 0.578303i
\(333\) 0 0
\(334\) −2.78115 + 15.7727i −0.152178 + 0.863042i
\(335\) 12.9743 3.07497i 0.708863 0.168004i
\(336\) 0 0
\(337\) 5.45623 + 3.58862i 0.297220 + 0.195485i 0.689356 0.724423i \(-0.257894\pi\)
−0.392136 + 0.919907i \(0.628264\pi\)
\(338\) 0.574898 9.87062i 0.0312703 0.536891i
\(339\) 0 0
\(340\) 0.405321 1.35387i 0.0219816 0.0734238i
\(341\) 27.1139 9.86866i 1.46830 0.534418i
\(342\) 0 0
\(343\) 16.1428 + 5.87549i 0.871629 + 0.317247i
\(344\) −3.28530 + 4.41292i −0.177131 + 0.237929i
\(345\) 0 0
\(346\) 10.9871 + 2.60399i 0.590670 + 0.139991i
\(347\) −10.6690 + 24.7336i −0.572744 + 1.32777i 0.347961 + 0.937509i \(0.386874\pi\)
−0.920705 + 0.390260i \(0.872385\pi\)
\(348\) 0 0
\(349\) −21.0859 + 13.8684i −1.12870 + 0.742359i −0.969550 0.244895i \(-0.921247\pi\)
−0.159153 + 0.987254i \(0.550876\pi\)
\(350\) 5.80019 + 10.0462i 0.310033 + 0.536993i
\(351\) 0 0
\(352\) 2.29353 3.97251i 0.122245 0.211735i
\(353\) 0.0557860 + 0.957808i 0.00296919 + 0.0509790i 0.999467 0.0326364i \(-0.0103903\pi\)
−0.996498 + 0.0836154i \(0.973353\pi\)
\(354\) 0 0
\(355\) 0.262407 0.0306710i 0.0139271 0.00162785i
\(356\) 6.90479 7.31865i 0.365953 0.387888i
\(357\) 0 0
\(358\) −19.8111 2.31558i −1.04705 0.122382i
\(359\) 12.5985 10.5714i 0.664925 0.557939i −0.246633 0.969109i \(-0.579324\pi\)
0.911559 + 0.411170i \(0.134880\pi\)
\(360\) 0 0
\(361\) 0.200968 + 0.168633i 0.0105773 + 0.00887540i
\(362\) 14.6049 + 15.4802i 0.767614 + 0.813623i
\(363\) 0 0
\(364\) −4.42590 + 2.22277i −0.231980 + 0.116505i
\(365\) 9.63764 4.84020i 0.504457 0.253348i
\(366\) 0 0
\(367\) −1.16969 1.23980i −0.0610575 0.0647172i 0.696125 0.717921i \(-0.254906\pi\)
−0.757182 + 0.653204i \(0.773425\pi\)
\(368\) 5.65178 + 4.74241i 0.294619 + 0.247215i
\(369\) 0 0
\(370\) 0.481321 0.403876i 0.0250227 0.0209965i
\(371\) 7.46597 + 0.872647i 0.387614 + 0.0453056i
\(372\) 0 0
\(373\) −9.80490 + 10.3926i −0.507678 + 0.538108i −0.929622 0.368514i \(-0.879866\pi\)
0.421944 + 0.906622i \(0.361348\pi\)
\(374\) 6.91235 0.807938i 0.357429 0.0417775i
\(375\) 0 0
\(376\) −0.293685 5.04238i −0.0151457 0.260041i
\(377\) −6.35609 + 11.0091i −0.327355 + 0.566996i
\(378\) 0 0
\(379\) −12.0604 20.8893i −0.619504 1.07301i −0.989576 0.144009i \(-0.954001\pi\)
0.370073 0.929003i \(-0.379333\pi\)
\(380\) −3.41564 + 2.24650i −0.175219 + 0.115243i
\(381\) 0 0
\(382\) −7.06104 + 16.3693i −0.361274 + 0.837528i
\(383\) −5.64393 1.33764i −0.288391 0.0683500i 0.0838739 0.996476i \(-0.473271\pi\)
−0.372265 + 0.928126i \(0.621419\pi\)
\(384\) 0 0
\(385\) 7.16272 9.62120i 0.365046 0.490342i
\(386\) 21.0003 + 7.64348i 1.06889 + 0.389043i
\(387\) 0 0
\(388\) −16.2609 + 5.91848i −0.825522 + 0.300465i
\(389\) 5.89390 19.6870i 0.298833 0.998170i −0.668299 0.743893i \(-0.732977\pi\)
0.967131 0.254277i \(-0.0818376\pi\)
\(390\) 0 0
\(391\) −0.650849 + 11.1747i −0.0329149 + 0.565126i
\(392\) −0.735648 0.483843i −0.0371558 0.0244378i
\(393\) 0 0
\(394\) 3.97306 0.941633i 0.200160 0.0474388i
\(395\) −0.575447 + 3.26352i −0.0289539 + 0.164206i
\(396\) 0 0
\(397\) −2.54727 14.4463i −0.127844 0.725039i −0.979578 0.201065i \(-0.935560\pi\)
0.851734 0.523974i \(-0.175551\pi\)
\(398\) −0.320680 0.743419i −0.0160742 0.0372642i
\(399\) 0 0
\(400\) 1.18517 + 3.95873i 0.0592583 + 0.197936i
\(401\) −15.9451 21.4180i −0.796262 1.06957i −0.995968 0.0897093i \(-0.971406\pi\)
0.199706 0.979856i \(-0.436001\pi\)
\(402\) 0 0
\(403\) −9.91737 4.98069i −0.494019 0.248106i
\(404\) 6.32877 0.314868
\(405\) 0 0
\(406\) −20.2270 −1.00385
\(407\) 2.76501 + 1.38864i 0.137056 + 0.0688323i
\(408\) 0 0
\(409\) −5.81400 7.80956i −0.287484 0.386158i 0.634796 0.772679i \(-0.281084\pi\)
−0.922280 + 0.386521i \(0.873677\pi\)
\(410\) 2.53009 + 8.45108i 0.124952 + 0.417369i
\(411\) 0 0
\(412\) −7.37729 17.1025i −0.363453 0.842579i
\(413\) −2.45447 13.9200i −0.120777 0.684959i
\(414\) 0 0
\(415\) −1.73070 + 9.81527i −0.0849565 + 0.481812i
\(416\) −1.71671 + 0.406869i −0.0841688 + 0.0199484i
\(417\) 0 0
\(418\) −16.8201 11.0628i −0.822698 0.541097i
\(419\) −0.515542 + 8.85151i −0.0251859 + 0.432425i 0.962021 + 0.272977i \(0.0880083\pi\)
−0.987206 + 0.159448i \(0.949029\pi\)
\(420\) 0 0
\(421\) 3.31057 11.0581i 0.161347 0.538938i −0.838636 0.544692i \(-0.816646\pi\)
0.999983 + 0.00575434i \(0.00183167\pi\)
\(422\) −10.6852 + 3.88908i −0.520145 + 0.189317i
\(423\) 0 0
\(424\) 2.51618 + 0.915814i 0.122196 + 0.0444759i
\(425\) −3.74389 + 5.02891i −0.181605 + 0.243938i
\(426\) 0 0
\(427\) 14.4028 + 3.41352i 0.696998 + 0.165192i
\(428\) −0.420336 + 0.974449i −0.0203177 + 0.0471018i
\(429\) 0 0
\(430\) −4.28156 + 2.81603i −0.206475 + 0.135801i
\(431\) −13.5607 23.4878i −0.653196 1.13137i −0.982343 0.187090i \(-0.940094\pi\)
0.329147 0.944279i \(-0.393239\pi\)
\(432\) 0 0
\(433\) 0.933229 1.61640i 0.0448481 0.0776792i −0.842730 0.538337i \(-0.819053\pi\)
0.887578 + 0.460657i \(0.152386\pi\)
\(434\) −1.02674 17.6284i −0.0492851 0.846192i
\(435\) 0 0
\(436\) 12.1622 1.42156i 0.582464 0.0680803i
\(437\) 22.2210 23.5528i 1.06297 1.12669i
\(438\) 0 0
\(439\) 5.43863 + 0.635684i 0.259571 + 0.0303396i 0.244883 0.969553i \(-0.421250\pi\)
0.0146882 + 0.999892i \(0.495324\pi\)
\(440\) 3.27315 2.74650i 0.156041 0.130934i
\(441\) 0 0
\(442\) −2.05049 1.72056i −0.0975318 0.0818389i
\(443\) −7.84510 8.31532i −0.372732 0.395073i 0.513671 0.857987i \(-0.328285\pi\)
−0.886403 + 0.462914i \(0.846804\pi\)
\(444\) 0 0
\(445\) 8.37548 4.20632i 0.397036 0.199399i
\(446\) 15.8757 7.97309i 0.751737 0.377537i
\(447\) 0 0
\(448\) −1.92643 2.04190i −0.0910154 0.0964707i
\(449\) 0.447406 + 0.375418i 0.0211144 + 0.0177171i 0.653284 0.757113i \(-0.273391\pi\)
−0.632169 + 0.774830i \(0.717835\pi\)
\(450\) 0 0
\(451\) −33.2784 + 27.9239i −1.56702 + 1.31488i
\(452\) 6.76489 + 0.790703i 0.318194 + 0.0371915i
\(453\) 0 0
\(454\) −1.71956 + 1.82263i −0.0807029 + 0.0855401i
\(455\) −4.58219 + 0.535581i −0.214816 + 0.0251084i
\(456\) 0 0
\(457\) −0.759073 13.0328i −0.0355079 0.609648i −0.968386 0.249456i \(-0.919748\pi\)
0.932878 0.360192i \(-0.117289\pi\)
\(458\) −2.25840 + 3.91166i −0.105528 + 0.182780i
\(459\) 0 0
\(460\) 3.43620 + 5.95167i 0.160214 + 0.277498i
\(461\) −9.75285 + 6.41455i −0.454236 + 0.298756i −0.755934 0.654648i \(-0.772817\pi\)
0.301698 + 0.953403i \(0.402447\pi\)
\(462\) 0 0
\(463\) 3.89577 9.03140i 0.181052 0.419725i −0.803386 0.595458i \(-0.796970\pi\)
0.984438 + 0.175734i \(0.0562297\pi\)
\(464\) −7.01112 1.66167i −0.325483 0.0771409i
\(465\) 0 0
\(466\) −7.30757 + 9.81577i −0.338517 + 0.454707i
\(467\) −16.7575 6.09922i −0.775444 0.282238i −0.0761723 0.997095i \(-0.524270\pi\)
−0.699271 + 0.714856i \(0.746492\pi\)
\(468\) 0 0
\(469\) 37.7605 13.7437i 1.74362 0.634624i
\(470\) 1.34937 4.50722i 0.0622420 0.207903i
\(471\) 0 0
\(472\) 0.292767 5.02662i 0.0134757 0.231369i
\(473\) −21.0843 13.8674i −0.969458 0.637622i
\(474\) 0 0
\(475\) 17.6475 4.18253i 0.809722 0.191908i
\(476\) 0.739580 4.19437i 0.0338986 0.192249i
\(477\) 0 0
\(478\) −4.60250 26.1021i −0.210513 1.19388i
\(479\) −14.2659 33.0722i −0.651827 1.51111i −0.847700 0.530476i \(-0.822013\pi\)
0.195873 0.980629i \(-0.437246\pi\)
\(480\) 0 0
\(481\) −0.341313 1.14006i −0.0155625 0.0519825i
\(482\) −3.26014 4.37913i −0.148496 0.199464i
\(483\) 0 0
\(484\) 8.97305 + 4.50643i 0.407866 + 0.204838i
\(485\) −16.1189 −0.731922
\(486\) 0 0
\(487\) 28.2800 1.28149 0.640744 0.767754i \(-0.278626\pi\)
0.640744 + 0.767754i \(0.278626\pi\)
\(488\) 4.71189 + 2.36640i 0.213297 + 0.107122i
\(489\) 0 0
\(490\) −0.489775 0.657882i −0.0221258 0.0297201i
\(491\) 1.26149 + 4.21368i 0.0569303 + 0.190161i 0.981725 0.190307i \(-0.0609483\pi\)
−0.924794 + 0.380467i \(0.875763\pi\)
\(492\) 0 0
\(493\) −4.32988 10.0378i −0.195008 0.452079i
\(494\) 1.34459 + 7.62555i 0.0604960 + 0.343090i
\(495\) 0 0
\(496\) 1.09230 6.19475i 0.0490458 0.278152i
\(497\) 0.774737 0.183616i 0.0347517 0.00823630i
\(498\) 0 0
\(499\) −13.2375 8.70642i −0.592590 0.389753i 0.217498 0.976061i \(-0.430210\pi\)
−0.810088 + 0.586308i \(0.800581\pi\)
\(500\) −0.494618 + 8.49226i −0.0221200 + 0.379786i
\(501\) 0 0
\(502\) 0.861680 2.87821i 0.0384587 0.128461i
\(503\) 12.5996 4.58586i 0.561786 0.204473i −0.0454892 0.998965i \(-0.514485\pi\)
0.607275 + 0.794491i \(0.292262\pi\)
\(504\) 0 0
\(505\) 5.53965 + 2.01627i 0.246511 + 0.0897227i
\(506\) −20.2095 + 27.1460i −0.898421 + 1.20679i
\(507\) 0 0
\(508\) −8.28984 1.96473i −0.367802 0.0871707i
\(509\) 5.98696 13.8793i 0.265367 0.615191i −0.732479 0.680790i \(-0.761637\pi\)
0.997846 + 0.0655993i \(0.0208959\pi\)
\(510\) 0 0
\(511\) 27.1551 17.8602i 1.20127 0.790088i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) 0 0
\(514\) −6.54782 + 11.3412i −0.288812 + 0.500237i
\(515\) −1.00879 17.3203i −0.0444528 0.763225i
\(516\) 0 0
\(517\) 23.0122 2.68974i 1.01208 0.118295i
\(518\) 1.29944 1.37733i 0.0570943 0.0605164i
\(519\) 0 0
\(520\) −1.63228 0.190787i −0.0715804 0.00836655i
\(521\) −1.94311 + 1.63047i −0.0851294 + 0.0714321i −0.684359 0.729145i \(-0.739918\pi\)
0.599230 + 0.800577i \(0.295474\pi\)
\(522\) 0 0
\(523\) −14.0884 11.8216i −0.616042 0.516921i 0.280514 0.959850i \(-0.409495\pi\)
−0.896557 + 0.442929i \(0.853939\pi\)
\(524\) 10.9578 + 11.6146i 0.478692 + 0.507384i
\(525\) 0 0
\(526\) 2.81030 1.41139i 0.122535 0.0615394i
\(527\) 8.52844 4.28314i 0.371505 0.186577i
\(528\) 0 0
\(529\) −21.5707 22.8636i −0.937854 0.994068i
\(530\) 1.91068 + 1.60325i 0.0829945 + 0.0696406i
\(531\) 0 0
\(532\) −9.43812 + 7.91952i −0.409194 + 0.343355i
\(533\) 16.5956 + 1.93975i 0.718835 + 0.0840198i
\(534\) 0 0
\(535\) −0.678373 + 0.719033i −0.0293286 + 0.0310865i
\(536\) 14.2177 1.66181i 0.614109 0.0717791i
\(537\) 0 0
\(538\) 1.17477 + 20.1701i 0.0506481 + 0.869594i
\(539\) 2.01945 3.49780i 0.0869841 0.150661i
\(540\) 0 0
\(541\) −7.56562 13.1040i −0.325271 0.563386i 0.656296 0.754504i \(-0.272122\pi\)
−0.981567 + 0.191117i \(0.938789\pi\)
\(542\) −24.8807 + 16.3643i −1.06872 + 0.702908i
\(543\) 0 0
\(544\) 0.600926 1.39310i 0.0257645 0.0597288i
\(545\) 11.0986 + 2.63042i 0.475413 + 0.112675i
\(546\) 0 0
\(547\) −10.5461 + 14.1659i −0.450920 + 0.605690i −0.968216 0.250116i \(-0.919531\pi\)
0.517296 + 0.855806i \(0.326939\pi\)
\(548\) −10.1143 3.68132i −0.432063 0.157258i
\(549\) 0 0
\(550\) −17.8121 + 6.48307i −0.759510 + 0.276439i
\(551\) −9.06971 + 30.2949i −0.386383 + 1.29061i
\(552\) 0 0
\(553\) −0.580693 + 9.97011i −0.0246936 + 0.423972i
\(554\) −3.67584 2.41764i −0.156172 0.102716i
\(555\) 0 0
\(556\) 6.27172 1.48643i 0.265980 0.0630385i
\(557\) −2.15648 + 12.2300i −0.0913731 + 0.518203i 0.904425 + 0.426632i \(0.140300\pi\)
−0.995799 + 0.0915710i \(0.970811\pi\)
\(558\) 0 0
\(559\) 1.68547 + 9.55877i 0.0712877 + 0.404293i
\(560\) −1.03571 2.40104i −0.0437666 0.101462i
\(561\) 0 0
\(562\) −8.10964 27.0881i −0.342085 1.14264i
\(563\) 15.6180 + 20.9785i 0.658218 + 0.884140i 0.998419 0.0562125i \(-0.0179024\pi\)
−0.340201 + 0.940353i \(0.610495\pi\)
\(564\) 0 0
\(565\) 5.66949 + 2.84732i 0.238517 + 0.119788i
\(566\) 7.28626 0.306264
\(567\) 0 0
\(568\) 0.283625 0.0119006
\(569\) −13.1704 6.61443i −0.552133 0.277291i 0.150780 0.988567i \(-0.451821\pi\)
−0.702913 + 0.711276i \(0.748118\pi\)
\(570\) 0 0
\(571\) 3.97285 + 5.33646i 0.166259 + 0.223324i 0.877442 0.479682i \(-0.159248\pi\)
−0.711184 + 0.703006i \(0.751841\pi\)
\(572\) −2.32104 7.75283i −0.0970477 0.324162i
\(573\) 0 0
\(574\) 10.5301 + 24.4116i 0.439519 + 1.01892i
\(575\) −5.29415 30.0246i −0.220781 1.25211i
\(576\) 0 0
\(577\) 5.41335 30.7007i 0.225361 1.27809i −0.636633 0.771167i \(-0.719673\pi\)
0.861994 0.506918i \(-0.169215\pi\)
\(578\) −14.3020 + 3.38963i −0.594883 + 0.140990i
\(579\) 0 0
\(580\) −5.60754 3.68813i −0.232840 0.153141i
\(581\) −1.74647 + 29.9858i −0.0724558 + 1.24402i
\(582\) 0 0
\(583\) −3.52269 + 11.7666i −0.145895 + 0.487322i
\(584\) 10.8798 3.95992i 0.450209 0.163863i
\(585\) 0 0
\(586\) 0.365642 + 0.133083i 0.0151045 + 0.00549760i
\(587\) 25.5016 34.2546i 1.05256 1.41384i 0.147248 0.989100i \(-0.452958\pi\)
0.905316 0.424739i \(-0.139634\pi\)
\(588\) 0 0
\(589\) −26.8633 6.36672i −1.10688 0.262336i
\(590\) 1.85768 4.30659i 0.0764795 0.177299i
\(591\) 0 0
\(592\) 0.563564 0.370662i 0.0231624 0.0152341i
\(593\) −6.95785 12.0513i −0.285725 0.494890i 0.687060 0.726601i \(-0.258901\pi\)
−0.972785 + 0.231711i \(0.925568\pi\)
\(594\) 0 0
\(595\) 1.98364 3.43576i 0.0813212 0.140852i
\(596\) 0.00201273 + 0.0345572i 8.24445e−5 + 0.00141552i
\(597\) 0 0
\(598\) 12.9286 1.51113i 0.528688 0.0617947i
\(599\) 4.87779 5.17016i 0.199301 0.211247i −0.620013 0.784591i \(-0.712873\pi\)
0.819314 + 0.573344i \(0.194354\pi\)
\(600\) 0 0
\(601\) −22.4454 2.62349i −0.915567 0.107014i −0.354757 0.934959i \(-0.615436\pi\)
−0.560811 + 0.827944i \(0.689510\pi\)
\(602\) −11.8309 + 9.92726i −0.482190 + 0.404605i
\(603\) 0 0
\(604\) −17.4634 14.6535i −0.710575 0.596243i
\(605\) 6.41852 + 6.80324i 0.260950 + 0.276591i
\(606\) 0 0
\(607\) −28.7677 + 14.4477i −1.16765 + 0.586414i −0.923603 0.383350i \(-0.874770\pi\)
−0.244043 + 0.969764i \(0.578474\pi\)
\(608\) −3.92205 + 1.96973i −0.159060 + 0.0798831i
\(609\) 0 0
\(610\) 3.37047 + 3.57249i 0.136466 + 0.144646i
\(611\) −6.82638 5.72801i −0.276166 0.231730i
\(612\) 0 0
\(613\) −17.0259 + 14.2864i −0.687670 + 0.577024i −0.918236 0.396033i \(-0.870387\pi\)
0.230566 + 0.973057i \(0.425942\pi\)
\(614\) 16.7667 + 1.95975i 0.676650 + 0.0790891i
\(615\) 0 0
\(616\) 8.83666 9.36631i 0.356039 0.377379i
\(617\) −33.2913 + 3.89120i −1.34026 + 0.156654i −0.755817 0.654783i \(-0.772760\pi\)
−0.584441 + 0.811437i \(0.698686\pi\)
\(618\) 0 0
\(619\) 0.202006 + 3.46831i 0.00811931 + 0.139403i 0.999932 + 0.0116986i \(0.00372387\pi\)
−0.991812 + 0.127704i \(0.959239\pi\)
\(620\) 2.92968 5.07435i 0.117659 0.203791i
\(621\) 0 0
\(622\) 12.5444 + 21.7275i 0.502983 + 0.871192i
\(623\) 23.5988 15.5212i 0.945467 0.621843i
\(624\) 0 0
\(625\) 5.04519 11.6961i 0.201807 0.467842i
\(626\) 9.15572 + 2.16994i 0.365936 + 0.0867284i
\(627\) 0 0
\(628\) −5.27188 + 7.08137i −0.210371 + 0.282577i
\(629\) 0.961673 + 0.350020i 0.0383444 + 0.0139562i
\(630\) 0 0
\(631\) 38.5574 14.0337i 1.53494 0.558674i 0.570118 0.821563i \(-0.306897\pi\)
0.964826 + 0.262888i \(0.0846751\pi\)
\(632\) −1.02033 + 3.40815i −0.0405867 + 0.135569i
\(633\) 0 0
\(634\) −0.782151 + 13.4290i −0.0310632 + 0.533334i
\(635\) −6.63026 4.36079i −0.263114 0.173053i
\(636\) 0 0
\(637\) −1.51157 + 0.358249i −0.0598906 + 0.0141943i
\(638\) 5.73930 32.5492i 0.227221 1.28864i
\(639\) 0 0
\(640\) −0.161751 0.917337i −0.00639378 0.0362609i
\(641\) 9.47251 + 21.9598i 0.374142 + 0.867358i 0.996418 + 0.0845606i \(0.0269486\pi\)
−0.622277 + 0.782797i \(0.713792\pi\)
\(642\) 0 0
\(643\) 5.06218 + 16.9089i 0.199633 + 0.666821i 0.997915 + 0.0645373i \(0.0205572\pi\)
−0.798282 + 0.602284i \(0.794258\pi\)
\(644\) 12.3680 + 16.6130i 0.487366 + 0.654646i
\(645\) 0 0
\(646\) −5.95048 2.98844i −0.234118 0.117579i
\(647\) −28.7326 −1.12959 −0.564797 0.825230i \(-0.691046\pi\)
−0.564797 + 0.825230i \(0.691046\pi\)
\(648\) 0 0
\(649\) 23.0965 0.906615
\(650\) 6.51507 + 3.27199i 0.255542 + 0.128338i
\(651\) 0 0
\(652\) −12.6732 17.0231i −0.496321 0.666675i
\(653\) 5.44267 + 18.1798i 0.212988 + 0.711430i 0.995994 + 0.0894161i \(0.0285001\pi\)
−0.783006 + 0.622014i \(0.786315\pi\)
\(654\) 0 0
\(655\) 5.89122 + 13.6574i 0.230189 + 0.533638i
\(656\) 1.64454 + 9.32665i 0.0642085 + 0.364145i
\(657\) 0 0
\(658\) 2.46217 13.9637i 0.0959854 0.544360i
\(659\) 28.0969 6.65909i 1.09450 0.259401i 0.356564 0.934271i \(-0.383948\pi\)
0.737937 + 0.674870i \(0.235800\pi\)
\(660\) 0 0
\(661\) 28.6512 + 18.8442i 1.11440 + 0.732955i 0.966658 0.256070i \(-0.0824278\pi\)
0.147746 + 0.989025i \(0.452798\pi\)
\(662\) 0.817122 14.0294i 0.0317583 0.545270i
\(663\) 0 0
\(664\) −3.06872 + 10.2502i −0.119089 + 0.397787i
\(665\) −10.7844 + 3.92519i −0.418200 + 0.152212i
\(666\) 0 0
\(667\) 49.9542 + 18.1818i 1.93423 + 0.704003i
\(668\) −9.56408 + 12.8468i −0.370045 + 0.497057i
\(669\) 0 0
\(670\) 12.9743 + 3.07497i 0.501242 + 0.118796i
\(671\) −9.57971 + 22.2083i −0.369821 + 0.857341i
\(672\) 0 0
\(673\) −36.5808 + 24.0596i −1.41009 + 0.927429i −0.410207 + 0.911992i \(0.634544\pi\)
−0.999881 + 0.0154368i \(0.995086\pi\)
\(674\) 3.26530 + 5.65566i 0.125775 + 0.217848i
\(675\) 0 0
\(676\) 4.94367 8.56270i 0.190141 0.329334i
\(677\) 2.24011 + 38.4612i 0.0860945 + 1.47819i 0.714137 + 0.700006i \(0.246819\pi\)
−0.628042 + 0.778179i \(0.716143\pi\)
\(678\) 0 0
\(679\) −48.2491 + 5.63951i −1.85163 + 0.216424i
\(680\) 0.969823 1.02795i 0.0371910 0.0394202i
\(681\) 0 0
\(682\) 28.6589 + 3.34975i 1.09741 + 0.128268i
\(683\) −4.17850 + 3.50618i −0.159886 + 0.134160i −0.719221 0.694782i \(-0.755501\pi\)
0.559335 + 0.828942i \(0.311057\pi\)
\(684\) 0 0
\(685\) −7.68038 6.44460i −0.293452 0.246236i
\(686\) 11.7888 + 12.4954i 0.450099 + 0.477077i
\(687\) 0 0
\(688\) −4.91637 + 2.46909i −0.187435 + 0.0941332i
\(689\) 4.22163 2.12018i 0.160831 0.0807725i
\(690\) 0 0
\(691\) 17.2210 + 18.2532i 0.655117 + 0.694384i 0.966722 0.255828i \(-0.0823481\pi\)
−0.311605 + 0.950212i \(0.600867\pi\)
\(692\) 8.64976 + 7.25801i 0.328815 + 0.275908i
\(693\) 0 0
\(694\) −20.6346 + 17.3145i −0.783279 + 0.657250i
\(695\) 5.96327 + 0.697007i 0.226200 + 0.0264390i
\(696\) 0 0
\(697\) −9.86028 + 10.4513i −0.373485 + 0.395871i
\(698\) −25.0672 + 2.92993i −0.948807 + 0.110900i
\(699\) 0 0
\(700\) 0.674502 + 11.5807i 0.0254938 + 0.437711i
\(701\) 3.42730 5.93625i 0.129447 0.224209i −0.794015 0.607898i \(-0.792013\pi\)
0.923463 + 0.383689i \(0.125346\pi\)
\(702\) 0 0
\(703\) −1.48023 2.56383i −0.0558278 0.0966966i
\(704\) 3.83243 2.52063i 0.144440 0.0949998i
\(705\) 0 0
\(706\) −0.380011 + 0.880965i −0.0143019 + 0.0331556i
\(707\) 17.2874 + 4.09718i 0.650158 + 0.154090i
\(708\) 0 0
\(709\) −17.0943 + 22.9617i −0.641991 + 0.862344i −0.997377 0.0723754i \(-0.976942\pi\)
0.355386 + 0.934720i \(0.384349\pi\)
\(710\) 0.248260 + 0.0903594i 0.00931705 + 0.00339113i
\(711\) 0 0
\(712\) 9.45495 3.44132i 0.354339 0.128969i
\(713\) −13.3103 + 44.4595i −0.498474 + 1.66502i
\(714\) 0 0
\(715\) 0.438316 7.52560i 0.0163921 0.281442i
\(716\) −16.6646 10.9605i −0.622785 0.409612i
\(717\) 0 0
\(718\) 16.0029 3.79276i 0.597223 0.141545i
\(719\) 1.27419 7.22626i 0.0475191 0.269494i −0.951786 0.306762i \(-0.900754\pi\)
0.999305 + 0.0372680i \(0.0118655\pi\)
\(720\) 0 0
\(721\) −9.07949 51.4924i −0.338138 1.91768i
\(722\) 0.103910 + 0.240890i 0.00386712 + 0.00896500i
\(723\) 0 0
\(724\) 6.10386 + 20.3883i 0.226848 + 0.757725i
\(725\) 17.7803 + 23.8831i 0.660344 + 0.886996i
\(726\) 0 0
\(727\) 13.3751 + 6.71724i 0.496056 + 0.249129i 0.679194 0.733958i \(-0.262329\pi\)
−0.183138 + 0.983087i \(0.558626\pi\)
\(728\) −4.95270 −0.183559
\(729\) 0 0
\(730\) 10.7848 0.399163
\(731\) −7.45903 3.74607i −0.275882 0.138553i
\(732\) 0 0
\(733\) 0.198111 + 0.266109i 0.00731738 + 0.00982895i 0.805767 0.592233i \(-0.201753\pi\)
−0.798449 + 0.602062i \(0.794346\pi\)
\(734\) −0.488854 1.63289i −0.0180439 0.0602709i
\(735\) 0 0
\(736\) 2.92223 + 6.77448i 0.107715 + 0.249711i
\(737\) 11.4019 + 64.6636i 0.419996 + 2.38192i
\(738\) 0 0
\(739\) 0.921946 5.22861i 0.0339143 0.192338i −0.963144 0.268987i \(-0.913311\pi\)
0.997058 + 0.0766494i \(0.0244222\pi\)
\(740\) 0.611383 0.144901i 0.0224749 0.00532665i
\(741\) 0 0
\(742\) 6.28019 + 4.13055i 0.230553 + 0.151637i
\(743\) 1.43288 24.6016i 0.0525673 0.902547i −0.864206 0.503138i \(-0.832179\pi\)
0.916773 0.399408i \(-0.130784\pi\)
\(744\) 0 0
\(745\) −0.00924772 + 0.0308895i −0.000338810 + 0.00113171i
\(746\) −13.4262 + 4.88672i −0.491567 + 0.178916i
\(747\) 0 0
\(748\) 6.53970 + 2.38026i 0.239115 + 0.0870308i
\(749\) −1.77902 + 2.38964i −0.0650040 + 0.0873155i
\(750\) 0 0
\(751\) 38.8862 + 9.21620i 1.41898 + 0.336304i 0.867314 0.497762i \(-0.165845\pi\)
0.551665 + 0.834066i \(0.313993\pi\)
\(752\) 2.00057 4.63784i 0.0729533 0.169125i
\(753\) 0 0
\(754\) −10.6209 + 6.98546i −0.386789 + 0.254395i
\(755\) −10.6175 18.3900i −0.386410 0.669282i
\(756\) 0 0
\(757\) −1.35834 + 2.35271i −0.0493695 + 0.0855105i −0.889654 0.456635i \(-0.849055\pi\)
0.840285 + 0.542146i \(0.182388\pi\)
\(758\) −1.40251 24.0801i −0.0509413 0.874628i
\(759\) 0 0
\(760\) −4.06055 + 0.474611i −0.147292 + 0.0172159i
\(761\) 5.86783 6.21954i 0.212709 0.225458i −0.612231 0.790679i \(-0.709728\pi\)
0.824939 + 0.565221i \(0.191209\pi\)
\(762\) 0 0
\(763\) 34.1420 + 3.99063i 1.23602 + 0.144471i
\(764\) −13.6565 + 11.4592i −0.494075 + 0.414579i
\(765\) 0 0
\(766\) −4.44327 3.72835i −0.160542 0.134711i
\(767\) −6.09612 6.46151i −0.220118 0.233312i
\(768\) 0 0
\(769\) −11.2283 + 5.63904i −0.404901 + 0.203349i −0.639581 0.768724i \(-0.720892\pi\)
0.234680 + 0.972073i \(0.424596\pi\)
\(770\) 10.7188 5.38320i 0.386280 0.193997i
\(771\) 0 0
\(772\) 15.3362 + 16.2554i 0.551960 + 0.585044i
\(773\) −39.4061 33.0656i −1.41734 1.18929i −0.952748 0.303761i \(-0.901757\pi\)
−0.464590 0.885526i \(-0.653798\pi\)
\(774\) 0 0
\(775\) −19.9123 + 16.7084i −0.715271 + 0.600183i
\(776\) −17.1875 2.00893i −0.616994 0.0721163i
\(777\) 0 0
\(778\) 14.1025 14.9478i 0.505599 0.535903i
\(779\) 41.2841 4.82541i 1.47915 0.172888i
\(780\) 0 0
\(781\) 0.0756466 + 1.29880i 0.00270685 + 0.0464748i
\(782\) −5.59680 + 9.69393i −0.200141 + 0.346654i
\(783\) 0 0
\(784\) −0.440251 0.762537i −0.0157232 0.0272334i
\(785\) −6.87058 + 4.51885i −0.245221 + 0.161285i
\(786\) 0 0
\(787\) 1.22244 2.83392i 0.0435751 0.101018i −0.895038 0.445989i \(-0.852852\pi\)
0.938613 + 0.344971i \(0.112111\pi\)
\(788\) 3.97306 + 0.941633i 0.141534 + 0.0335443i
\(789\) 0 0
\(790\) −1.97891 + 2.65813i −0.0704063 + 0.0945721i
\(791\) 17.9668 + 6.53937i 0.638825 + 0.232513i
\(792\) 0 0
\(793\) 8.74152 3.18165i 0.310420 0.112984i
\(794\) 4.20716 14.0529i 0.149307 0.498719i
\(795\) 0 0
\(796\) 0.0470760 0.808264i 0.00166857 0.0286482i
\(797\) 14.5827 + 9.59119i 0.516546 + 0.339738i 0.780867 0.624697i \(-0.214778\pi\)
−0.264321 + 0.964435i \(0.585148\pi\)
\(798\) 0 0
\(799\) 7.45662 1.76725i 0.263796 0.0625209i
\(800\) −0.717572 + 4.06955i −0.0253700 + 0.143880i
\(801\) 0 0
\(802\) −4.63670 26.2960i −0.163727 0.928544i
\(803\) 21.0354 + 48.7656i 0.742324 + 1.72090i
\(804\) 0 0
\(805\) 5.53311 + 18.4819i 0.195017 + 0.651401i
\(806\) −6.62716 8.90181i −0.233432 0.313553i
\(807\) 0 0
\(808\) 5.65559 + 2.84035i 0.198963 + 0.0999230i
\(809\) −55.0128 −1.93415 −0.967074 0.254495i \(-0.918091\pi\)
−0.967074 + 0.254495i \(0.918091\pi\)
\(810\) 0 0
\(811\) −0.195906 −0.00687919 −0.00343960 0.999994i \(-0.501095\pi\)
−0.00343960 + 0.999994i \(0.501095\pi\)
\(812\) −18.0755 9.07787i −0.634326 0.318571i
\(813\) 0 0
\(814\) 1.84768 + 2.48187i 0.0647612 + 0.0869894i
\(815\) −5.66967 18.9380i −0.198600 0.663370i
\(816\) 0 0
\(817\) 9.56362 + 22.1710i 0.334589 + 0.775664i
\(818\) −1.69066 9.58820i −0.0591125 0.335244i
\(819\) 0 0
\(820\) −1.53187 + 8.68766i −0.0534952 + 0.303386i
\(821\) −8.41661 + 1.99477i −0.293742 + 0.0696181i −0.374845 0.927088i \(-0.622304\pi\)
0.0811028 + 0.996706i \(0.474156\pi\)
\(822\) 0 0
\(823\) −29.5504 19.4356i −1.03006 0.677482i −0.0823472 0.996604i \(-0.526242\pi\)
−0.947714 + 0.319122i \(0.896612\pi\)
\(824\) 1.08299 18.5943i 0.0377278 0.647762i
\(825\) 0 0
\(826\) 4.05389 13.5409i 0.141053 0.471150i
\(827\) −17.2621 + 6.28287i −0.600261 + 0.218477i −0.624236 0.781236i \(-0.714590\pi\)
0.0239758 + 0.999713i \(0.492368\pi\)
\(828\) 0 0
\(829\) −25.5086 9.28437i −0.885951 0.322460i −0.141342 0.989961i \(-0.545142\pi\)
−0.744609 + 0.667501i \(0.767364\pi\)
\(830\) −5.95169 + 7.99451i −0.206586 + 0.277493i
\(831\) 0 0
\(832\) −1.71671 0.406869i −0.0595164 0.0141056i
\(833\) 0.529116 1.22663i 0.0183328 0.0425002i
\(834\) 0 0
\(835\) −12.4644 + 8.19796i −0.431348 + 0.283702i
\(836\) −10.0660 17.4349i −0.348141 0.602998i
\(837\) 0 0
\(838\) −4.43326 + 7.67862i −0.153144 + 0.265254i
\(839\) 0.691745 + 11.8768i 0.0238817 + 0.410033i 0.988971 + 0.148111i \(0.0473193\pi\)
−0.965089 + 0.261922i \(0.915644\pi\)
\(840\) 0 0
\(841\) −22.7620 + 2.66050i −0.784898 + 0.0917414i
\(842\) 7.92129 8.39608i 0.272986 0.289348i
\(843\) 0 0
\(844\) −11.2940 1.32008i −0.388756 0.0454391i
\(845\) 7.05523 5.92004i 0.242707 0.203656i
\(846\) 0 0
\(847\) 21.5929 + 18.1186i 0.741942 + 0.622564i
\(848\) 1.83752 + 1.94766i 0.0631008 + 0.0668830i
\(849\) 0 0
\(850\) −5.60263 + 2.81375i −0.192169 + 0.0965108i
\(851\) −4.44727 + 2.23350i −0.152451 + 0.0765635i
\(852\) 0 0
\(853\) 20.9646 + 22.2211i 0.717813 + 0.760837i 0.978869 0.204486i \(-0.0655523\pi\)
−0.261056 + 0.965324i \(0.584071\pi\)
\(854\) 11.3388 + 9.51437i 0.388005 + 0.325575i
\(855\) 0 0
\(856\) −0.812958 + 0.682153i −0.0277863 + 0.0233155i
\(857\) 26.5253 + 3.10036i 0.906087 + 0.105906i 0.556356 0.830944i \(-0.312199\pi\)
0.349731 + 0.936850i \(0.386273\pi\)
\(858\) 0 0
\(859\) 12.8776 13.6495i 0.439379 0.465715i −0.469404 0.882984i \(-0.655531\pi\)
0.908783 + 0.417269i \(0.137013\pi\)
\(860\) −5.08998 + 0.594933i −0.173567 + 0.0202870i
\(861\) 0 0
\(862\) −1.57697 27.0755i −0.0537118 0.922196i
\(863\) −20.7662 + 35.9682i −0.706891 + 1.22437i 0.259113 + 0.965847i \(0.416570\pi\)
−0.966005 + 0.258525i \(0.916764\pi\)
\(864\) 0 0
\(865\) 5.25893 + 9.10873i 0.178809 + 0.309706i
\(866\) 1.55940 1.02564i 0.0529907 0.0348525i
\(867\) 0 0
\(868\) 6.99410 16.2141i 0.237395 0.550344i
\(869\) −15.8791 3.76341i −0.538661 0.127665i
\(870\) 0 0
\(871\) 15.0810 20.2573i 0.510999 0.686391i
\(872\) 11.5065 + 4.18804i 0.389661 + 0.141825i
\(873\) 0 0
\(874\) 30.4279 11.0748i 1.02924 0.374612i
\(875\) −6.84888 + 22.8769i −0.231535 + 0.773379i
\(876\) 0 0
\(877\) −2.80398 + 48.1425i −0.0946838 + 1.62566i 0.532251 + 0.846587i \(0.321346\pi\)
−0.626935 + 0.779072i \(0.715691\pi\)
\(878\) 4.57484 + 3.00892i 0.154393 + 0.101546i
\(879\) 0 0
\(880\) 4.15761 0.985373i 0.140153 0.0332169i
\(881\) 6.90826 39.1787i 0.232745 1.31996i −0.614565 0.788866i \(-0.710669\pi\)
0.847310 0.531098i \(-0.178220\pi\)
\(882\) 0 0
\(883\) 0.0528584 + 0.299775i 0.00177883 + 0.0100882i 0.985684 0.168602i \(-0.0539252\pi\)
−0.983905 + 0.178690i \(0.942814\pi\)
\(884\) −1.06020 2.45781i −0.0356582 0.0826651i
\(885\) 0 0
\(886\) −3.27873 10.9517i −0.110151 0.367930i
\(887\) 12.3866 + 16.6381i 0.415901 + 0.558652i 0.959867 0.280455i \(-0.0904854\pi\)
−0.543966 + 0.839107i \(0.683078\pi\)
\(888\) 0 0
\(889\) −21.3722 10.7335i −0.716800 0.359991i
\(890\) 9.37239 0.314163
\(891\) 0 0
\(892\) 17.7654 0.594829
\(893\) −19.8100 9.94896i −0.662917 0.332929i
\(894\) 0 0
\(895\) −11.0948 14.9030i −0.370860 0.498151i
\(896\) −0.805121 2.68929i −0.0268972 0.0898429i
\(897\) 0 0
\(898\) 0.231329 + 0.536281i 0.00771956 + 0.0178959i
\(899\) −7.87041 44.6353i −0.262493 1.48867i
\(900\) 0 0
\(901\) −0.705447 + 4.00079i −0.0235018 + 0.133286i
\(902\) −42.2709 + 10.0184i −1.40747 + 0.333576i
\(903\) 0 0
\(904\) 5.69046 + 3.74268i 0.189262 + 0.124480i
\(905\) −1.15268 + 19.7907i −0.0383164 + 0.657866i
\(906\) 0 0
\(907\) −6.46164 + 21.5834i −0.214555 + 0.716664i 0.781172 + 0.624316i \(0.214622\pi\)
−0.995727 + 0.0923479i \(0.970563\pi\)
\(908\) −2.35465 + 0.857022i −0.0781418 + 0.0284413i
\(909\) 0 0
\(910\) −4.33516 1.57787i −0.143709 0.0523059i
\(911\) 10.4625 14.0536i 0.346640 0.465618i −0.594275 0.804262i \(-0.702561\pi\)
0.940915 + 0.338644i \(0.109968\pi\)
\(912\) 0 0
\(913\) −47.7574 11.3187i −1.58054 0.374594i
\(914\) 5.17077 11.9872i 0.171034 0.396501i
\(915\) 0 0
\(916\) −3.77373 + 2.48202i −0.124688 + 0.0820083i
\(917\) 22.4126 + 38.8197i 0.740129 + 1.28194i
\(918\) 0 0
\(919\) 6.84333 11.8530i 0.225741 0.390994i −0.730801 0.682591i \(-0.760853\pi\)
0.956541 + 0.291597i \(0.0941865\pi\)
\(920\) 0.399595 + 6.86077i 0.0131742 + 0.226193i
\(921\) 0 0
\(922\) −11.5943 + 1.35518i −0.381838 + 0.0446305i
\(923\) 0.343389 0.363971i 0.0113028 0.0119803i
\(924\) 0 0
\(925\) −2.76855 0.323597i −0.0910293 0.0106398i
\(926\) 7.53467 6.32234i 0.247605 0.207765i
\(927\) 0 0
\(928\) −5.51961 4.63151i −0.181190 0.152037i
\(929\) −24.0142 25.4536i −0.787880 0.835104i 0.201646 0.979459i \(-0.435371\pi\)
−0.989526 + 0.144354i \(0.953890\pi\)
\(930\) 0 0
\(931\) −3.45337 + 1.73435i −0.113180 + 0.0568410i
\(932\) −10.9356 + 5.49206i −0.358207 + 0.179898i
\(933\) 0 0
\(934\) −12.2377 12.9712i −0.400430 0.424431i
\(935\) 4.96596 + 4.16694i 0.162404 + 0.136273i
\(936\) 0 0
\(937\) 16.4755 13.8246i 0.538230 0.451629i −0.332702 0.943032i \(-0.607960\pi\)
0.870932 + 0.491403i \(0.163516\pi\)
\(938\) 39.9121 + 4.66506i 1.30318 + 0.152320i
\(939\) 0 0
\(940\) 3.22868 3.42220i 0.105308 0.111620i
\(941\) −3.44570 + 0.402744i −0.112326 + 0.0131291i −0.172070 0.985085i \(-0.555046\pi\)
0.0597439 + 0.998214i \(0.480972\pi\)
\(942\) 0 0
\(943\) −4.06272 69.7542i −0.132300 2.27151i
\(944\) 2.51757 4.36056i 0.0819399 0.141924i
\(945\) 0 0
\(946\) −12.6180 21.8550i −0.410245 0.710566i
\(947\) 43.1639 28.3894i 1.40264 0.922530i 0.402665 0.915348i \(-0.368084\pi\)
0.999974 0.00718267i \(-0.00228633\pi\)
\(948\) 0 0
\(949\) 8.09063 18.7562i 0.262633 0.608852i
\(950\) 17.6475 + 4.18253i 0.572560 + 0.135699i
\(951\) 0 0
\(952\) 2.54334 3.41630i 0.0824302 0.110723i
\(953\) 1.06059 + 0.386024i 0.0343559 + 0.0125045i 0.359141 0.933283i \(-0.383070\pi\)
−0.324785 + 0.945788i \(0.605292\pi\)
\(954\) 0 0
\(955\) −15.6045 + 5.67956i −0.504949 + 0.183786i
\(956\) 7.60165 25.3913i 0.245855 0.821212i
\(957\) 0 0
\(958\) 2.09425 35.9569i 0.0676622 1.16171i
\(959\) −25.2446 16.6036i −0.815191 0.536159i
\(960\) 0 0
\(961\) 8.33709 1.97593i 0.268938 0.0637395i
\(962\) 0.206652 1.17198i 0.00666272 0.0377861i
\(963\) 0 0
\(964\) −0.948020 5.37649i −0.0305337 0.173165i
\(965\) 8.24516 + 19.1144i 0.265421 + 0.615316i
\(966\) 0 0
\(967\) 3.58456 + 11.9733i 0.115272 + 0.385035i 0.996082 0.0884350i \(-0.0281866\pi\)
−0.880810 + 0.473470i \(0.843001\pi\)
\(968\) 5.99612 + 8.05419i 0.192723 + 0.258872i
\(969\) 0 0
\(970\) −14.4044 7.23416i −0.462497 0.232275i
\(971\) −13.7306 −0.440635 −0.220318 0.975428i \(-0.570709\pi\)
−0.220318 + 0.975428i \(0.570709\pi\)
\(972\) 0 0
\(973\) 18.0939 0.580062
\(974\) 25.2719 + 12.6920i 0.809765 + 0.406679i
\(975\) 0 0
\(976\) 3.14866 + 4.22938i 0.100786 + 0.135379i
\(977\) −1.36028 4.54365i −0.0435192 0.145364i 0.933469 0.358659i \(-0.116766\pi\)
−0.976988 + 0.213295i \(0.931581\pi\)
\(978\) 0 0
\(979\) 18.2806 + 42.3792i 0.584250 + 1.35444i
\(980\) −0.142422 0.807716i −0.00454951 0.0258015i
\(981\) 0 0
\(982\) −0.763784 + 4.33163i −0.0243733 + 0.138228i
\(983\) −25.3644 + 6.01148i −0.808999 + 0.191736i −0.614245 0.789116i \(-0.710539\pi\)
−0.194754 + 0.980852i \(0.562391\pi\)
\(984\) 0 0
\(985\) 3.17768 + 2.08999i 0.101249 + 0.0665926i
\(986\) 0.635629 10.9133i 0.0202426 0.347551i
\(987\) 0 0
\(988\) −2.22077 + 7.41789i −0.0706521 + 0.235995i
\(989\) 38.1419 13.8825i 1.21284 0.441438i
\(990\) 0 0
\(991\) −18.1061 6.59007i −0.575158 0.209340i 0.0380312 0.999277i \(-0.487891\pi\)
−0.613189 + 0.789936i \(0.710114\pi\)
\(992\) 3.75631 5.04561i 0.119263 0.160198i
\(993\) 0 0
\(994\) 0.774737 + 0.183616i 0.0245732 + 0.00582395i
\(995\) 0.298709 0.692486i 0.00946972 0.0219533i
\(996\) 0 0
\(997\) −20.9254 + 13.7628i −0.662713 + 0.435873i −0.835800 0.549033i \(-0.814996\pi\)
0.173088 + 0.984906i \(0.444626\pi\)
\(998\) −7.92200 13.7213i −0.250766 0.434340i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.g.a.253.3 72
3.2 odd 2 162.2.g.a.13.1 72
81.25 even 27 inner 486.2.g.a.73.3 72
81.56 odd 54 162.2.g.a.25.1 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.g.a.13.1 72 3.2 odd 2
162.2.g.a.25.1 yes 72 81.56 odd 54
486.2.g.a.73.3 72 81.25 even 27 inner
486.2.g.a.253.3 72 1.1 even 1 trivial