Properties

Label 486.2.g.a.199.4
Level $486$
Weight $2$
Character 486.199
Analytic conductor $3.881$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(19,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([52]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 162)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 199.4
Character \(\chi\) \(=\) 486.199
Dual form 486.2.g.a.127.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686242 - 0.727374i) q^{2} +(-0.0581448 + 0.998308i) q^{4} +(3.71787 - 0.434557i) q^{5} +(-3.25050 - 1.63246i) q^{7} +(0.766044 - 0.642788i) q^{8} +(-2.86744 - 2.40607i) q^{10} +(-2.08512 - 4.83385i) q^{11} +(-0.202747 - 0.0480518i) q^{13} +(1.04322 + 3.48460i) q^{14} +(-0.993238 - 0.116093i) q^{16} +(0.290217 - 1.64590i) q^{17} +(0.286765 + 1.62633i) q^{19} +(0.217647 + 3.73685i) q^{20} +(-2.08512 + 4.83385i) q^{22} +(7.81600 - 3.92534i) q^{23} +(8.76851 - 2.07818i) q^{25} +(0.104182 + 0.180448i) q^{26} +(1.81870 - 3.15009i) q^{28} +(-0.216107 + 0.721848i) q^{29} +(-4.77184 - 3.13849i) q^{31} +(0.597159 + 0.802123i) q^{32} +(-1.39634 + 0.918389i) q^{34} +(-12.7944 - 4.65677i) q^{35} +(5.15467 - 1.87615i) q^{37} +(0.986157 - 1.32464i) q^{38} +(2.56873 - 2.72269i) q^{40} +(-3.43214 + 3.63786i) q^{41} +(-0.625285 + 0.839904i) q^{43} +(4.94691 - 1.80053i) q^{44} +(-8.21885 - 2.99142i) q^{46} +(-4.54436 + 2.98887i) q^{47} +(3.72073 + 4.99781i) q^{49} +(-7.52893 - 4.95185i) q^{50} +(0.0597592 - 0.199610i) q^{52} +(2.43382 - 4.21549i) q^{53} +(-9.85278 - 17.0655i) q^{55} +(-3.53936 + 0.838844i) q^{56} +(0.673355 - 0.338172i) q^{58} +(4.73861 - 10.9853i) q^{59} +(0.123728 + 2.12434i) q^{61} +(0.991781 + 5.62467i) q^{62} +(0.173648 - 0.984808i) q^{64} +(-0.774668 - 0.0905456i) q^{65} +(1.79201 + 5.98575i) q^{67} +(1.62624 + 0.385426i) q^{68} +(5.39281 + 12.5019i) q^{70} +(1.97644 + 1.65843i) q^{71} +(-4.28632 + 3.59665i) q^{73} +(-4.90201 - 2.46188i) q^{74} +(-1.64025 + 0.191718i) q^{76} +(-1.11340 + 19.1163i) q^{77} +(2.96988 + 3.14789i) q^{79} -3.74318 q^{80} +5.00136 q^{82} +(9.81132 + 10.3994i) q^{83} +(0.363751 - 6.24536i) q^{85} +(1.04002 - 0.121561i) q^{86} +(-4.70443 - 2.36265i) q^{88} +(-0.396952 + 0.333082i) q^{89} +(0.580586 + 0.487170i) q^{91} +(3.46424 + 8.03101i) q^{92} +(5.29255 + 1.25436i) q^{94} +(1.77289 + 5.92186i) q^{95} +(1.84818 + 0.216021i) q^{97} +(1.08195 - 6.13606i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 18 q^{13} + 9 q^{20} + 81 q^{23} + 18 q^{25} + 27 q^{26} + 18 q^{28} + 27 q^{29} - 54 q^{31} + 27 q^{35} - 9 q^{38} + 9 q^{41} + 36 q^{43} - 18 q^{46} + 27 q^{47} - 36 q^{52} + 27 q^{53} + 54 q^{55}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686242 0.727374i −0.485246 0.514331i
\(3\) 0 0
\(4\) −0.0581448 + 0.998308i −0.0290724 + 0.499154i
\(5\) 3.71787 0.434557i 1.66268 0.194340i 0.767815 0.640671i \(-0.221344\pi\)
0.894868 + 0.446331i \(0.147270\pi\)
\(6\) 0 0
\(7\) −3.25050 1.63246i −1.22858 0.617014i −0.288336 0.957529i \(-0.593102\pi\)
−0.940239 + 0.340515i \(0.889398\pi\)
\(8\) 0.766044 0.642788i 0.270838 0.227260i
\(9\) 0 0
\(10\) −2.86744 2.40607i −0.906765 0.760867i
\(11\) −2.08512 4.83385i −0.628687 1.45746i −0.872979 0.487758i \(-0.837815\pi\)
0.244292 0.969702i \(-0.421444\pi\)
\(12\) 0 0
\(13\) −0.202747 0.0480518i −0.0562318 0.0133272i 0.202404 0.979302i \(-0.435125\pi\)
−0.258635 + 0.965975i \(0.583273\pi\)
\(14\) 1.04322 + 3.48460i 0.278812 + 0.931298i
\(15\) 0 0
\(16\) −0.993238 0.116093i −0.248310 0.0290232i
\(17\) 0.290217 1.64590i 0.0703879 0.399189i −0.929175 0.369639i \(-0.879481\pi\)
0.999563 0.0295503i \(-0.00940753\pi\)
\(18\) 0 0
\(19\) 0.286765 + 1.62633i 0.0657885 + 0.373105i 0.999871 + 0.0160484i \(0.00510858\pi\)
−0.934083 + 0.357057i \(0.883780\pi\)
\(20\) 0.217647 + 3.73685i 0.0486673 + 0.835585i
\(21\) 0 0
\(22\) −2.08512 + 4.83385i −0.444549 + 1.03058i
\(23\) 7.81600 3.92534i 1.62975 0.818490i 0.630648 0.776069i \(-0.282789\pi\)
0.999100 0.0424209i \(-0.0135070\pi\)
\(24\) 0 0
\(25\) 8.76851 2.07818i 1.75370 0.415635i
\(26\) 0.104182 + 0.180448i 0.0204317 + 0.0353887i
\(27\) 0 0
\(28\) 1.81870 3.15009i 0.343703 0.595310i
\(29\) −0.216107 + 0.721848i −0.0401301 + 0.134044i −0.975707 0.219079i \(-0.929695\pi\)
0.935577 + 0.353122i \(0.114880\pi\)
\(30\) 0 0
\(31\) −4.77184 3.13849i −0.857047 0.563689i 0.0432006 0.999066i \(-0.486245\pi\)
−0.900248 + 0.435377i \(0.856615\pi\)
\(32\) 0.597159 + 0.802123i 0.105564 + 0.141797i
\(33\) 0 0
\(34\) −1.39634 + 0.918389i −0.239471 + 0.157502i
\(35\) −12.7944 4.65677i −2.16264 0.787137i
\(36\) 0 0
\(37\) 5.15467 1.87615i 0.847423 0.308437i 0.118434 0.992962i \(-0.462213\pi\)
0.728989 + 0.684525i \(0.239990\pi\)
\(38\) 0.986157 1.32464i 0.159976 0.214885i
\(39\) 0 0
\(40\) 2.56873 2.72269i 0.406152 0.430495i
\(41\) −3.43214 + 3.63786i −0.536010 + 0.568138i −0.937615 0.347675i \(-0.886971\pi\)
0.401605 + 0.915813i \(0.368453\pi\)
\(42\) 0 0
\(43\) −0.625285 + 0.839904i −0.0953551 + 0.128084i −0.847240 0.531210i \(-0.821737\pi\)
0.751885 + 0.659294i \(0.229145\pi\)
\(44\) 4.94691 1.80053i 0.745774 0.271440i
\(45\) 0 0
\(46\) −8.21885 2.99142i −1.21180 0.441060i
\(47\) −4.54436 + 2.98887i −0.662863 + 0.435972i −0.835854 0.548952i \(-0.815027\pi\)
0.172991 + 0.984923i \(0.444657\pi\)
\(48\) 0 0
\(49\) 3.72073 + 4.99781i 0.531533 + 0.713972i
\(50\) −7.52893 4.95185i −1.06475 0.700298i
\(51\) 0 0
\(52\) 0.0597592 0.199610i 0.00828711 0.0276809i
\(53\) 2.43382 4.21549i 0.334310 0.579042i −0.649042 0.760753i \(-0.724830\pi\)
0.983352 + 0.181710i \(0.0581633\pi\)
\(54\) 0 0
\(55\) −9.85278 17.0655i −1.32855 2.30111i
\(56\) −3.53936 + 0.838844i −0.472967 + 0.112095i
\(57\) 0 0
\(58\) 0.673355 0.338172i 0.0884159 0.0444041i
\(59\) 4.73861 10.9853i 0.616914 1.43017i −0.267542 0.963546i \(-0.586211\pi\)
0.884457 0.466622i \(-0.154529\pi\)
\(60\) 0 0
\(61\) 0.123728 + 2.12434i 0.0158418 + 0.271993i 0.996922 + 0.0783938i \(0.0249792\pi\)
−0.981081 + 0.193599i \(0.937984\pi\)
\(62\) 0.991781 + 5.62467i 0.125956 + 0.714334i
\(63\) 0 0
\(64\) 0.173648 0.984808i 0.0217060 0.123101i
\(65\) −0.774668 0.0905456i −0.0960857 0.0112308i
\(66\) 0 0
\(67\) 1.79201 + 5.98575i 0.218929 + 0.731275i 0.994932 + 0.100546i \(0.0320590\pi\)
−0.776003 + 0.630729i \(0.782756\pi\)
\(68\) 1.62624 + 0.385426i 0.197211 + 0.0467398i
\(69\) 0 0
\(70\) 5.39281 + 12.5019i 0.644565 + 1.49427i
\(71\) 1.97644 + 1.65843i 0.234560 + 0.196820i 0.752490 0.658604i \(-0.228853\pi\)
−0.517930 + 0.855423i \(0.673297\pi\)
\(72\) 0 0
\(73\) −4.28632 + 3.59665i −0.501676 + 0.420956i −0.858189 0.513334i \(-0.828410\pi\)
0.356513 + 0.934291i \(0.383966\pi\)
\(74\) −4.90201 2.46188i −0.569847 0.286188i
\(75\) 0 0
\(76\) −1.64025 + 0.191718i −0.188150 + 0.0219915i
\(77\) −1.11340 + 19.1163i −0.126884 + 2.17851i
\(78\) 0 0
\(79\) 2.96988 + 3.14789i 0.334138 + 0.354166i 0.872558 0.488511i \(-0.162460\pi\)
−0.538420 + 0.842677i \(0.680978\pi\)
\(80\) −3.74318 −0.418501
\(81\) 0 0
\(82\) 5.00136 0.552308
\(83\) 9.81132 + 10.3994i 1.07693 + 1.14148i 0.989385 + 0.145321i \(0.0464215\pi\)
0.0875474 + 0.996160i \(0.472097\pi\)
\(84\) 0 0
\(85\) 0.363751 6.24536i 0.0394543 0.677405i
\(86\) 1.04002 0.121561i 0.112148 0.0131083i
\(87\) 0 0
\(88\) −4.70443 2.36265i −0.501494 0.251860i
\(89\) −0.396952 + 0.333082i −0.0420768 + 0.0353067i −0.663584 0.748102i \(-0.730965\pi\)
0.621507 + 0.783409i \(0.286521\pi\)
\(90\) 0 0
\(91\) 0.580586 + 0.487170i 0.0608620 + 0.0510692i
\(92\) 3.46424 + 8.03101i 0.361172 + 0.837291i
\(93\) 0 0
\(94\) 5.29255 + 1.25436i 0.545885 + 0.129377i
\(95\) 1.77289 + 5.92186i 0.181895 + 0.607570i
\(96\) 0 0
\(97\) 1.84818 + 0.216021i 0.187654 + 0.0219337i 0.209401 0.977830i \(-0.432849\pi\)
−0.0217465 + 0.999764i \(0.506923\pi\)
\(98\) 1.08195 6.13606i 0.109294 0.619836i
\(99\) 0 0
\(100\) 1.56482 + 8.87451i 0.156482 + 0.887451i
\(101\) −0.668800 11.4829i −0.0665481 1.14259i −0.851958 0.523610i \(-0.824585\pi\)
0.785410 0.618976i \(-0.212452\pi\)
\(102\) 0 0
\(103\) −5.88743 + 13.6486i −0.580105 + 1.34484i 0.335228 + 0.942137i \(0.391187\pi\)
−0.915333 + 0.402698i \(0.868073\pi\)
\(104\) −0.186200 + 0.0935132i −0.0182584 + 0.00916972i
\(105\) 0 0
\(106\) −4.73642 + 1.12255i −0.460042 + 0.109032i
\(107\) −1.27937 2.21593i −0.123681 0.214222i 0.797535 0.603272i \(-0.206137\pi\)
−0.921217 + 0.389050i \(0.872803\pi\)
\(108\) 0 0
\(109\) −5.38593 + 9.32871i −0.515879 + 0.893528i 0.483951 + 0.875095i \(0.339201\pi\)
−0.999830 + 0.0184331i \(0.994132\pi\)
\(110\) −5.65162 + 18.8777i −0.538861 + 1.79992i
\(111\) 0 0
\(112\) 3.03901 + 1.99879i 0.287159 + 0.188868i
\(113\) 7.36982 + 9.89939i 0.693295 + 0.931256i 0.999787 0.0206167i \(-0.00656295\pi\)
−0.306493 + 0.951873i \(0.599156\pi\)
\(114\) 0 0
\(115\) 27.3531 17.9904i 2.55069 1.67761i
\(116\) −0.708062 0.257713i −0.0657419 0.0239281i
\(117\) 0 0
\(118\) −11.2423 + 4.09185i −1.03494 + 0.376686i
\(119\) −3.63022 + 4.87624i −0.332782 + 0.447004i
\(120\) 0 0
\(121\) −11.4697 + 12.1572i −1.04270 + 1.10520i
\(122\) 1.46028 1.54780i 0.132207 0.140132i
\(123\) 0 0
\(124\) 3.41064 4.58128i 0.306284 0.411411i
\(125\) 14.1099 5.13559i 1.26203 0.459341i
\(126\) 0 0
\(127\) 17.2415 + 6.27538i 1.52993 + 0.556850i 0.963605 0.267331i \(-0.0861417\pi\)
0.566327 + 0.824181i \(0.308364\pi\)
\(128\) −0.835488 + 0.549509i −0.0738474 + 0.0485702i
\(129\) 0 0
\(130\) 0.465749 + 0.625609i 0.0408489 + 0.0548695i
\(131\) 0.165733 + 0.109005i 0.0144802 + 0.00952378i 0.556728 0.830695i \(-0.312056\pi\)
−0.542248 + 0.840218i \(0.682427\pi\)
\(132\) 0 0
\(133\) 1.72279 5.75452i 0.149385 0.498980i
\(134\) 3.12412 5.41113i 0.269883 0.467451i
\(135\) 0 0
\(136\) −0.835645 1.44738i −0.0716560 0.124112i
\(137\) 4.29953 1.01901i 0.367333 0.0870596i −0.0428037 0.999084i \(-0.513629\pi\)
0.410137 + 0.912024i \(0.365481\pi\)
\(138\) 0 0
\(139\) −1.10445 + 0.554676i −0.0936783 + 0.0470470i −0.495021 0.868881i \(-0.664840\pi\)
0.401343 + 0.915928i \(0.368543\pi\)
\(140\) 5.39281 12.5019i 0.455776 1.05661i
\(141\) 0 0
\(142\) −0.150017 2.57570i −0.0125892 0.216148i
\(143\) 0.190475 + 1.08024i 0.0159284 + 0.0903342i
\(144\) 0 0
\(145\) −0.489775 + 2.77765i −0.0406736 + 0.230671i
\(146\) 5.55756 + 0.649586i 0.459947 + 0.0537601i
\(147\) 0 0
\(148\) 1.57326 + 5.25504i 0.129321 + 0.431962i
\(149\) −7.84141 1.85845i −0.642394 0.152250i −0.103507 0.994629i \(-0.533007\pi\)
−0.538886 + 0.842379i \(0.681155\pi\)
\(150\) 0 0
\(151\) 2.94676 + 6.83136i 0.239804 + 0.555928i 0.995034 0.0995312i \(-0.0317343\pi\)
−0.755230 + 0.655459i \(0.772475\pi\)
\(152\) 1.26506 + 1.06151i 0.102610 + 0.0860998i
\(153\) 0 0
\(154\) 14.6688 12.3086i 1.18204 0.991852i
\(155\) −19.1049 9.59486i −1.53455 0.770678i
\(156\) 0 0
\(157\) 19.5842 2.28906i 1.56299 0.182687i 0.709843 0.704360i \(-0.248766\pi\)
0.853145 + 0.521673i \(0.174692\pi\)
\(158\) 0.251636 4.32043i 0.0200191 0.343715i
\(159\) 0 0
\(160\) 2.56873 + 2.72269i 0.203076 + 0.215248i
\(161\) −31.8139 −2.50729
\(162\) 0 0
\(163\) 7.25041 0.567896 0.283948 0.958840i \(-0.408356\pi\)
0.283948 + 0.958840i \(0.408356\pi\)
\(164\) −3.43214 3.63786i −0.268005 0.284069i
\(165\) 0 0
\(166\) 0.831307 14.2730i 0.0645219 1.10780i
\(167\) −18.7077 + 2.18662i −1.44764 + 0.169205i −0.803320 0.595547i \(-0.796935\pi\)
−0.644324 + 0.764753i \(0.722861\pi\)
\(168\) 0 0
\(169\) −11.5784 5.81490i −0.890648 0.447300i
\(170\) −4.79233 + 4.02124i −0.367555 + 0.308415i
\(171\) 0 0
\(172\) −0.802126 0.673063i −0.0611615 0.0513206i
\(173\) −1.82769 4.23707i −0.138957 0.322138i 0.834500 0.551007i \(-0.185756\pi\)
−0.973457 + 0.228869i \(0.926497\pi\)
\(174\) 0 0
\(175\) −31.8946 7.55917i −2.41101 0.571419i
\(176\) 1.50984 + 5.04323i 0.113809 + 0.380148i
\(177\) 0 0
\(178\) 0.514681 + 0.0601575i 0.0385769 + 0.00450900i
\(179\) −4.34713 + 24.6538i −0.324920 + 1.84271i 0.185320 + 0.982678i \(0.440668\pi\)
−0.510240 + 0.860032i \(0.670443\pi\)
\(180\) 0 0
\(181\) 2.73733 + 15.5241i 0.203464 + 1.15390i 0.899839 + 0.436223i \(0.143684\pi\)
−0.696375 + 0.717678i \(0.745205\pi\)
\(182\) −0.0440680 0.756619i −0.00326654 0.0560843i
\(183\) 0 0
\(184\) 3.46424 8.03101i 0.255387 0.592054i
\(185\) 18.3491 9.21528i 1.34905 0.677521i
\(186\) 0 0
\(187\) −8.56116 + 2.02903i −0.626054 + 0.148378i
\(188\) −2.71958 4.71046i −0.198346 0.343545i
\(189\) 0 0
\(190\) 3.09078 5.35338i 0.224228 0.388375i
\(191\) 0.382243 1.27678i 0.0276581 0.0923845i −0.943046 0.332662i \(-0.892053\pi\)
0.970704 + 0.240277i \(0.0772384\pi\)
\(192\) 0 0
\(193\) −11.1785 7.35219i −0.804644 0.529222i 0.0792808 0.996852i \(-0.474738\pi\)
−0.883924 + 0.467630i \(0.845108\pi\)
\(194\) −1.11117 1.49256i −0.0797774 0.107160i
\(195\) 0 0
\(196\) −5.20569 + 3.42384i −0.371835 + 0.244560i
\(197\) 24.7068 + 8.99252i 1.76028 + 0.640691i 0.999961 0.00885463i \(-0.00281855\pi\)
0.760323 + 0.649545i \(0.225041\pi\)
\(198\) 0 0
\(199\) −2.18009 + 0.793488i −0.154542 + 0.0562489i −0.418133 0.908386i \(-0.637315\pi\)
0.263591 + 0.964635i \(0.415093\pi\)
\(200\) 5.38124 7.22827i 0.380511 0.511116i
\(201\) 0 0
\(202\) −7.89336 + 8.36648i −0.555375 + 0.588663i
\(203\) 1.88085 1.99358i 0.132010 0.139922i
\(204\) 0 0
\(205\) −11.1794 + 15.0166i −0.780804 + 1.04880i
\(206\) 13.9678 5.08387i 0.973184 0.354210i
\(207\) 0 0
\(208\) 0.195797 + 0.0712644i 0.0135761 + 0.00494130i
\(209\) 7.26347 4.77726i 0.502425 0.330450i
\(210\) 0 0
\(211\) −5.83455 7.83716i −0.401667 0.539532i 0.554566 0.832140i \(-0.312884\pi\)
−0.956233 + 0.292608i \(0.905477\pi\)
\(212\) 4.06685 + 2.67481i 0.279312 + 0.183706i
\(213\) 0 0
\(214\) −0.733854 + 2.45124i −0.0501653 + 0.167564i
\(215\) −1.95974 + 3.39438i −0.133653 + 0.231495i
\(216\) 0 0
\(217\) 10.3874 + 17.9915i 0.705144 + 1.22134i
\(218\) 10.4815 2.48416i 0.709897 0.168249i
\(219\) 0 0
\(220\) 17.6095 8.84384i 1.18723 0.596252i
\(221\) −0.137929 + 0.319755i −0.00927811 + 0.0215091i
\(222\) 0 0
\(223\) −0.340442 5.84516i −0.0227977 0.391421i −0.990335 0.138694i \(-0.955710\pi\)
0.967538 0.252727i \(-0.0813274\pi\)
\(224\) −0.631629 3.58215i −0.0422025 0.239342i
\(225\) 0 0
\(226\) 2.14308 12.1540i 0.142555 0.808471i
\(227\) 7.48001 + 0.874287i 0.496465 + 0.0580285i 0.360642 0.932705i \(-0.382558\pi\)
0.135824 + 0.990733i \(0.456632\pi\)
\(228\) 0 0
\(229\) −3.23898 10.8190i −0.214038 0.714937i −0.995816 0.0913799i \(-0.970872\pi\)
0.781778 0.623557i \(-0.214313\pi\)
\(230\) −31.8566 7.55015i −2.10056 0.497842i
\(231\) 0 0
\(232\) 0.298448 + 0.691879i 0.0195940 + 0.0454241i
\(233\) −5.82577 4.88840i −0.381659 0.320250i 0.431694 0.902020i \(-0.357916\pi\)
−0.813353 + 0.581770i \(0.802360\pi\)
\(234\) 0 0
\(235\) −15.5965 + 13.0870i −1.01740 + 0.853703i
\(236\) 10.6912 + 5.36933i 0.695939 + 0.349514i
\(237\) 0 0
\(238\) 6.03806 0.705748i 0.391389 0.0457468i
\(239\) −1.11084 + 19.0723i −0.0718541 + 1.23369i 0.749008 + 0.662561i \(0.230530\pi\)
−0.820862 + 0.571126i \(0.806507\pi\)
\(240\) 0 0
\(241\) 4.44457 + 4.71097i 0.286300 + 0.303460i 0.854522 0.519415i \(-0.173850\pi\)
−0.568222 + 0.822875i \(0.692369\pi\)
\(242\) 16.7138 1.07440
\(243\) 0 0
\(244\) −2.12794 −0.136227
\(245\) 16.0050 + 16.9643i 1.02252 + 1.08381i
\(246\) 0 0
\(247\) 0.0200073 0.343512i 0.00127303 0.0218571i
\(248\) −5.67282 + 0.663058i −0.360224 + 0.0421042i
\(249\) 0 0
\(250\) −13.4183 6.73893i −0.848648 0.426207i
\(251\) 6.01053 5.04343i 0.379381 0.318339i −0.433078 0.901356i \(-0.642573\pi\)
0.812459 + 0.583018i \(0.198128\pi\)
\(252\) 0 0
\(253\) −35.2718 29.5965i −2.21752 1.86072i
\(254\) −7.26726 16.8474i −0.455989 1.05710i
\(255\) 0 0
\(256\) 0.973045 + 0.230616i 0.0608153 + 0.0144135i
\(257\) −3.31564 11.0750i −0.206824 0.690839i −0.996960 0.0779088i \(-0.975176\pi\)
0.790137 0.612931i \(-0.210009\pi\)
\(258\) 0 0
\(259\) −19.8180 2.31640i −1.23143 0.143934i
\(260\) 0.135435 0.768092i 0.00839935 0.0476351i
\(261\) 0 0
\(262\) −0.0344461 0.195354i −0.00212809 0.0120690i
\(263\) −0.419053 7.19487i −0.0258399 0.443655i −0.986271 0.165136i \(-0.947194\pi\)
0.960431 0.278519i \(-0.0898434\pi\)
\(264\) 0 0
\(265\) 7.21674 16.7303i 0.443321 1.02773i
\(266\) −5.36793 + 2.69588i −0.329129 + 0.165295i
\(267\) 0 0
\(268\) −6.07982 + 1.44094i −0.371384 + 0.0880196i
\(269\) −10.8367 18.7696i −0.660723 1.14441i −0.980426 0.196888i \(-0.936917\pi\)
0.319703 0.947518i \(-0.396417\pi\)
\(270\) 0 0
\(271\) 10.7244 18.5753i 0.651463 1.12837i −0.331305 0.943524i \(-0.607489\pi\)
0.982768 0.184844i \(-0.0591779\pi\)
\(272\) −0.479332 + 1.60108i −0.0290637 + 0.0970797i
\(273\) 0 0
\(274\) −3.69171 2.42808i −0.223024 0.146686i
\(275\) −28.3290 38.0524i −1.70830 2.29465i
\(276\) 0 0
\(277\) −10.0441 + 6.60609i −0.603490 + 0.396922i −0.814164 0.580635i \(-0.802804\pi\)
0.210674 + 0.977556i \(0.432434\pi\)
\(278\) 1.16138 + 0.422707i 0.0696548 + 0.0253523i
\(279\) 0 0
\(280\) −12.7944 + 4.65677i −0.764609 + 0.278295i
\(281\) 5.53844 7.43941i 0.330395 0.443798i −0.605622 0.795753i \(-0.707075\pi\)
0.936017 + 0.351955i \(0.114483\pi\)
\(282\) 0 0
\(283\) 16.3804 17.3622i 0.973714 1.03208i −0.0257605 0.999668i \(-0.508201\pi\)
0.999475 0.0324087i \(-0.0103178\pi\)
\(284\) −1.77054 + 1.87667i −0.105063 + 0.111360i
\(285\) 0 0
\(286\) 0.655026 0.879852i 0.0387325 0.0520268i
\(287\) 17.0949 6.22202i 1.00908 0.367274i
\(288\) 0 0
\(289\) 13.3500 + 4.85901i 0.785295 + 0.285824i
\(290\) 2.35649 1.54989i 0.138378 0.0910127i
\(291\) 0 0
\(292\) −3.34134 4.48820i −0.195537 0.262652i
\(293\) 11.4171 + 7.50914i 0.666994 + 0.438689i 0.837330 0.546697i \(-0.184115\pi\)
−0.170337 + 0.985386i \(0.554485\pi\)
\(294\) 0 0
\(295\) 12.8438 42.9013i 0.747795 2.49781i
\(296\) 2.74274 4.75057i 0.159419 0.276121i
\(297\) 0 0
\(298\) 4.02932 + 6.97898i 0.233412 + 0.404282i
\(299\) −1.77329 + 0.420277i −0.102552 + 0.0243052i
\(300\) 0 0
\(301\) 3.40361 1.70935i 0.196181 0.0985256i
\(302\) 2.94676 6.83136i 0.169567 0.393101i
\(303\) 0 0
\(304\) −0.0960213 1.64862i −0.00550720 0.0945549i
\(305\) 1.38315 + 7.84424i 0.0791990 + 0.449160i
\(306\) 0 0
\(307\) −2.34246 + 13.2847i −0.133691 + 0.758201i 0.842071 + 0.539367i \(0.181336\pi\)
−0.975762 + 0.218834i \(0.929775\pi\)
\(308\) −19.0192 2.22303i −1.08372 0.126669i
\(309\) 0 0
\(310\) 6.13156 + 20.4808i 0.348249 + 1.16323i
\(311\) 5.74747 + 1.36218i 0.325909 + 0.0772419i 0.390314 0.920682i \(-0.372367\pi\)
−0.0644043 + 0.997924i \(0.520515\pi\)
\(312\) 0 0
\(313\) 3.49181 + 8.09493i 0.197369 + 0.457552i 0.987944 0.154813i \(-0.0494775\pi\)
−0.790575 + 0.612365i \(0.790218\pi\)
\(314\) −15.1045 12.6742i −0.852395 0.715245i
\(315\) 0 0
\(316\) −3.31525 + 2.78182i −0.186497 + 0.156490i
\(317\) 6.52805 + 3.27851i 0.366652 + 0.184139i 0.622580 0.782556i \(-0.286085\pi\)
−0.255928 + 0.966696i \(0.582381\pi\)
\(318\) 0 0
\(319\) 3.93991 0.460510i 0.220593 0.0257836i
\(320\) 0.217647 3.73685i 0.0121668 0.208896i
\(321\) 0 0
\(322\) 21.8320 + 23.1406i 1.21665 + 1.28958i
\(323\) 2.76000 0.153570
\(324\) 0 0
\(325\) −1.87765 −0.104153
\(326\) −4.97554 5.27376i −0.275569 0.292087i
\(327\) 0 0
\(328\) −0.290803 + 4.99290i −0.0160569 + 0.275687i
\(329\) 19.6507 2.29683i 1.08338 0.126629i
\(330\) 0 0
\(331\) −28.6172 14.3721i −1.57294 0.789962i −0.573374 0.819294i \(-0.694366\pi\)
−0.999570 + 0.0293318i \(0.990662\pi\)
\(332\) −10.9523 + 9.19005i −0.601084 + 0.504369i
\(333\) 0 0
\(334\) 14.4285 + 12.1069i 0.789491 + 0.662462i
\(335\) 9.26363 + 21.4755i 0.506126 + 1.17333i
\(336\) 0 0
\(337\) 25.2820 + 5.99194i 1.37720 + 0.326402i 0.851538 0.524293i \(-0.175670\pi\)
0.525660 + 0.850695i \(0.323819\pi\)
\(338\) 3.71599 + 12.4123i 0.202123 + 0.675139i
\(339\) 0 0
\(340\) 6.21365 + 0.726271i 0.336982 + 0.0393876i
\(341\) −5.22112 + 29.6104i −0.282740 + 1.60350i
\(342\) 0 0
\(343\) 0.485898 + 2.75566i 0.0262360 + 0.148792i
\(344\) 0.0608835 + 1.04533i 0.00328262 + 0.0563604i
\(345\) 0 0
\(346\) −1.82769 + 4.23707i −0.0982573 + 0.227786i
\(347\) −11.6904 + 5.87112i −0.627571 + 0.315178i −0.734007 0.679142i \(-0.762352\pi\)
0.106436 + 0.994320i \(0.466056\pi\)
\(348\) 0 0
\(349\) −19.4854 + 4.61812i −1.04303 + 0.247202i −0.716210 0.697885i \(-0.754125\pi\)
−0.326819 + 0.945087i \(0.605977\pi\)
\(350\) 16.3891 + 28.3867i 0.876034 + 1.51733i
\(351\) 0 0
\(352\) 2.63219 4.55909i 0.140296 0.243001i
\(353\) 8.35199 27.8976i 0.444532 1.48484i −0.383173 0.923676i \(-0.625169\pi\)
0.827705 0.561163i \(-0.189646\pi\)
\(354\) 0 0
\(355\) 8.06884 + 5.30696i 0.428249 + 0.281664i
\(356\) −0.309438 0.415648i −0.0164002 0.0220293i
\(357\) 0 0
\(358\) 20.9157 13.7565i 1.10543 0.727052i
\(359\) −14.6096 5.31744i −0.771063 0.280644i −0.0736220 0.997286i \(-0.523456\pi\)
−0.697441 + 0.716642i \(0.745678\pi\)
\(360\) 0 0
\(361\) 15.2915 5.56563i 0.804813 0.292928i
\(362\) 9.41339 12.6444i 0.494757 0.664574i
\(363\) 0 0
\(364\) −0.520103 + 0.551277i −0.0272608 + 0.0288948i
\(365\) −14.3731 + 15.2345i −0.752320 + 0.797413i
\(366\) 0 0
\(367\) −5.51820 + 7.41223i −0.288048 + 0.386915i −0.922468 0.386073i \(-0.873831\pi\)
0.634421 + 0.772988i \(0.281239\pi\)
\(368\) −8.21885 + 2.99142i −0.428437 + 0.155938i
\(369\) 0 0
\(370\) −19.2949 7.02276i −1.00309 0.365096i
\(371\) −14.7928 + 9.72936i −0.768002 + 0.505123i
\(372\) 0 0
\(373\) 20.1084 + 27.0103i 1.04117 + 1.39854i 0.913555 + 0.406716i \(0.133326\pi\)
0.127619 + 0.991823i \(0.459266\pi\)
\(374\) 7.35089 + 4.83476i 0.380106 + 0.249999i
\(375\) 0 0
\(376\) −1.55997 + 5.21066i −0.0804493 + 0.268719i
\(377\) 0.0785012 0.135968i 0.00404302 0.00700271i
\(378\) 0 0
\(379\) 0.117576 + 0.203648i 0.00603950 + 0.0104607i 0.869029 0.494761i \(-0.164744\pi\)
−0.862990 + 0.505221i \(0.831411\pi\)
\(380\) −6.01493 + 1.42556i −0.308559 + 0.0731299i
\(381\) 0 0
\(382\) −1.19101 + 0.598146i −0.0609372 + 0.0306038i
\(383\) −5.82441 + 13.5025i −0.297614 + 0.689946i −0.999756 0.0220908i \(-0.992968\pi\)
0.702142 + 0.712037i \(0.252227\pi\)
\(384\) 0 0
\(385\) 4.16766 + 71.5559i 0.212403 + 3.64683i
\(386\) 2.32334 + 13.1763i 0.118255 + 0.670656i
\(387\) 0 0
\(388\) −0.323118 + 1.83249i −0.0164038 + 0.0930308i
\(389\) 21.2249 + 2.48083i 1.07614 + 0.125783i 0.635654 0.771974i \(-0.280731\pi\)
0.440490 + 0.897757i \(0.354805\pi\)
\(390\) 0 0
\(391\) −4.19239 14.0035i −0.212018 0.708190i
\(392\) 6.06277 + 1.43690i 0.306216 + 0.0725746i
\(393\) 0 0
\(394\) −10.4139 24.1421i −0.524644 1.21626i
\(395\) 12.4096 + 10.4129i 0.624394 + 0.523929i
\(396\) 0 0
\(397\) −17.7928 + 14.9299i −0.892995 + 0.749311i −0.968809 0.247811i \(-0.920289\pi\)
0.0758139 + 0.997122i \(0.475845\pi\)
\(398\) 2.07323 + 1.04122i 0.103922 + 0.0521914i
\(399\) 0 0
\(400\) −8.95048 + 1.04616i −0.447524 + 0.0523081i
\(401\) 0.933075 16.0203i 0.0465955 0.800014i −0.891368 0.453280i \(-0.850254\pi\)
0.937964 0.346734i \(-0.112709\pi\)
\(402\) 0 0
\(403\) 0.816664 + 0.865613i 0.0406809 + 0.0431193i
\(404\) 11.5023 0.572261
\(405\) 0 0
\(406\) −2.74080 −0.136024
\(407\) −19.8171 21.0049i −0.982298 1.04117i
\(408\) 0 0
\(409\) −0.205707 + 3.53186i −0.0101716 + 0.174639i 0.989396 + 0.145242i \(0.0463959\pi\)
−0.999568 + 0.0293976i \(0.990641\pi\)
\(410\) 18.5944 2.17338i 0.918313 0.107335i
\(411\) 0 0
\(412\) −13.2832 6.67106i −0.654415 0.328659i
\(413\) −33.3360 + 27.9723i −1.64036 + 1.37642i
\(414\) 0 0
\(415\) 40.9964 + 34.4000i 2.01243 + 1.68863i
\(416\) −0.0825284 0.191322i −0.00404629 0.00938035i
\(417\) 0 0
\(418\) −8.45935 2.00490i −0.413761 0.0980630i
\(419\) −8.97055 29.9637i −0.438240 1.46382i −0.837221 0.546865i \(-0.815821\pi\)
0.398981 0.916959i \(-0.369364\pi\)
\(420\) 0 0
\(421\) −17.7199 2.07115i −0.863613 0.100942i −0.327259 0.944935i \(-0.606125\pi\)
−0.536354 + 0.843993i \(0.680199\pi\)
\(422\) −1.69663 + 9.62208i −0.0825907 + 0.468395i
\(423\) 0 0
\(424\) −0.845255 4.79368i −0.0410492 0.232802i
\(425\) −0.875701 15.0352i −0.0424778 0.729315i
\(426\) 0 0
\(427\) 3.06572 7.10714i 0.148361 0.343939i
\(428\) 2.28657 1.14836i 0.110526 0.0555081i
\(429\) 0 0
\(430\) 3.81384 0.903896i 0.183920 0.0435898i
\(431\) 9.13617 + 15.8243i 0.440074 + 0.762230i 0.997694 0.0678655i \(-0.0216189\pi\)
−0.557621 + 0.830096i \(0.688286\pi\)
\(432\) 0 0
\(433\) 14.1667 24.5374i 0.680806 1.17919i −0.293929 0.955827i \(-0.594963\pi\)
0.974735 0.223363i \(-0.0717037\pi\)
\(434\) 5.95829 19.9021i 0.286007 0.955330i
\(435\) 0 0
\(436\) −8.99976 5.91923i −0.431010 0.283480i
\(437\) 8.62524 + 11.5857i 0.412601 + 0.554220i
\(438\) 0 0
\(439\) −2.64602 + 1.74031i −0.126287 + 0.0830605i −0.611081 0.791568i \(-0.709265\pi\)
0.484794 + 0.874629i \(0.338895\pi\)
\(440\) −18.5172 6.73970i −0.882772 0.321303i
\(441\) 0 0
\(442\) 0.327234 0.119103i 0.0155649 0.00566518i
\(443\) 19.0944 25.6482i 0.907200 1.21858i −0.0680955 0.997679i \(-0.521692\pi\)
0.975296 0.220903i \(-0.0709003\pi\)
\(444\) 0 0
\(445\) −1.33107 + 1.41086i −0.0630990 + 0.0668810i
\(446\) −4.01799 + 4.25882i −0.190257 + 0.201661i
\(447\) 0 0
\(448\) −2.17211 + 2.91765i −0.102622 + 0.137846i
\(449\) 2.30646 0.839483i 0.108849 0.0396177i −0.287022 0.957924i \(-0.592665\pi\)
0.395870 + 0.918306i \(0.370443\pi\)
\(450\) 0 0
\(451\) 24.7413 + 9.00508i 1.16502 + 0.424033i
\(452\) −10.3112 + 6.78176i −0.484996 + 0.318987i
\(453\) 0 0
\(454\) −4.49716 6.04073i −0.211062 0.283506i
\(455\) 2.37025 + 1.55894i 0.111119 + 0.0730841i
\(456\) 0 0
\(457\) 6.35184 21.2166i 0.297126 0.992471i −0.670884 0.741562i \(-0.734085\pi\)
0.968011 0.250909i \(-0.0807295\pi\)
\(458\) −5.64670 + 9.78037i −0.263853 + 0.457007i
\(459\) 0 0
\(460\) 16.3695 + 28.3529i 0.763233 + 1.32196i
\(461\) −8.12571 + 1.92583i −0.378452 + 0.0896948i −0.415439 0.909621i \(-0.636372\pi\)
0.0369870 + 0.999316i \(0.488224\pi\)
\(462\) 0 0
\(463\) −21.8558 + 10.9764i −1.01572 + 0.510116i −0.877140 0.480235i \(-0.840552\pi\)
−0.138585 + 0.990351i \(0.544255\pi\)
\(464\) 0.298448 0.691879i 0.0138551 0.0321197i
\(465\) 0 0
\(466\) 0.442192 + 7.59214i 0.0204841 + 0.351699i
\(467\) 4.93682 + 27.9981i 0.228449 + 1.29560i 0.855982 + 0.517006i \(0.172954\pi\)
−0.627533 + 0.778590i \(0.715935\pi\)
\(468\) 0 0
\(469\) 3.94657 22.3821i 0.182236 1.03351i
\(470\) 20.2221 + 2.36363i 0.932777 + 0.109026i
\(471\) 0 0
\(472\) −3.43125 11.4612i −0.157936 0.527543i
\(473\) 5.36376 + 1.27123i 0.246626 + 0.0584514i
\(474\) 0 0
\(475\) 5.89430 + 13.6645i 0.270449 + 0.626971i
\(476\) −4.65691 3.90761i −0.213449 0.179105i
\(477\) 0 0
\(478\) 14.6350 12.2802i 0.669390 0.561685i
\(479\) −14.1368 7.09975i −0.645926 0.324396i 0.0955017 0.995429i \(-0.469554\pi\)
−0.741427 + 0.671033i \(0.765851\pi\)
\(480\) 0 0
\(481\) −1.13525 + 0.132691i −0.0517627 + 0.00605020i
\(482\) 0.376586 6.46573i 0.0171530 0.294506i
\(483\) 0 0
\(484\) −11.4697 12.1572i −0.521350 0.552598i
\(485\) 6.96518 0.316272
\(486\) 0 0
\(487\) 9.74171 0.441439 0.220720 0.975337i \(-0.429159\pi\)
0.220720 + 0.975337i \(0.429159\pi\)
\(488\) 1.46028 + 1.54780i 0.0661037 + 0.0700658i
\(489\) 0 0
\(490\) 1.35610 23.2833i 0.0612622 1.05183i
\(491\) −5.97315 + 0.698161i −0.269565 + 0.0315076i −0.249801 0.968297i \(-0.580365\pi\)
−0.0197632 + 0.999805i \(0.506291\pi\)
\(492\) 0 0
\(493\) 1.12537 + 0.565183i 0.0506842 + 0.0254546i
\(494\) −0.263591 + 0.221179i −0.0118595 + 0.00995133i
\(495\) 0 0
\(496\) 4.37522 + 3.67124i 0.196453 + 0.164844i
\(497\) −3.71710 8.61721i −0.166735 0.386535i
\(498\) 0 0
\(499\) 9.43087 + 2.23516i 0.422184 + 0.100059i 0.436216 0.899842i \(-0.356318\pi\)
−0.0140319 + 0.999902i \(0.504467\pi\)
\(500\) 4.30648 + 14.3847i 0.192592 + 0.643301i
\(501\) 0 0
\(502\) −7.79314 0.910887i −0.347825 0.0406549i
\(503\) 6.11251 34.6658i 0.272543 1.54567i −0.474116 0.880463i \(-0.657232\pi\)
0.746659 0.665207i \(-0.231657\pi\)
\(504\) 0 0
\(505\) −7.47647 42.4011i −0.332698 1.88683i
\(506\) 2.67722 + 45.9661i 0.119017 + 2.04344i
\(507\) 0 0
\(508\) −7.26726 + 16.8474i −0.322433 + 0.747483i
\(509\) −16.0863 + 8.07886i −0.713014 + 0.358089i −0.768045 0.640396i \(-0.778770\pi\)
0.0550313 + 0.998485i \(0.482474\pi\)
\(510\) 0 0
\(511\) 19.8041 4.69366i 0.876083 0.207635i
\(512\) −0.500000 0.866025i −0.0220971 0.0382733i
\(513\) 0 0
\(514\) −5.78033 + 10.0118i −0.254960 + 0.441603i
\(515\) −15.9576 + 53.3021i −0.703176 + 2.34877i
\(516\) 0 0
\(517\) 23.9233 + 15.7346i 1.05214 + 0.692006i
\(518\) 11.9151 + 16.0047i 0.523518 + 0.703207i
\(519\) 0 0
\(520\) −0.651631 + 0.428585i −0.0285759 + 0.0187947i
\(521\) 4.14562 + 1.50888i 0.181623 + 0.0661054i 0.431231 0.902242i \(-0.358079\pi\)
−0.249608 + 0.968347i \(0.580302\pi\)
\(522\) 0 0
\(523\) −33.2656 + 12.1077i −1.45460 + 0.529432i −0.943873 0.330309i \(-0.892847\pi\)
−0.510730 + 0.859741i \(0.670625\pi\)
\(524\) −0.118457 + 0.159115i −0.00517481 + 0.00695097i
\(525\) 0 0
\(526\) −4.94579 + 5.24223i −0.215646 + 0.228572i
\(527\) −6.55050 + 6.94313i −0.285344 + 0.302447i
\(528\) 0 0
\(529\) 31.9468 42.9120i 1.38899 1.86574i
\(530\) −17.1216 + 6.23175i −0.743715 + 0.270690i
\(531\) 0 0
\(532\) 5.64461 + 2.05447i 0.244725 + 0.0890726i
\(533\) 0.870661 0.572643i 0.0377125 0.0248039i
\(534\) 0 0
\(535\) −5.71948 7.68260i −0.247275 0.332148i
\(536\) 5.22033 + 3.43346i 0.225484 + 0.148303i
\(537\) 0 0
\(538\) −6.21598 + 20.7628i −0.267990 + 0.895148i
\(539\) 16.4005 28.4064i 0.706418 1.22355i
\(540\) 0 0
\(541\) −12.5590 21.7529i −0.539955 0.935229i −0.998906 0.0467676i \(-0.985108\pi\)
0.458951 0.888462i \(-0.348225\pi\)
\(542\) −20.8707 + 4.94645i −0.896474 + 0.212468i
\(543\) 0 0
\(544\) 1.49352 0.750074i 0.0640341 0.0321591i
\(545\) −15.9704 + 37.0234i −0.684095 + 1.58591i
\(546\) 0 0
\(547\) −0.00653029 0.112121i −0.000279215 0.00479394i 0.998166 0.0605416i \(-0.0192828\pi\)
−0.998445 + 0.0557477i \(0.982246\pi\)
\(548\) 0.767287 + 4.35150i 0.0327769 + 0.185887i
\(549\) 0 0
\(550\) −8.23780 + 46.7189i −0.351261 + 1.99210i
\(551\) −1.23593 0.144460i −0.0526526 0.00615420i
\(552\) 0 0
\(553\) −4.51480 15.0805i −0.191989 0.641287i
\(554\) 11.6978 + 2.77242i 0.496990 + 0.117789i
\(555\) 0 0
\(556\) −0.489520 1.13483i −0.0207603 0.0481277i
\(557\) −25.6731 21.5423i −1.08780 0.912775i −0.0912573 0.995827i \(-0.529089\pi\)
−0.996545 + 0.0830527i \(0.973533\pi\)
\(558\) 0 0
\(559\) 0.167133 0.140242i 0.00706899 0.00593159i
\(560\) 12.1672 + 6.11061i 0.514159 + 0.258221i
\(561\) 0 0
\(562\) −9.21194 + 1.07672i −0.388582 + 0.0454187i
\(563\) 2.65296 45.5495i 0.111809 1.91968i −0.218549 0.975826i \(-0.570132\pi\)
0.330357 0.943856i \(-0.392831\pi\)
\(564\) 0 0
\(565\) 31.7019 + 33.6021i 1.33371 + 1.41365i
\(566\) −23.8697 −1.00332
\(567\) 0 0
\(568\) 2.58006 0.108257
\(569\) −3.01473 3.19543i −0.126384 0.133959i 0.661091 0.750306i \(-0.270094\pi\)
−0.787475 + 0.616346i \(0.788612\pi\)
\(570\) 0 0
\(571\) −2.32506 + 39.9197i −0.0973006 + 1.67059i 0.498071 + 0.867136i \(0.334042\pi\)
−0.595371 + 0.803451i \(0.702995\pi\)
\(572\) −1.08949 + 0.127343i −0.0455538 + 0.00532447i
\(573\) 0 0
\(574\) −16.2569 8.16455i −0.678552 0.340782i
\(575\) 60.3771 50.6624i 2.51790 2.11277i
\(576\) 0 0
\(577\) −3.85975 3.23872i −0.160684 0.134830i 0.558901 0.829234i \(-0.311223\pi\)
−0.719584 + 0.694405i \(0.755668\pi\)
\(578\) −5.62702 13.0449i −0.234053 0.542596i
\(579\) 0 0
\(580\) −2.74447 0.650452i −0.113958 0.0270086i
\(581\) −14.9151 49.8199i −0.618783 2.06688i
\(582\) 0 0
\(583\) −25.4518 2.97489i −1.05411 0.123207i
\(584\) −0.971631 + 5.51039i −0.0402064 + 0.228022i
\(585\) 0 0
\(586\) −2.37293 13.4576i −0.0980250 0.555927i
\(587\) 1.27552 + 21.8998i 0.0526463 + 0.903902i 0.916469 + 0.400106i \(0.131027\pi\)
−0.863823 + 0.503796i \(0.831936\pi\)
\(588\) 0 0
\(589\) 3.73581 8.66058i 0.153931 0.356853i
\(590\) −40.0192 + 20.0984i −1.64756 + 0.827438i
\(591\) 0 0
\(592\) −5.33763 + 1.26504i −0.219375 + 0.0519929i
\(593\) −4.13250 7.15770i −0.169701 0.293931i 0.768614 0.639713i \(-0.220947\pi\)
−0.938315 + 0.345782i \(0.887614\pi\)
\(594\) 0 0
\(595\) −11.3777 + 19.7068i −0.466441 + 0.807899i
\(596\) 2.31124 7.72009i 0.0946722 0.316227i
\(597\) 0 0
\(598\) 1.52260 + 1.00143i 0.0622638 + 0.0409515i
\(599\) 8.18252 + 10.9910i 0.334329 + 0.449081i 0.937218 0.348743i \(-0.113391\pi\)
−0.602890 + 0.797825i \(0.705984\pi\)
\(600\) 0 0
\(601\) 26.4263 17.3809i 1.07795 0.708980i 0.119098 0.992882i \(-0.462000\pi\)
0.958853 + 0.283902i \(0.0916292\pi\)
\(602\) −3.57904 1.30266i −0.145871 0.0530926i
\(603\) 0 0
\(604\) −6.99114 + 2.54457i −0.284465 + 0.103537i
\(605\) −37.3599 + 50.1830i −1.51889 + 2.04023i
\(606\) 0 0
\(607\) −0.851718 + 0.902768i −0.0345702 + 0.0366422i −0.744428 0.667703i \(-0.767278\pi\)
0.709858 + 0.704345i \(0.248759\pi\)
\(608\) −1.13327 + 1.20120i −0.0459602 + 0.0487149i
\(609\) 0 0
\(610\) 4.75652 6.38911i 0.192586 0.258688i
\(611\) 1.06497 0.387619i 0.0430842 0.0156814i
\(612\) 0 0
\(613\) −30.1068 10.9580i −1.21600 0.442589i −0.347221 0.937783i \(-0.612875\pi\)
−0.868782 + 0.495195i \(0.835097\pi\)
\(614\) 11.2705 7.41270i 0.454839 0.299152i
\(615\) 0 0
\(616\) 11.4348 + 15.3596i 0.460722 + 0.618857i
\(617\) 6.97735 + 4.58907i 0.280897 + 0.184749i 0.682138 0.731224i \(-0.261050\pi\)
−0.401240 + 0.915973i \(0.631421\pi\)
\(618\) 0 0
\(619\) −7.76825 + 25.9478i −0.312232 + 1.04293i 0.647512 + 0.762055i \(0.275809\pi\)
−0.959745 + 0.280874i \(0.909376\pi\)
\(620\) 10.6895 18.5147i 0.429300 0.743569i
\(621\) 0 0
\(622\) −2.95334 5.11534i −0.118418 0.205107i
\(623\) 1.83404 0.434676i 0.0734793 0.0174149i
\(624\) 0 0
\(625\) 9.96269 5.00345i 0.398508 0.200138i
\(626\) 3.49181 8.09493i 0.139561 0.323538i
\(627\) 0 0
\(628\) 1.14647 + 19.6841i 0.0457492 + 0.785483i
\(629\) −1.59198 9.02857i −0.0634764 0.359992i
\(630\) 0 0
\(631\) 3.72186 21.1077i 0.148165 0.840284i −0.816607 0.577194i \(-0.804147\pi\)
0.964771 0.263089i \(-0.0847414\pi\)
\(632\) 4.29849 + 0.502421i 0.170985 + 0.0199852i
\(633\) 0 0
\(634\) −2.09512 6.99818i −0.0832078 0.277933i
\(635\) 66.8285 + 15.8387i 2.65201 + 0.628538i
\(636\) 0 0
\(637\) −0.514212 1.19208i −0.0203738 0.0472318i
\(638\) −3.03870 2.54977i −0.120303 0.100946i
\(639\) 0 0
\(640\) −2.86744 + 2.40607i −0.113346 + 0.0951083i
\(641\) 14.0757 + 7.06906i 0.555955 + 0.279211i 0.704511 0.709693i \(-0.251166\pi\)
−0.148556 + 0.988904i \(0.547463\pi\)
\(642\) 0 0
\(643\) 44.1265 5.15764i 1.74018 0.203398i 0.814099 0.580726i \(-0.197231\pi\)
0.926079 + 0.377329i \(0.123157\pi\)
\(644\) 1.84981 31.7601i 0.0728929 1.25152i
\(645\) 0 0
\(646\) −1.89402 2.00755i −0.0745194 0.0789859i
\(647\) −18.9018 −0.743108 −0.371554 0.928411i \(-0.621175\pi\)
−0.371554 + 0.928411i \(0.621175\pi\)
\(648\) 0 0
\(649\) −62.9820 −2.47226
\(650\) 1.28852 + 1.36575i 0.0505399 + 0.0535691i
\(651\) 0 0
\(652\) −0.421574 + 7.23815i −0.0165101 + 0.283468i
\(653\) −19.0339 + 2.22475i −0.744856 + 0.0870611i −0.480051 0.877241i \(-0.659382\pi\)
−0.264805 + 0.964302i \(0.585308\pi\)
\(654\) 0 0
\(655\) 0.663544 + 0.333245i 0.0259268 + 0.0130209i
\(656\) 3.83126 3.21481i 0.149586 0.125517i
\(657\) 0 0
\(658\) −15.1558 12.7172i −0.590833 0.495768i
\(659\) −0.654481 1.51726i −0.0254950 0.0591040i 0.904993 0.425427i \(-0.139876\pi\)
−0.930488 + 0.366323i \(0.880617\pi\)
\(660\) 0 0
\(661\) −41.3076 9.79007i −1.60668 0.380790i −0.673211 0.739451i \(-0.735085\pi\)
−0.933468 + 0.358661i \(0.883233\pi\)
\(662\) 9.18443 + 30.6781i 0.356963 + 1.19234i
\(663\) 0 0
\(664\) 14.2005 + 1.65980i 0.551086 + 0.0644128i
\(665\) 3.90445 22.1432i 0.151408 0.858677i
\(666\) 0 0
\(667\) 1.14441 + 6.49026i 0.0443116 + 0.251304i
\(668\) −1.09516 18.8032i −0.0423730 0.727517i
\(669\) 0 0
\(670\) 9.26363 21.4755i 0.357885 0.829671i
\(671\) 10.0107 5.02757i 0.386460 0.194087i
\(672\) 0 0
\(673\) 12.3539 2.92794i 0.476209 0.112864i 0.0144998 0.999895i \(-0.495384\pi\)
0.461710 + 0.887031i \(0.347236\pi\)
\(674\) −12.9912 22.5014i −0.500401 0.866720i
\(675\) 0 0
\(676\) 6.47829 11.2207i 0.249165 0.431567i
\(677\) 3.18713 10.6457i 0.122491 0.409149i −0.874646 0.484762i \(-0.838906\pi\)
0.997137 + 0.0756130i \(0.0240914\pi\)
\(678\) 0 0
\(679\) −5.65488 3.71927i −0.217014 0.142733i
\(680\) −3.73579 5.01804i −0.143261 0.192433i
\(681\) 0 0
\(682\) 25.1208 16.5222i 0.961925 0.632668i
\(683\) 19.0189 + 6.92231i 0.727737 + 0.264875i 0.679207 0.733947i \(-0.262324\pi\)
0.0485305 + 0.998822i \(0.484546\pi\)
\(684\) 0 0
\(685\) 15.5423 5.65692i 0.593840 0.216140i
\(686\) 1.67095 2.24448i 0.0637973 0.0856947i
\(687\) 0 0
\(688\) 0.718564 0.761633i 0.0273950 0.0290370i
\(689\) −0.696010 + 0.737728i −0.0265159 + 0.0281052i
\(690\) 0 0
\(691\) 15.8395 21.2762i 0.602564 0.809384i −0.391269 0.920277i \(-0.627964\pi\)
0.993832 + 0.110893i \(0.0353711\pi\)
\(692\) 4.33617 1.57824i 0.164836 0.0599955i
\(693\) 0 0
\(694\) 12.2929 + 4.47425i 0.466632 + 0.169840i
\(695\) −3.86517 + 2.54216i −0.146614 + 0.0964297i
\(696\) 0 0
\(697\) 4.99149 + 6.70473i 0.189066 + 0.253960i
\(698\) 16.7308 + 11.0040i 0.633269 + 0.416508i
\(699\) 0 0
\(700\) 9.40089 31.4011i 0.355320 1.18685i
\(701\) 5.03336 8.71804i 0.190107 0.329276i −0.755178 0.655520i \(-0.772450\pi\)
0.945286 + 0.326244i \(0.105783\pi\)
\(702\) 0 0
\(703\) 4.52941 + 7.84517i 0.170830 + 0.295886i
\(704\) −5.12249 + 1.21405i −0.193061 + 0.0457563i
\(705\) 0 0
\(706\) −26.0235 + 13.0695i −0.979406 + 0.491876i
\(707\) −16.5714 + 38.4169i −0.623232 + 1.44481i
\(708\) 0 0
\(709\) 2.70801 + 46.4947i 0.101701 + 1.74614i 0.534962 + 0.844876i \(0.320326\pi\)
−0.433261 + 0.901269i \(0.642637\pi\)
\(710\) −1.67703 9.51092i −0.0629379 0.356938i
\(711\) 0 0
\(712\) −0.0899818 + 0.510312i −0.00337221 + 0.0191247i
\(713\) −49.6163 5.79931i −1.85814 0.217186i
\(714\) 0 0
\(715\) 1.17759 + 3.93342i 0.0440393 + 0.147102i
\(716\) −24.3593 5.77326i −0.910350 0.215757i
\(717\) 0 0
\(718\) 6.15792 + 14.2757i 0.229811 + 0.532763i
\(719\) 27.0503 + 22.6979i 1.00881 + 0.846490i 0.988180 0.153298i \(-0.0489893\pi\)
0.0206270 + 0.999787i \(0.493434\pi\)
\(720\) 0 0
\(721\) 41.4179 34.7538i 1.54248 1.29430i
\(722\) −14.5419 7.30323i −0.541195 0.271798i
\(723\) 0 0
\(724\) −15.6570 + 1.83005i −0.581889 + 0.0680131i
\(725\) −0.394811 + 6.77865i −0.0146629 + 0.251753i
\(726\) 0 0
\(727\) −4.09655 4.34209i −0.151933 0.161039i 0.646937 0.762544i \(-0.276050\pi\)
−0.798870 + 0.601504i \(0.794568\pi\)
\(728\) 0.757901 0.0280897
\(729\) 0 0
\(730\) 20.9446 0.775194
\(731\) 1.20093 + 1.27291i 0.0444180 + 0.0470803i
\(732\) 0 0
\(733\) 2.73945 47.0345i 0.101184 1.73726i −0.441447 0.897287i \(-0.645535\pi\)
0.542631 0.839971i \(-0.317428\pi\)
\(734\) 9.17828 1.07279i 0.338776 0.0395973i
\(735\) 0 0
\(736\) 7.81600 + 3.92534i 0.288101 + 0.144690i
\(737\) 25.1976 21.1433i 0.928166 0.778824i
\(738\) 0 0
\(739\) −9.19760 7.71770i −0.338339 0.283900i 0.457748 0.889082i \(-0.348656\pi\)
−0.796088 + 0.605182i \(0.793101\pi\)
\(740\) 8.13278 + 18.8539i 0.298967 + 0.693083i
\(741\) 0 0
\(742\) 17.2283 + 4.08318i 0.632471 + 0.149898i
\(743\) −9.51664 31.7878i −0.349132 1.16618i −0.934664 0.355532i \(-0.884300\pi\)
0.585533 0.810649i \(-0.300885\pi\)
\(744\) 0 0
\(745\) −29.9610 3.50194i −1.09769 0.128301i
\(746\) 5.84734 33.1619i 0.214086 1.21414i
\(747\) 0 0
\(748\) −1.52781 8.66466i −0.0558624 0.316811i
\(749\) 0.541164 + 9.29142i 0.0197737 + 0.339501i
\(750\) 0 0
\(751\) −14.2808 + 33.1067i −0.521115 + 1.20808i 0.431003 + 0.902351i \(0.358160\pi\)
−0.952118 + 0.305731i \(0.901099\pi\)
\(752\) 4.86062 2.44109i 0.177248 0.0890175i
\(753\) 0 0
\(754\) −0.152770 + 0.0362072i −0.00556357 + 0.00131859i
\(755\) 13.9243 + 24.1176i 0.506757 + 0.877729i
\(756\) 0 0
\(757\) −14.8811 + 25.7749i −0.540864 + 0.936804i 0.457990 + 0.888957i \(0.348569\pi\)
−0.998855 + 0.0478471i \(0.984764\pi\)
\(758\) 0.0674426 0.225274i 0.00244963 0.00818232i
\(759\) 0 0
\(760\) 5.16461 + 3.39682i 0.187340 + 0.123216i
\(761\) −32.1802 43.2255i −1.16653 1.56692i −0.755281 0.655401i \(-0.772500\pi\)
−0.411250 0.911522i \(-0.634908\pi\)
\(762\) 0 0
\(763\) 32.7358 21.5307i 1.18511 0.779462i
\(764\) 1.25239 + 0.455834i 0.0453100 + 0.0164915i
\(765\) 0 0
\(766\) 13.8183 5.02946i 0.499276 0.181722i
\(767\) −1.48860 + 1.99954i −0.0537503 + 0.0721992i
\(768\) 0 0
\(769\) −5.85019 + 6.20084i −0.210963 + 0.223608i −0.824211 0.566283i \(-0.808381\pi\)
0.613248 + 0.789890i \(0.289863\pi\)
\(770\) 49.1878 52.1361i 1.77261 1.87885i
\(771\) 0 0
\(772\) 7.98972 10.7321i 0.287556 0.386255i
\(773\) −36.4284 + 13.2589i −1.31024 + 0.476888i −0.900318 0.435234i \(-0.856666\pi\)
−0.409921 + 0.912121i \(0.634444\pi\)
\(774\) 0 0
\(775\) −48.3642 17.6031i −1.73730 0.632324i
\(776\) 1.55465 1.02251i 0.0558085 0.0367058i
\(777\) 0 0
\(778\) −12.7609 17.1409i −0.457501 0.614530i
\(779\) −6.90057 4.53857i −0.247238 0.162611i
\(780\) 0 0
\(781\) 3.89549 13.0118i 0.139392 0.465600i
\(782\) −7.30882 + 12.6592i −0.261363 + 0.452694i
\(783\) 0 0
\(784\) −3.11536 5.39596i −0.111263 0.192713i
\(785\) 71.8168 17.0209i 2.56325 0.607502i
\(786\) 0 0
\(787\) 6.04121 3.03401i 0.215346 0.108151i −0.337857 0.941198i \(-0.609702\pi\)
0.553202 + 0.833047i \(0.313406\pi\)
\(788\) −10.4139 + 24.1421i −0.370979 + 0.860026i
\(789\) 0 0
\(790\) −0.941921 16.1722i −0.0335120 0.575379i
\(791\) −7.79524 44.2090i −0.277167 1.57189i
\(792\) 0 0
\(793\) 0.0769927 0.436647i 0.00273409 0.0155058i
\(794\) 23.0698 + 2.69647i 0.818716 + 0.0956942i
\(795\) 0 0
\(796\) −0.665384 2.22254i −0.0235839 0.0787758i
\(797\) −1.49748 0.354909i −0.0530434 0.0125715i 0.204008 0.978969i \(-0.434603\pi\)
−0.257052 + 0.966398i \(0.582751\pi\)
\(798\) 0 0
\(799\) 3.60053 + 8.34698i 0.127378 + 0.295295i
\(800\) 6.90314 + 5.79243i 0.244063 + 0.204793i
\(801\) 0 0
\(802\) −12.2930 + 10.3151i −0.434082 + 0.364238i
\(803\) 26.3232 + 13.2200i 0.928924 + 0.466523i
\(804\) 0 0
\(805\) −118.280 + 13.8250i −4.16882 + 0.487266i
\(806\) 0.0691955 1.18804i 0.00243731 0.0418469i
\(807\) 0 0
\(808\) −7.89336 8.36648i −0.277688 0.294332i
\(809\) 35.4763 1.24728 0.623639 0.781712i \(-0.285653\pi\)
0.623639 + 0.781712i \(0.285653\pi\)
\(810\) 0 0
\(811\) 2.83568 0.0995740 0.0497870 0.998760i \(-0.484146\pi\)
0.0497870 + 0.998760i \(0.484146\pi\)
\(812\) 1.88085 + 1.99358i 0.0660049 + 0.0699611i
\(813\) 0 0
\(814\) −1.67909 + 28.8289i −0.0588521 + 1.01045i
\(815\) 26.9561 3.15072i 0.944232 0.110365i
\(816\) 0 0
\(817\) −1.54527 0.776063i −0.0540621 0.0271510i
\(818\) 2.71014 2.27408i 0.0947580 0.0795114i
\(819\) 0 0
\(820\) −14.3411 12.0336i −0.500814 0.420233i
\(821\) 21.4821 + 49.8012i 0.749731 + 1.73807i 0.671340 + 0.741150i \(0.265719\pi\)
0.0783916 + 0.996923i \(0.475022\pi\)
\(822\) 0 0
\(823\) 7.83046 + 1.85585i 0.272953 + 0.0646910i 0.364813 0.931081i \(-0.381133\pi\)
−0.0918599 + 0.995772i \(0.529281\pi\)
\(824\) 4.26311 + 14.2398i 0.148513 + 0.496066i
\(825\) 0 0
\(826\) 43.2229 + 5.05203i 1.50392 + 0.175783i
\(827\) −8.15370 + 46.2420i −0.283532 + 1.60799i 0.426950 + 0.904275i \(0.359588\pi\)
−0.710482 + 0.703715i \(0.751523\pi\)
\(828\) 0 0
\(829\) 4.57598 + 25.9517i 0.158930 + 0.901339i 0.955104 + 0.296271i \(0.0957430\pi\)
−0.796174 + 0.605068i \(0.793146\pi\)
\(830\) −3.11173 53.4264i −0.108010 1.85446i
\(831\) 0 0
\(832\) −0.0825284 + 0.191322i −0.00286116 + 0.00663291i
\(833\) 9.30571 4.67350i 0.322424 0.161927i
\(834\) 0 0
\(835\) −68.6026 + 16.2591i −2.37409 + 0.562670i
\(836\) 4.34685 + 7.52896i 0.150339 + 0.260395i
\(837\) 0 0
\(838\) −15.6389 + 27.0873i −0.540235 + 0.935715i
\(839\) 1.55115 5.18120i 0.0535516 0.178875i −0.927030 0.374988i \(-0.877647\pi\)
0.980581 + 0.196113i \(0.0628320\pi\)
\(840\) 0 0
\(841\) 23.7548 + 15.6238i 0.819130 + 0.538751i
\(842\) 10.6536 + 14.3103i 0.367147 + 0.493165i
\(843\) 0 0
\(844\) 8.16315 5.36899i 0.280987 0.184808i
\(845\) −45.5740 16.5876i −1.56779 0.570630i
\(846\) 0 0
\(847\) 57.1284 20.7930i 1.96296 0.714458i
\(848\) −2.90675 + 3.90444i −0.0998181 + 0.134079i
\(849\) 0 0
\(850\) −10.3353 + 10.9548i −0.354497 + 0.375745i
\(851\) 32.9244 34.8978i 1.12863 1.19628i
\(852\) 0 0
\(853\) −12.8338 + 17.2388i −0.439421 + 0.590244i −0.965569 0.260149i \(-0.916228\pi\)
0.526148 + 0.850393i \(0.323636\pi\)
\(854\) −7.27338 + 2.64729i −0.248890 + 0.0905885i
\(855\) 0 0
\(856\) −2.40443 0.875140i −0.0821816 0.0299117i
\(857\) 12.5216 8.23558i 0.427729 0.281322i −0.317336 0.948313i \(-0.602788\pi\)
0.745066 + 0.666991i \(0.232418\pi\)
\(858\) 0 0
\(859\) −30.0492 40.3630i −1.02526 1.37717i −0.924036 0.382306i \(-0.875130\pi\)
−0.101229 0.994863i \(-0.532277\pi\)
\(860\) −3.27469 2.15379i −0.111666 0.0734438i
\(861\) 0 0
\(862\) 5.24057 17.5047i 0.178494 0.596213i
\(863\) −12.2875 + 21.2826i −0.418272 + 0.724468i −0.995766 0.0919267i \(-0.970697\pi\)
0.577494 + 0.816395i \(0.304031\pi\)
\(864\) 0 0
\(865\) −8.63637 14.9586i −0.293645 0.508609i
\(866\) −27.5696 + 6.53411i −0.936853 + 0.222038i
\(867\) 0 0
\(868\) −18.5651 + 9.32372i −0.630139 + 0.316468i
\(869\) 9.02387 20.9197i 0.306114 0.709652i
\(870\) 0 0
\(871\) −0.0756989 1.29970i −0.00256496 0.0440386i
\(872\) 1.87051 + 10.6082i 0.0633436 + 0.359239i
\(873\) 0 0
\(874\) 2.50814 14.2244i 0.0848391 0.481147i
\(875\) −54.2480 6.34068i −1.83392 0.214354i
\(876\) 0 0
\(877\) 11.9131 + 39.7924i 0.402275 + 1.34369i 0.884048 + 0.467397i \(0.154808\pi\)
−0.481772 + 0.876296i \(0.660007\pi\)
\(878\) 3.08166 + 0.730367i 0.104001 + 0.0246487i
\(879\) 0 0
\(880\) 7.80498 + 18.0940i 0.263106 + 0.609948i
\(881\) −39.4074 33.0667i −1.32767 1.11405i −0.984616 0.174731i \(-0.944095\pi\)
−0.343053 0.939316i \(-0.611461\pi\)
\(882\) 0 0
\(883\) 11.6864 9.80605i 0.393279 0.330000i −0.424610 0.905376i \(-0.639589\pi\)
0.817889 + 0.575376i \(0.195144\pi\)
\(884\) −0.311194 0.156288i −0.0104666 0.00525653i
\(885\) 0 0
\(886\) −31.7592 + 3.71211i −1.06697 + 0.124711i
\(887\) −2.91698 + 50.0825i −0.0979424 + 1.68161i 0.489238 + 0.872150i \(0.337275\pi\)
−0.587180 + 0.809456i \(0.699762\pi\)
\(888\) 0 0
\(889\) −45.7991 48.5442i −1.53605 1.62812i
\(890\) 1.93966 0.0650175
\(891\) 0 0
\(892\) 5.85506 0.196042
\(893\) −6.16404 6.53351i −0.206272 0.218635i
\(894\) 0 0
\(895\) −5.44859 + 93.5487i −0.182126 + 3.12699i
\(896\) 3.61281 0.422277i 0.120696 0.0141073i
\(897\) 0 0
\(898\) −2.19341 1.10157i −0.0731950 0.0367599i
\(899\) 3.29674 2.76629i 0.109952 0.0922611i
\(900\) 0 0
\(901\) −6.23194 5.22922i −0.207616 0.174211i
\(902\) −10.4284 24.1758i −0.347229 0.804966i
\(903\) 0 0
\(904\) 12.0088 + 2.84614i 0.399407 + 0.0946613i
\(905\) 16.9232 + 56.5273i 0.562545 + 1.87903i
\(906\) 0 0
\(907\) 54.9677 + 6.42481i 1.82517 + 0.213332i 0.958411 0.285390i \(-0.0921232\pi\)
0.866762 + 0.498722i \(0.166197\pi\)
\(908\) −1.30773 + 7.41652i −0.0433986 + 0.246126i
\(909\) 0 0
\(910\) −0.492633 2.79386i −0.0163306 0.0926157i
\(911\) 2.36181 + 40.5508i 0.0782503 + 1.34351i 0.777615 + 0.628741i \(0.216429\pi\)
−0.699364 + 0.714765i \(0.746534\pi\)
\(912\) 0 0
\(913\) 29.8113 69.1103i 0.986610 2.28722i
\(914\) −19.7913 + 9.93956i −0.654638 + 0.328771i
\(915\) 0 0
\(916\) 10.9890 2.60444i 0.363086 0.0860530i
\(917\) −0.360771 0.624874i −0.0119137 0.0206352i
\(918\) 0 0
\(919\) −16.3221 + 28.2707i −0.538417 + 0.932565i 0.460573 + 0.887622i \(0.347644\pi\)
−0.998990 + 0.0449430i \(0.985689\pi\)
\(920\) 9.38967 31.3637i 0.309568 1.03403i
\(921\) 0 0
\(922\) 6.97700 + 4.58885i 0.229775 + 0.151126i
\(923\) −0.321026 0.431213i −0.0105667 0.0141935i
\(924\) 0 0
\(925\) 41.2999 27.1633i 1.35793 0.893125i
\(926\) 22.9823 + 8.36487i 0.755245 + 0.274887i
\(927\) 0 0
\(928\) −0.708062 + 0.257713i −0.0232433 + 0.00845986i
\(929\) −28.9953 + 38.9475i −0.951306 + 1.27783i 0.00931285 + 0.999957i \(0.497036\pi\)
−0.960619 + 0.277869i \(0.910372\pi\)
\(930\) 0 0
\(931\) −7.06109 + 7.48432i −0.231418 + 0.245289i
\(932\) 5.21887 5.53168i 0.170950 0.181196i
\(933\) 0 0
\(934\) 16.9772 22.8044i 0.555511 0.746181i
\(935\) −30.9476 + 11.2640i −1.01209 + 0.368372i
\(936\) 0 0
\(937\) 4.72115 + 1.71836i 0.154233 + 0.0561363i 0.417983 0.908455i \(-0.362737\pi\)
−0.263750 + 0.964591i \(0.584959\pi\)
\(938\) −18.9884 + 12.4889i −0.619995 + 0.407777i
\(939\) 0 0
\(940\) −12.1580 16.3311i −0.396551 0.532660i
\(941\) 19.7386 + 12.9823i 0.643459 + 0.423210i 0.828862 0.559453i \(-0.188989\pi\)
−0.185403 + 0.982663i \(0.559359\pi\)
\(942\) 0 0
\(943\) −12.5458 + 41.9058i −0.408547 + 1.36464i
\(944\) −5.98189 + 10.3609i −0.194694 + 0.337220i
\(945\) 0 0
\(946\) −2.75617 4.77383i −0.0896109 0.155211i
\(947\) −17.0613 + 4.04359i −0.554416 + 0.131399i −0.498268 0.867023i \(-0.666030\pi\)
−0.0561488 + 0.998422i \(0.517882\pi\)
\(948\) 0 0
\(949\) 1.04186 0.523244i 0.0338203 0.0169852i
\(950\) 5.89430 13.6645i 0.191236 0.443336i
\(951\) 0 0
\(952\) 0.353472 + 6.06888i 0.0114561 + 0.196693i
\(953\) −8.32666 47.2228i −0.269727 1.52970i −0.755229 0.655462i \(-0.772474\pi\)
0.485502 0.874236i \(-0.338637\pi\)
\(954\) 0 0
\(955\) 0.866296 4.91301i 0.0280327 0.158981i
\(956\) −18.9755 2.21792i −0.613711 0.0717325i
\(957\) 0 0
\(958\) 4.53707 + 15.1549i 0.146586 + 0.489631i
\(959\) −15.6391 3.70654i −0.505014 0.119690i
\(960\) 0 0
\(961\) 0.641865 + 1.48801i 0.0207053 + 0.0480003i
\(962\) 0.875569 + 0.734689i 0.0282295 + 0.0236873i
\(963\) 0 0
\(964\) −4.96143 + 4.16313i −0.159797 + 0.134085i
\(965\) −44.7551 22.4768i −1.44072 0.723555i
\(966\) 0 0
\(967\) 41.5836 4.86042i 1.33724 0.156301i 0.582770 0.812637i \(-0.301969\pi\)
0.754468 + 0.656337i \(0.227895\pi\)
\(968\) −0.971820 + 16.6855i −0.0312355 + 0.536292i
\(969\) 0 0
\(970\) −4.77979 5.06629i −0.153470 0.162669i
\(971\) −2.57508 −0.0826384 −0.0413192 0.999146i \(-0.513156\pi\)
−0.0413192 + 0.999146i \(0.513156\pi\)
\(972\) 0 0
\(973\) 4.49551 0.144120
\(974\) −6.68517 7.08586i −0.214207 0.227046i
\(975\) 0 0
\(976\) 0.123728 2.12434i 0.00396045 0.0679983i
\(977\) 9.91440 1.15883i 0.317190 0.0370741i 0.0439914 0.999032i \(-0.485993\pi\)
0.273198 + 0.961958i \(0.411919\pi\)
\(978\) 0 0
\(979\) 2.43776 + 1.22429i 0.0779112 + 0.0391285i
\(980\) −17.8662 + 14.9916i −0.570716 + 0.478888i
\(981\) 0 0
\(982\) 4.60685 + 3.86561i 0.147010 + 0.123356i
\(983\) −2.72214 6.31062i −0.0868227 0.201278i 0.869273 0.494332i \(-0.164587\pi\)
−0.956096 + 0.293055i \(0.905328\pi\)
\(984\) 0 0
\(985\) 95.7643 + 22.6966i 3.05131 + 0.723173i
\(986\) −0.361178 1.20642i −0.0115023 0.0384202i
\(987\) 0 0
\(988\) 0.341768 + 0.0399469i 0.0108731 + 0.00127088i
\(989\) −1.59032 + 9.01914i −0.0505692 + 0.286792i
\(990\) 0 0
\(991\) −4.53010 25.6915i −0.143903 0.816117i −0.968241 0.250019i \(-0.919563\pi\)
0.824338 0.566099i \(-0.191548\pi\)
\(992\) −0.332091 5.70178i −0.0105439 0.181032i
\(993\) 0 0
\(994\) −3.71710 + 8.61721i −0.117899 + 0.273321i
\(995\) −7.76048 + 3.89746i −0.246024 + 0.123558i
\(996\) 0 0
\(997\) −50.0674 + 11.8662i −1.58565 + 0.375806i −0.926527 0.376228i \(-0.877221\pi\)
−0.659124 + 0.752035i \(0.729073\pi\)
\(998\) −4.84606 8.39362i −0.153399 0.265696i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.g.a.199.4 72
3.2 odd 2 162.2.g.a.103.1 72
81.11 odd 54 162.2.g.a.151.1 yes 72
81.70 even 27 inner 486.2.g.a.127.4 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.g.a.103.1 72 3.2 odd 2
162.2.g.a.151.1 yes 72 81.11 odd 54
486.2.g.a.127.4 72 81.70 even 27 inner
486.2.g.a.199.4 72 1.1 even 1 trivial