Properties

Label 486.2.g.a.127.4
Level $486$
Weight $2$
Character 486.127
Analytic conductor $3.881$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(19,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([52]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(4\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 162)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 127.4
Character \(\chi\) \(=\) 486.127
Dual form 486.2.g.a.199.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686242 + 0.727374i) q^{2} +(-0.0581448 - 0.998308i) q^{4} +(3.71787 + 0.434557i) q^{5} +(-3.25050 + 1.63246i) q^{7} +(0.766044 + 0.642788i) q^{8} +(-2.86744 + 2.40607i) q^{10} +(-2.08512 + 4.83385i) q^{11} +(-0.202747 + 0.0480518i) q^{13} +(1.04322 - 3.48460i) q^{14} +(-0.993238 + 0.116093i) q^{16} +(0.290217 + 1.64590i) q^{17} +(0.286765 - 1.62633i) q^{19} +(0.217647 - 3.73685i) q^{20} +(-2.08512 - 4.83385i) q^{22} +(7.81600 + 3.92534i) q^{23} +(8.76851 + 2.07818i) q^{25} +(0.104182 - 0.180448i) q^{26} +(1.81870 + 3.15009i) q^{28} +(-0.216107 - 0.721848i) q^{29} +(-4.77184 + 3.13849i) q^{31} +(0.597159 - 0.802123i) q^{32} +(-1.39634 - 0.918389i) q^{34} +(-12.7944 + 4.65677i) q^{35} +(5.15467 + 1.87615i) q^{37} +(0.986157 + 1.32464i) q^{38} +(2.56873 + 2.72269i) q^{40} +(-3.43214 - 3.63786i) q^{41} +(-0.625285 - 0.839904i) q^{43} +(4.94691 + 1.80053i) q^{44} +(-8.21885 + 2.99142i) q^{46} +(-4.54436 - 2.98887i) q^{47} +(3.72073 - 4.99781i) q^{49} +(-7.52893 + 4.95185i) q^{50} +(0.0597592 + 0.199610i) q^{52} +(2.43382 + 4.21549i) q^{53} +(-9.85278 + 17.0655i) q^{55} +(-3.53936 - 0.838844i) q^{56} +(0.673355 + 0.338172i) q^{58} +(4.73861 + 10.9853i) q^{59} +(0.123728 - 2.12434i) q^{61} +(0.991781 - 5.62467i) q^{62} +(0.173648 + 0.984808i) q^{64} +(-0.774668 + 0.0905456i) q^{65} +(1.79201 - 5.98575i) q^{67} +(1.62624 - 0.385426i) q^{68} +(5.39281 - 12.5019i) q^{70} +(1.97644 - 1.65843i) q^{71} +(-4.28632 - 3.59665i) q^{73} +(-4.90201 + 2.46188i) q^{74} +(-1.64025 - 0.191718i) q^{76} +(-1.11340 - 19.1163i) q^{77} +(2.96988 - 3.14789i) q^{79} -3.74318 q^{80} +5.00136 q^{82} +(9.81132 - 10.3994i) q^{83} +(0.363751 + 6.24536i) q^{85} +(1.04002 + 0.121561i) q^{86} +(-4.70443 + 2.36265i) q^{88} +(-0.396952 - 0.333082i) q^{89} +(0.580586 - 0.487170i) q^{91} +(3.46424 - 8.03101i) q^{92} +(5.29255 - 1.25436i) q^{94} +(1.77289 - 5.92186i) q^{95} +(1.84818 - 0.216021i) q^{97} +(1.08195 + 6.13606i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 18 q^{13} + 9 q^{20} + 81 q^{23} + 18 q^{25} + 27 q^{26} + 18 q^{28} + 27 q^{29} - 54 q^{31} + 27 q^{35} - 9 q^{38} + 9 q^{41} + 36 q^{43} - 18 q^{46} + 27 q^{47} - 36 q^{52} + 27 q^{53} + 54 q^{55}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{20}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686242 + 0.727374i −0.485246 + 0.514331i
\(3\) 0 0
\(4\) −0.0581448 0.998308i −0.0290724 0.499154i
\(5\) 3.71787 + 0.434557i 1.66268 + 0.194340i 0.894868 0.446331i \(-0.147270\pi\)
0.767815 + 0.640671i \(0.221344\pi\)
\(6\) 0 0
\(7\) −3.25050 + 1.63246i −1.22858 + 0.617014i −0.940239 0.340515i \(-0.889398\pi\)
−0.288336 + 0.957529i \(0.593102\pi\)
\(8\) 0.766044 + 0.642788i 0.270838 + 0.227260i
\(9\) 0 0
\(10\) −2.86744 + 2.40607i −0.906765 + 0.760867i
\(11\) −2.08512 + 4.83385i −0.628687 + 1.45746i 0.244292 + 0.969702i \(0.421444\pi\)
−0.872979 + 0.487758i \(0.837815\pi\)
\(12\) 0 0
\(13\) −0.202747 + 0.0480518i −0.0562318 + 0.0133272i −0.258635 0.965975i \(-0.583273\pi\)
0.202404 + 0.979302i \(0.435125\pi\)
\(14\) 1.04322 3.48460i 0.278812 0.931298i
\(15\) 0 0
\(16\) −0.993238 + 0.116093i −0.248310 + 0.0290232i
\(17\) 0.290217 + 1.64590i 0.0703879 + 0.399189i 0.999563 + 0.0295503i \(0.00940753\pi\)
−0.929175 + 0.369639i \(0.879481\pi\)
\(18\) 0 0
\(19\) 0.286765 1.62633i 0.0657885 0.373105i −0.934083 0.357057i \(-0.883780\pi\)
0.999871 0.0160484i \(-0.00510858\pi\)
\(20\) 0.217647 3.73685i 0.0486673 0.835585i
\(21\) 0 0
\(22\) −2.08512 4.83385i −0.444549 1.03058i
\(23\) 7.81600 + 3.92534i 1.62975 + 0.818490i 0.999100 + 0.0424209i \(0.0135070\pi\)
0.630648 + 0.776069i \(0.282789\pi\)
\(24\) 0 0
\(25\) 8.76851 + 2.07818i 1.75370 + 0.415635i
\(26\) 0.104182 0.180448i 0.0204317 0.0353887i
\(27\) 0 0
\(28\) 1.81870 + 3.15009i 0.343703 + 0.595310i
\(29\) −0.216107 0.721848i −0.0401301 0.134044i 0.935577 0.353122i \(-0.114880\pi\)
−0.975707 + 0.219079i \(0.929695\pi\)
\(30\) 0 0
\(31\) −4.77184 + 3.13849i −0.857047 + 0.563689i −0.900248 0.435377i \(-0.856615\pi\)
0.0432006 + 0.999066i \(0.486245\pi\)
\(32\) 0.597159 0.802123i 0.105564 0.141797i
\(33\) 0 0
\(34\) −1.39634 0.918389i −0.239471 0.157502i
\(35\) −12.7944 + 4.65677i −2.16264 + 0.787137i
\(36\) 0 0
\(37\) 5.15467 + 1.87615i 0.847423 + 0.308437i 0.728989 0.684525i \(-0.239990\pi\)
0.118434 + 0.992962i \(0.462213\pi\)
\(38\) 0.986157 + 1.32464i 0.159976 + 0.214885i
\(39\) 0 0
\(40\) 2.56873 + 2.72269i 0.406152 + 0.430495i
\(41\) −3.43214 3.63786i −0.536010 0.568138i 0.401605 0.915813i \(-0.368453\pi\)
−0.937615 + 0.347675i \(0.886971\pi\)
\(42\) 0 0
\(43\) −0.625285 0.839904i −0.0953551 0.128084i 0.751885 0.659294i \(-0.229145\pi\)
−0.847240 + 0.531210i \(0.821737\pi\)
\(44\) 4.94691 + 1.80053i 0.745774 + 0.271440i
\(45\) 0 0
\(46\) −8.21885 + 2.99142i −1.21180 + 0.441060i
\(47\) −4.54436 2.98887i −0.662863 0.435972i 0.172991 0.984923i \(-0.444657\pi\)
−0.835854 + 0.548952i \(0.815027\pi\)
\(48\) 0 0
\(49\) 3.72073 4.99781i 0.531533 0.713972i
\(50\) −7.52893 + 4.95185i −1.06475 + 0.700298i
\(51\) 0 0
\(52\) 0.0597592 + 0.199610i 0.00828711 + 0.0276809i
\(53\) 2.43382 + 4.21549i 0.334310 + 0.579042i 0.983352 0.181710i \(-0.0581633\pi\)
−0.649042 + 0.760753i \(0.724830\pi\)
\(54\) 0 0
\(55\) −9.85278 + 17.0655i −1.32855 + 2.30111i
\(56\) −3.53936 0.838844i −0.472967 0.112095i
\(57\) 0 0
\(58\) 0.673355 + 0.338172i 0.0884159 + 0.0444041i
\(59\) 4.73861 + 10.9853i 0.616914 + 1.43017i 0.884457 + 0.466622i \(0.154529\pi\)
−0.267542 + 0.963546i \(0.586211\pi\)
\(60\) 0 0
\(61\) 0.123728 2.12434i 0.0158418 0.271993i −0.981081 0.193599i \(-0.937984\pi\)
0.996922 0.0783938i \(-0.0249792\pi\)
\(62\) 0.991781 5.62467i 0.125956 0.714334i
\(63\) 0 0
\(64\) 0.173648 + 0.984808i 0.0217060 + 0.123101i
\(65\) −0.774668 + 0.0905456i −0.0960857 + 0.0112308i
\(66\) 0 0
\(67\) 1.79201 5.98575i 0.218929 0.731275i −0.776003 0.630729i \(-0.782756\pi\)
0.994932 0.100546i \(-0.0320590\pi\)
\(68\) 1.62624 0.385426i 0.197211 0.0467398i
\(69\) 0 0
\(70\) 5.39281 12.5019i 0.644565 1.49427i
\(71\) 1.97644 1.65843i 0.234560 0.196820i −0.517930 0.855423i \(-0.673297\pi\)
0.752490 + 0.658604i \(0.228853\pi\)
\(72\) 0 0
\(73\) −4.28632 3.59665i −0.501676 0.420956i 0.356513 0.934291i \(-0.383966\pi\)
−0.858189 + 0.513334i \(0.828410\pi\)
\(74\) −4.90201 + 2.46188i −0.569847 + 0.286188i
\(75\) 0 0
\(76\) −1.64025 0.191718i −0.188150 0.0219915i
\(77\) −1.11340 19.1163i −0.126884 2.17851i
\(78\) 0 0
\(79\) 2.96988 3.14789i 0.334138 0.354166i −0.538420 0.842677i \(-0.680978\pi\)
0.872558 + 0.488511i \(0.162460\pi\)
\(80\) −3.74318 −0.418501
\(81\) 0 0
\(82\) 5.00136 0.552308
\(83\) 9.81132 10.3994i 1.07693 1.14148i 0.0875474 0.996160i \(-0.472097\pi\)
0.989385 0.145321i \(-0.0464215\pi\)
\(84\) 0 0
\(85\) 0.363751 + 6.24536i 0.0394543 + 0.677405i
\(86\) 1.04002 + 0.121561i 0.112148 + 0.0131083i
\(87\) 0 0
\(88\) −4.70443 + 2.36265i −0.501494 + 0.251860i
\(89\) −0.396952 0.333082i −0.0420768 0.0353067i 0.621507 0.783409i \(-0.286521\pi\)
−0.663584 + 0.748102i \(0.730965\pi\)
\(90\) 0 0
\(91\) 0.580586 0.487170i 0.0608620 0.0510692i
\(92\) 3.46424 8.03101i 0.361172 0.837291i
\(93\) 0 0
\(94\) 5.29255 1.25436i 0.545885 0.129377i
\(95\) 1.77289 5.92186i 0.181895 0.607570i
\(96\) 0 0
\(97\) 1.84818 0.216021i 0.187654 0.0219337i −0.0217465 0.999764i \(-0.506923\pi\)
0.209401 + 0.977830i \(0.432849\pi\)
\(98\) 1.08195 + 6.13606i 0.109294 + 0.619836i
\(99\) 0 0
\(100\) 1.56482 8.87451i 0.156482 0.887451i
\(101\) −0.668800 + 11.4829i −0.0665481 + 1.14259i 0.785410 + 0.618976i \(0.212452\pi\)
−0.851958 + 0.523610i \(0.824585\pi\)
\(102\) 0 0
\(103\) −5.88743 13.6486i −0.580105 1.34484i −0.915333 0.402698i \(-0.868073\pi\)
0.335228 0.942137i \(-0.391187\pi\)
\(104\) −0.186200 0.0935132i −0.0182584 0.00916972i
\(105\) 0 0
\(106\) −4.73642 1.12255i −0.460042 0.109032i
\(107\) −1.27937 + 2.21593i −0.123681 + 0.214222i −0.921217 0.389050i \(-0.872803\pi\)
0.797535 + 0.603272i \(0.206137\pi\)
\(108\) 0 0
\(109\) −5.38593 9.32871i −0.515879 0.893528i −0.999830 0.0184331i \(-0.994132\pi\)
0.483951 0.875095i \(-0.339201\pi\)
\(110\) −5.65162 18.8777i −0.538861 1.79992i
\(111\) 0 0
\(112\) 3.03901 1.99879i 0.287159 0.188868i
\(113\) 7.36982 9.89939i 0.693295 0.931256i −0.306493 0.951873i \(-0.599156\pi\)
0.999787 + 0.0206167i \(0.00656295\pi\)
\(114\) 0 0
\(115\) 27.3531 + 17.9904i 2.55069 + 1.67761i
\(116\) −0.708062 + 0.257713i −0.0657419 + 0.0239281i
\(117\) 0 0
\(118\) −11.2423 4.09185i −1.03494 0.376686i
\(119\) −3.63022 4.87624i −0.332782 0.447004i
\(120\) 0 0
\(121\) −11.4697 12.1572i −1.04270 1.10520i
\(122\) 1.46028 + 1.54780i 0.132207 + 0.140132i
\(123\) 0 0
\(124\) 3.41064 + 4.58128i 0.306284 + 0.411411i
\(125\) 14.1099 + 5.13559i 1.26203 + 0.459341i
\(126\) 0 0
\(127\) 17.2415 6.27538i 1.52993 0.556850i 0.566327 0.824181i \(-0.308364\pi\)
0.963605 + 0.267331i \(0.0861417\pi\)
\(128\) −0.835488 0.549509i −0.0738474 0.0485702i
\(129\) 0 0
\(130\) 0.465749 0.625609i 0.0408489 0.0548695i
\(131\) 0.165733 0.109005i 0.0144802 0.00952378i −0.542248 0.840218i \(-0.682427\pi\)
0.556728 + 0.830695i \(0.312056\pi\)
\(132\) 0 0
\(133\) 1.72279 + 5.75452i 0.149385 + 0.498980i
\(134\) 3.12412 + 5.41113i 0.269883 + 0.467451i
\(135\) 0 0
\(136\) −0.835645 + 1.44738i −0.0716560 + 0.124112i
\(137\) 4.29953 + 1.01901i 0.367333 + 0.0870596i 0.410137 0.912024i \(-0.365481\pi\)
−0.0428037 + 0.999084i \(0.513629\pi\)
\(138\) 0 0
\(139\) −1.10445 0.554676i −0.0936783 0.0470470i 0.401343 0.915928i \(-0.368543\pi\)
−0.495021 + 0.868881i \(0.664840\pi\)
\(140\) 5.39281 + 12.5019i 0.455776 + 1.05661i
\(141\) 0 0
\(142\) −0.150017 + 2.57570i −0.0125892 + 0.216148i
\(143\) 0.190475 1.08024i 0.0159284 0.0903342i
\(144\) 0 0
\(145\) −0.489775 2.77765i −0.0406736 0.230671i
\(146\) 5.55756 0.649586i 0.459947 0.0537601i
\(147\) 0 0
\(148\) 1.57326 5.25504i 0.129321 0.431962i
\(149\) −7.84141 + 1.85845i −0.642394 + 0.152250i −0.538886 0.842379i \(-0.681155\pi\)
−0.103507 + 0.994629i \(0.533007\pi\)
\(150\) 0 0
\(151\) 2.94676 6.83136i 0.239804 0.555928i −0.755230 0.655459i \(-0.772475\pi\)
0.995034 + 0.0995312i \(0.0317343\pi\)
\(152\) 1.26506 1.06151i 0.102610 0.0860998i
\(153\) 0 0
\(154\) 14.6688 + 12.3086i 1.18204 + 0.991852i
\(155\) −19.1049 + 9.59486i −1.53455 + 0.770678i
\(156\) 0 0
\(157\) 19.5842 + 2.28906i 1.56299 + 0.182687i 0.853145 0.521673i \(-0.174692\pi\)
0.709843 + 0.704360i \(0.248766\pi\)
\(158\) 0.251636 + 4.32043i 0.0200191 + 0.343715i
\(159\) 0 0
\(160\) 2.56873 2.72269i 0.203076 0.215248i
\(161\) −31.8139 −2.50729
\(162\) 0 0
\(163\) 7.25041 0.567896 0.283948 0.958840i \(-0.408356\pi\)
0.283948 + 0.958840i \(0.408356\pi\)
\(164\) −3.43214 + 3.63786i −0.268005 + 0.284069i
\(165\) 0 0
\(166\) 0.831307 + 14.2730i 0.0645219 + 1.10780i
\(167\) −18.7077 2.18662i −1.44764 0.169205i −0.644324 0.764753i \(-0.722861\pi\)
−0.803320 + 0.595547i \(0.796935\pi\)
\(168\) 0 0
\(169\) −11.5784 + 5.81490i −0.890648 + 0.447300i
\(170\) −4.79233 4.02124i −0.367555 0.308415i
\(171\) 0 0
\(172\) −0.802126 + 0.673063i −0.0611615 + 0.0513206i
\(173\) −1.82769 + 4.23707i −0.138957 + 0.322138i −0.973457 0.228869i \(-0.926497\pi\)
0.834500 + 0.551007i \(0.185756\pi\)
\(174\) 0 0
\(175\) −31.8946 + 7.55917i −2.41101 + 0.571419i
\(176\) 1.50984 5.04323i 0.113809 0.380148i
\(177\) 0 0
\(178\) 0.514681 0.0601575i 0.0385769 0.00450900i
\(179\) −4.34713 24.6538i −0.324920 1.84271i −0.510240 0.860032i \(-0.670443\pi\)
0.185320 0.982678i \(-0.440668\pi\)
\(180\) 0 0
\(181\) 2.73733 15.5241i 0.203464 1.15390i −0.696375 0.717678i \(-0.745205\pi\)
0.899839 0.436223i \(-0.143684\pi\)
\(182\) −0.0440680 + 0.756619i −0.00326654 + 0.0560843i
\(183\) 0 0
\(184\) 3.46424 + 8.03101i 0.255387 + 0.592054i
\(185\) 18.3491 + 9.21528i 1.34905 + 0.677521i
\(186\) 0 0
\(187\) −8.56116 2.02903i −0.626054 0.148378i
\(188\) −2.71958 + 4.71046i −0.198346 + 0.343545i
\(189\) 0 0
\(190\) 3.09078 + 5.35338i 0.224228 + 0.388375i
\(191\) 0.382243 + 1.27678i 0.0276581 + 0.0923845i 0.970704 0.240277i \(-0.0772384\pi\)
−0.943046 + 0.332662i \(0.892053\pi\)
\(192\) 0 0
\(193\) −11.1785 + 7.35219i −0.804644 + 0.529222i −0.883924 0.467630i \(-0.845108\pi\)
0.0792808 + 0.996852i \(0.474738\pi\)
\(194\) −1.11117 + 1.49256i −0.0797774 + 0.107160i
\(195\) 0 0
\(196\) −5.20569 3.42384i −0.371835 0.244560i
\(197\) 24.7068 8.99252i 1.76028 0.640691i 0.760323 0.649545i \(-0.225041\pi\)
0.999961 + 0.00885463i \(0.00281855\pi\)
\(198\) 0 0
\(199\) −2.18009 0.793488i −0.154542 0.0562489i 0.263591 0.964635i \(-0.415093\pi\)
−0.418133 + 0.908386i \(0.637315\pi\)
\(200\) 5.38124 + 7.22827i 0.380511 + 0.511116i
\(201\) 0 0
\(202\) −7.89336 8.36648i −0.555375 0.588663i
\(203\) 1.88085 + 1.99358i 0.132010 + 0.139922i
\(204\) 0 0
\(205\) −11.1794 15.0166i −0.780804 1.04880i
\(206\) 13.9678 + 5.08387i 0.973184 + 0.354210i
\(207\) 0 0
\(208\) 0.195797 0.0712644i 0.0135761 0.00494130i
\(209\) 7.26347 + 4.77726i 0.502425 + 0.330450i
\(210\) 0 0
\(211\) −5.83455 + 7.83716i −0.401667 + 0.539532i −0.956233 0.292608i \(-0.905477\pi\)
0.554566 + 0.832140i \(0.312884\pi\)
\(212\) 4.06685 2.67481i 0.279312 0.183706i
\(213\) 0 0
\(214\) −0.733854 2.45124i −0.0501653 0.167564i
\(215\) −1.95974 3.39438i −0.133653 0.231495i
\(216\) 0 0
\(217\) 10.3874 17.9915i 0.705144 1.22134i
\(218\) 10.4815 + 2.48416i 0.709897 + 0.168249i
\(219\) 0 0
\(220\) 17.6095 + 8.84384i 1.18723 + 0.596252i
\(221\) −0.137929 0.319755i −0.00927811 0.0215091i
\(222\) 0 0
\(223\) −0.340442 + 5.84516i −0.0227977 + 0.391421i 0.967538 + 0.252727i \(0.0813274\pi\)
−0.990335 + 0.138694i \(0.955710\pi\)
\(224\) −0.631629 + 3.58215i −0.0422025 + 0.239342i
\(225\) 0 0
\(226\) 2.14308 + 12.1540i 0.142555 + 0.808471i
\(227\) 7.48001 0.874287i 0.496465 0.0580285i 0.135824 0.990733i \(-0.456632\pi\)
0.360642 + 0.932705i \(0.382558\pi\)
\(228\) 0 0
\(229\) −3.23898 + 10.8190i −0.214038 + 0.714937i 0.781778 + 0.623557i \(0.214313\pi\)
−0.995816 + 0.0913799i \(0.970872\pi\)
\(230\) −31.8566 + 7.55015i −2.10056 + 0.497842i
\(231\) 0 0
\(232\) 0.298448 0.691879i 0.0195940 0.0454241i
\(233\) −5.82577 + 4.88840i −0.381659 + 0.320250i −0.813353 0.581770i \(-0.802360\pi\)
0.431694 + 0.902020i \(0.357916\pi\)
\(234\) 0 0
\(235\) −15.5965 13.0870i −1.01740 0.853703i
\(236\) 10.6912 5.36933i 0.695939 0.349514i
\(237\) 0 0
\(238\) 6.03806 + 0.705748i 0.391389 + 0.0457468i
\(239\) −1.11084 19.0723i −0.0718541 1.23369i −0.820862 0.571126i \(-0.806507\pi\)
0.749008 0.662561i \(-0.230530\pi\)
\(240\) 0 0
\(241\) 4.44457 4.71097i 0.286300 0.303460i −0.568222 0.822875i \(-0.692369\pi\)
0.854522 + 0.519415i \(0.173850\pi\)
\(242\) 16.7138 1.07440
\(243\) 0 0
\(244\) −2.12794 −0.136227
\(245\) 16.0050 16.9643i 1.02252 1.08381i
\(246\) 0 0
\(247\) 0.0200073 + 0.343512i 0.00127303 + 0.0218571i
\(248\) −5.67282 0.663058i −0.360224 0.0421042i
\(249\) 0 0
\(250\) −13.4183 + 6.73893i −0.848648 + 0.426207i
\(251\) 6.01053 + 5.04343i 0.379381 + 0.318339i 0.812459 0.583018i \(-0.198128\pi\)
−0.433078 + 0.901356i \(0.642573\pi\)
\(252\) 0 0
\(253\) −35.2718 + 29.5965i −2.21752 + 1.86072i
\(254\) −7.26726 + 16.8474i −0.455989 + 1.05710i
\(255\) 0 0
\(256\) 0.973045 0.230616i 0.0608153 0.0144135i
\(257\) −3.31564 + 11.0750i −0.206824 + 0.690839i 0.790137 + 0.612931i \(0.210009\pi\)
−0.996960 + 0.0779088i \(0.975176\pi\)
\(258\) 0 0
\(259\) −19.8180 + 2.31640i −1.23143 + 0.143934i
\(260\) 0.135435 + 0.768092i 0.00839935 + 0.0476351i
\(261\) 0 0
\(262\) −0.0344461 + 0.195354i −0.00212809 + 0.0120690i
\(263\) −0.419053 + 7.19487i −0.0258399 + 0.443655i 0.960431 + 0.278519i \(0.0898434\pi\)
−0.986271 + 0.165136i \(0.947194\pi\)
\(264\) 0 0
\(265\) 7.21674 + 16.7303i 0.443321 + 1.02773i
\(266\) −5.36793 2.69588i −0.329129 0.165295i
\(267\) 0 0
\(268\) −6.07982 1.44094i −0.371384 0.0880196i
\(269\) −10.8367 + 18.7696i −0.660723 + 1.14441i 0.319703 + 0.947518i \(0.396417\pi\)
−0.980426 + 0.196888i \(0.936917\pi\)
\(270\) 0 0
\(271\) 10.7244 + 18.5753i 0.651463 + 1.12837i 0.982768 + 0.184844i \(0.0591779\pi\)
−0.331305 + 0.943524i \(0.607489\pi\)
\(272\) −0.479332 1.60108i −0.0290637 0.0970797i
\(273\) 0 0
\(274\) −3.69171 + 2.42808i −0.223024 + 0.146686i
\(275\) −28.3290 + 38.0524i −1.70830 + 2.29465i
\(276\) 0 0
\(277\) −10.0441 6.60609i −0.603490 0.396922i 0.210674 0.977556i \(-0.432434\pi\)
−0.814164 + 0.580635i \(0.802804\pi\)
\(278\) 1.16138 0.422707i 0.0696548 0.0253523i
\(279\) 0 0
\(280\) −12.7944 4.65677i −0.764609 0.278295i
\(281\) 5.53844 + 7.43941i 0.330395 + 0.443798i 0.936017 0.351955i \(-0.114483\pi\)
−0.605622 + 0.795753i \(0.707075\pi\)
\(282\) 0 0
\(283\) 16.3804 + 17.3622i 0.973714 + 1.03208i 0.999475 + 0.0324087i \(0.0103178\pi\)
−0.0257605 + 0.999668i \(0.508201\pi\)
\(284\) −1.77054 1.87667i −0.105063 0.111360i
\(285\) 0 0
\(286\) 0.655026 + 0.879852i 0.0387325 + 0.0520268i
\(287\) 17.0949 + 6.22202i 1.00908 + 0.367274i
\(288\) 0 0
\(289\) 13.3500 4.85901i 0.785295 0.285824i
\(290\) 2.35649 + 1.54989i 0.138378 + 0.0910127i
\(291\) 0 0
\(292\) −3.34134 + 4.48820i −0.195537 + 0.262652i
\(293\) 11.4171 7.50914i 0.666994 0.438689i −0.170337 0.985386i \(-0.554485\pi\)
0.837330 + 0.546697i \(0.184115\pi\)
\(294\) 0 0
\(295\) 12.8438 + 42.9013i 0.747795 + 2.49781i
\(296\) 2.74274 + 4.75057i 0.159419 + 0.276121i
\(297\) 0 0
\(298\) 4.02932 6.97898i 0.233412 0.404282i
\(299\) −1.77329 0.420277i −0.102552 0.0243052i
\(300\) 0 0
\(301\) 3.40361 + 1.70935i 0.196181 + 0.0985256i
\(302\) 2.94676 + 6.83136i 0.169567 + 0.393101i
\(303\) 0 0
\(304\) −0.0960213 + 1.64862i −0.00550720 + 0.0945549i
\(305\) 1.38315 7.84424i 0.0791990 0.449160i
\(306\) 0 0
\(307\) −2.34246 13.2847i −0.133691 0.758201i −0.975762 0.218834i \(-0.929775\pi\)
0.842071 0.539367i \(-0.181336\pi\)
\(308\) −19.0192 + 2.22303i −1.08372 + 0.126669i
\(309\) 0 0
\(310\) 6.13156 20.4808i 0.348249 1.16323i
\(311\) 5.74747 1.36218i 0.325909 0.0772419i −0.0644043 0.997924i \(-0.520515\pi\)
0.390314 + 0.920682i \(0.372367\pi\)
\(312\) 0 0
\(313\) 3.49181 8.09493i 0.197369 0.457552i −0.790575 0.612365i \(-0.790218\pi\)
0.987944 + 0.154813i \(0.0494775\pi\)
\(314\) −15.1045 + 12.6742i −0.852395 + 0.715245i
\(315\) 0 0
\(316\) −3.31525 2.78182i −0.186497 0.156490i
\(317\) 6.52805 3.27851i 0.366652 0.184139i −0.255928 0.966696i \(-0.582381\pi\)
0.622580 + 0.782556i \(0.286085\pi\)
\(318\) 0 0
\(319\) 3.93991 + 0.460510i 0.220593 + 0.0257836i
\(320\) 0.217647 + 3.73685i 0.0121668 + 0.208896i
\(321\) 0 0
\(322\) 21.8320 23.1406i 1.21665 1.28958i
\(323\) 2.76000 0.153570
\(324\) 0 0
\(325\) −1.87765 −0.104153
\(326\) −4.97554 + 5.27376i −0.275569 + 0.292087i
\(327\) 0 0
\(328\) −0.290803 4.99290i −0.0160569 0.275687i
\(329\) 19.6507 + 2.29683i 1.08338 + 0.126629i
\(330\) 0 0
\(331\) −28.6172 + 14.3721i −1.57294 + 0.789962i −0.999570 0.0293318i \(-0.990662\pi\)
−0.573374 + 0.819294i \(0.694366\pi\)
\(332\) −10.9523 9.19005i −0.601084 0.504369i
\(333\) 0 0
\(334\) 14.4285 12.1069i 0.789491 0.662462i
\(335\) 9.26363 21.4755i 0.506126 1.17333i
\(336\) 0 0
\(337\) 25.2820 5.99194i 1.37720 0.326402i 0.525660 0.850695i \(-0.323819\pi\)
0.851538 + 0.524293i \(0.175670\pi\)
\(338\) 3.71599 12.4123i 0.202123 0.675139i
\(339\) 0 0
\(340\) 6.21365 0.726271i 0.336982 0.0393876i
\(341\) −5.22112 29.6104i −0.282740 1.60350i
\(342\) 0 0
\(343\) 0.485898 2.75566i 0.0262360 0.148792i
\(344\) 0.0608835 1.04533i 0.00328262 0.0563604i
\(345\) 0 0
\(346\) −1.82769 4.23707i −0.0982573 0.227786i
\(347\) −11.6904 5.87112i −0.627571 0.315178i 0.106436 0.994320i \(-0.466056\pi\)
−0.734007 + 0.679142i \(0.762352\pi\)
\(348\) 0 0
\(349\) −19.4854 4.61812i −1.04303 0.247202i −0.326819 0.945087i \(-0.605977\pi\)
−0.716210 + 0.697885i \(0.754125\pi\)
\(350\) 16.3891 28.3867i 0.876034 1.51733i
\(351\) 0 0
\(352\) 2.63219 + 4.55909i 0.140296 + 0.243001i
\(353\) 8.35199 + 27.8976i 0.444532 + 1.48484i 0.827705 + 0.561163i \(0.189646\pi\)
−0.383173 + 0.923676i \(0.625169\pi\)
\(354\) 0 0
\(355\) 8.06884 5.30696i 0.428249 0.281664i
\(356\) −0.309438 + 0.415648i −0.0164002 + 0.0220293i
\(357\) 0 0
\(358\) 20.9157 + 13.7565i 1.10543 + 0.727052i
\(359\) −14.6096 + 5.31744i −0.771063 + 0.280644i −0.697441 0.716642i \(-0.745678\pi\)
−0.0736220 + 0.997286i \(0.523456\pi\)
\(360\) 0 0
\(361\) 15.2915 + 5.56563i 0.804813 + 0.292928i
\(362\) 9.41339 + 12.6444i 0.494757 + 0.664574i
\(363\) 0 0
\(364\) −0.520103 0.551277i −0.0272608 0.0288948i
\(365\) −14.3731 15.2345i −0.752320 0.797413i
\(366\) 0 0
\(367\) −5.51820 7.41223i −0.288048 0.386915i 0.634421 0.772988i \(-0.281239\pi\)
−0.922468 + 0.386073i \(0.873831\pi\)
\(368\) −8.21885 2.99142i −0.428437 0.155938i
\(369\) 0 0
\(370\) −19.2949 + 7.02276i −1.00309 + 0.365096i
\(371\) −14.7928 9.72936i −0.768002 0.505123i
\(372\) 0 0
\(373\) 20.1084 27.0103i 1.04117 1.39854i 0.127619 0.991823i \(-0.459266\pi\)
0.913555 0.406716i \(-0.133326\pi\)
\(374\) 7.35089 4.83476i 0.380106 0.249999i
\(375\) 0 0
\(376\) −1.55997 5.21066i −0.0804493 0.268719i
\(377\) 0.0785012 + 0.135968i 0.00404302 + 0.00700271i
\(378\) 0 0
\(379\) 0.117576 0.203648i 0.00603950 0.0104607i −0.862990 0.505221i \(-0.831411\pi\)
0.869029 + 0.494761i \(0.164744\pi\)
\(380\) −6.01493 1.42556i −0.308559 0.0731299i
\(381\) 0 0
\(382\) −1.19101 0.598146i −0.0609372 0.0306038i
\(383\) −5.82441 13.5025i −0.297614 0.689946i 0.702142 0.712037i \(-0.252227\pi\)
−0.999756 + 0.0220908i \(0.992968\pi\)
\(384\) 0 0
\(385\) 4.16766 71.5559i 0.212403 3.64683i
\(386\) 2.32334 13.1763i 0.118255 0.670656i
\(387\) 0 0
\(388\) −0.323118 1.83249i −0.0164038 0.0930308i
\(389\) 21.2249 2.48083i 1.07614 0.125783i 0.440490 0.897757i \(-0.354805\pi\)
0.635654 + 0.771974i \(0.280731\pi\)
\(390\) 0 0
\(391\) −4.19239 + 14.0035i −0.212018 + 0.708190i
\(392\) 6.06277 1.43690i 0.306216 0.0725746i
\(393\) 0 0
\(394\) −10.4139 + 24.1421i −0.524644 + 1.21626i
\(395\) 12.4096 10.4129i 0.624394 0.523929i
\(396\) 0 0
\(397\) −17.7928 14.9299i −0.892995 0.749311i 0.0758139 0.997122i \(-0.475845\pi\)
−0.968809 + 0.247811i \(0.920289\pi\)
\(398\) 2.07323 1.04122i 0.103922 0.0521914i
\(399\) 0 0
\(400\) −8.95048 1.04616i −0.447524 0.0523081i
\(401\) 0.933075 + 16.0203i 0.0465955 + 0.800014i 0.937964 + 0.346734i \(0.112709\pi\)
−0.891368 + 0.453280i \(0.850254\pi\)
\(402\) 0 0
\(403\) 0.816664 0.865613i 0.0406809 0.0431193i
\(404\) 11.5023 0.572261
\(405\) 0 0
\(406\) −2.74080 −0.136024
\(407\) −19.8171 + 21.0049i −0.982298 + 1.04117i
\(408\) 0 0
\(409\) −0.205707 3.53186i −0.0101716 0.174639i −0.999568 0.0293976i \(-0.990641\pi\)
0.989396 0.145242i \(-0.0463959\pi\)
\(410\) 18.5944 + 2.17338i 0.918313 + 0.107335i
\(411\) 0 0
\(412\) −13.2832 + 6.67106i −0.654415 + 0.328659i
\(413\) −33.3360 27.9723i −1.64036 1.37642i
\(414\) 0 0
\(415\) 40.9964 34.4000i 2.01243 1.68863i
\(416\) −0.0825284 + 0.191322i −0.00404629 + 0.00938035i
\(417\) 0 0
\(418\) −8.45935 + 2.00490i −0.413761 + 0.0980630i
\(419\) −8.97055 + 29.9637i −0.438240 + 1.46382i 0.398981 + 0.916959i \(0.369364\pi\)
−0.837221 + 0.546865i \(0.815821\pi\)
\(420\) 0 0
\(421\) −17.7199 + 2.07115i −0.863613 + 0.100942i −0.536354 0.843993i \(-0.680199\pi\)
−0.327259 + 0.944935i \(0.606125\pi\)
\(422\) −1.69663 9.62208i −0.0825907 0.468395i
\(423\) 0 0
\(424\) −0.845255 + 4.79368i −0.0410492 + 0.232802i
\(425\) −0.875701 + 15.0352i −0.0424778 + 0.729315i
\(426\) 0 0
\(427\) 3.06572 + 7.10714i 0.148361 + 0.343939i
\(428\) 2.28657 + 1.14836i 0.110526 + 0.0555081i
\(429\) 0 0
\(430\) 3.81384 + 0.903896i 0.183920 + 0.0435898i
\(431\) 9.13617 15.8243i 0.440074 0.762230i −0.557621 0.830096i \(-0.688286\pi\)
0.997694 + 0.0678655i \(0.0216189\pi\)
\(432\) 0 0
\(433\) 14.1667 + 24.5374i 0.680806 + 1.17919i 0.974735 + 0.223363i \(0.0717037\pi\)
−0.293929 + 0.955827i \(0.594963\pi\)
\(434\) 5.95829 + 19.9021i 0.286007 + 0.955330i
\(435\) 0 0
\(436\) −8.99976 + 5.91923i −0.431010 + 0.283480i
\(437\) 8.62524 11.5857i 0.412601 0.554220i
\(438\) 0 0
\(439\) −2.64602 1.74031i −0.126287 0.0830605i 0.484794 0.874629i \(-0.338895\pi\)
−0.611081 + 0.791568i \(0.709265\pi\)
\(440\) −18.5172 + 6.73970i −0.882772 + 0.321303i
\(441\) 0 0
\(442\) 0.327234 + 0.119103i 0.0155649 + 0.00566518i
\(443\) 19.0944 + 25.6482i 0.907200 + 1.21858i 0.975296 + 0.220903i \(0.0709003\pi\)
−0.0680955 + 0.997679i \(0.521692\pi\)
\(444\) 0 0
\(445\) −1.33107 1.41086i −0.0630990 0.0668810i
\(446\) −4.01799 4.25882i −0.190257 0.201661i
\(447\) 0 0
\(448\) −2.17211 2.91765i −0.102622 0.137846i
\(449\) 2.30646 + 0.839483i 0.108849 + 0.0396177i 0.395870 0.918306i \(-0.370443\pi\)
−0.287022 + 0.957924i \(0.592665\pi\)
\(450\) 0 0
\(451\) 24.7413 9.00508i 1.16502 0.424033i
\(452\) −10.3112 6.78176i −0.484996 0.318987i
\(453\) 0 0
\(454\) −4.49716 + 6.04073i −0.211062 + 0.283506i
\(455\) 2.37025 1.55894i 0.111119 0.0730841i
\(456\) 0 0
\(457\) 6.35184 + 21.2166i 0.297126 + 0.992471i 0.968011 + 0.250909i \(0.0807295\pi\)
−0.670884 + 0.741562i \(0.734085\pi\)
\(458\) −5.64670 9.78037i −0.263853 0.457007i
\(459\) 0 0
\(460\) 16.3695 28.3529i 0.763233 1.32196i
\(461\) −8.12571 1.92583i −0.378452 0.0896948i 0.0369870 0.999316i \(-0.488224\pi\)
−0.415439 + 0.909621i \(0.636372\pi\)
\(462\) 0 0
\(463\) −21.8558 10.9764i −1.01572 0.510116i −0.138585 0.990351i \(-0.544255\pi\)
−0.877140 + 0.480235i \(0.840552\pi\)
\(464\) 0.298448 + 0.691879i 0.0138551 + 0.0321197i
\(465\) 0 0
\(466\) 0.442192 7.59214i 0.0204841 0.351699i
\(467\) 4.93682 27.9981i 0.228449 1.29560i −0.627533 0.778590i \(-0.715935\pi\)
0.855982 0.517006i \(-0.172954\pi\)
\(468\) 0 0
\(469\) 3.94657 + 22.3821i 0.182236 + 1.03351i
\(470\) 20.2221 2.36363i 0.932777 0.109026i
\(471\) 0 0
\(472\) −3.43125 + 11.4612i −0.157936 + 0.527543i
\(473\) 5.36376 1.27123i 0.246626 0.0584514i
\(474\) 0 0
\(475\) 5.89430 13.6645i 0.270449 0.626971i
\(476\) −4.65691 + 3.90761i −0.213449 + 0.179105i
\(477\) 0 0
\(478\) 14.6350 + 12.2802i 0.669390 + 0.561685i
\(479\) −14.1368 + 7.09975i −0.645926 + 0.324396i −0.741427 0.671033i \(-0.765851\pi\)
0.0955017 + 0.995429i \(0.469554\pi\)
\(480\) 0 0
\(481\) −1.13525 0.132691i −0.0517627 0.00605020i
\(482\) 0.376586 + 6.46573i 0.0171530 + 0.294506i
\(483\) 0 0
\(484\) −11.4697 + 12.1572i −0.521350 + 0.552598i
\(485\) 6.96518 0.316272
\(486\) 0 0
\(487\) 9.74171 0.441439 0.220720 0.975337i \(-0.429159\pi\)
0.220720 + 0.975337i \(0.429159\pi\)
\(488\) 1.46028 1.54780i 0.0661037 0.0700658i
\(489\) 0 0
\(490\) 1.35610 + 23.2833i 0.0612622 + 1.05183i
\(491\) −5.97315 0.698161i −0.269565 0.0315076i −0.0197632 0.999805i \(-0.506291\pi\)
−0.249801 + 0.968297i \(0.580365\pi\)
\(492\) 0 0
\(493\) 1.12537 0.565183i 0.0506842 0.0254546i
\(494\) −0.263591 0.221179i −0.0118595 0.00995133i
\(495\) 0 0
\(496\) 4.37522 3.67124i 0.196453 0.164844i
\(497\) −3.71710 + 8.61721i −0.166735 + 0.386535i
\(498\) 0 0
\(499\) 9.43087 2.23516i 0.422184 0.100059i −0.0140319 0.999902i \(-0.504467\pi\)
0.436216 + 0.899842i \(0.356318\pi\)
\(500\) 4.30648 14.3847i 0.192592 0.643301i
\(501\) 0 0
\(502\) −7.79314 + 0.910887i −0.347825 + 0.0406549i
\(503\) 6.11251 + 34.6658i 0.272543 + 1.54567i 0.746659 + 0.665207i \(0.231657\pi\)
−0.474116 + 0.880463i \(0.657232\pi\)
\(504\) 0 0
\(505\) −7.47647 + 42.4011i −0.332698 + 1.88683i
\(506\) 2.67722 45.9661i 0.119017 2.04344i
\(507\) 0 0
\(508\) −7.26726 16.8474i −0.322433 0.747483i
\(509\) −16.0863 8.07886i −0.713014 0.358089i 0.0550313 0.998485i \(-0.482474\pi\)
−0.768045 + 0.640396i \(0.778770\pi\)
\(510\) 0 0
\(511\) 19.8041 + 4.69366i 0.876083 + 0.207635i
\(512\) −0.500000 + 0.866025i −0.0220971 + 0.0382733i
\(513\) 0 0
\(514\) −5.78033 10.0118i −0.254960 0.441603i
\(515\) −15.9576 53.3021i −0.703176 2.34877i
\(516\) 0 0
\(517\) 23.9233 15.7346i 1.05214 0.692006i
\(518\) 11.9151 16.0047i 0.523518 0.703207i
\(519\) 0 0
\(520\) −0.651631 0.428585i −0.0285759 0.0187947i
\(521\) 4.14562 1.50888i 0.181623 0.0661054i −0.249608 0.968347i \(-0.580302\pi\)
0.431231 + 0.902242i \(0.358079\pi\)
\(522\) 0 0
\(523\) −33.2656 12.1077i −1.45460 0.529432i −0.510730 0.859741i \(-0.670625\pi\)
−0.943873 + 0.330309i \(0.892847\pi\)
\(524\) −0.118457 0.159115i −0.00517481 0.00695097i
\(525\) 0 0
\(526\) −4.94579 5.24223i −0.215646 0.228572i
\(527\) −6.55050 6.94313i −0.285344 0.302447i
\(528\) 0 0
\(529\) 31.9468 + 42.9120i 1.38899 + 1.86574i
\(530\) −17.1216 6.23175i −0.743715 0.270690i
\(531\) 0 0
\(532\) 5.64461 2.05447i 0.244725 0.0890726i
\(533\) 0.870661 + 0.572643i 0.0377125 + 0.0248039i
\(534\) 0 0
\(535\) −5.71948 + 7.68260i −0.247275 + 0.332148i
\(536\) 5.22033 3.43346i 0.225484 0.148303i
\(537\) 0 0
\(538\) −6.21598 20.7628i −0.267990 0.895148i
\(539\) 16.4005 + 28.4064i 0.706418 + 1.22355i
\(540\) 0 0
\(541\) −12.5590 + 21.7529i −0.539955 + 0.935229i 0.458951 + 0.888462i \(0.348225\pi\)
−0.998906 + 0.0467676i \(0.985108\pi\)
\(542\) −20.8707 4.94645i −0.896474 0.212468i
\(543\) 0 0
\(544\) 1.49352 + 0.750074i 0.0640341 + 0.0321591i
\(545\) −15.9704 37.0234i −0.684095 1.58591i
\(546\) 0 0
\(547\) −0.00653029 + 0.112121i −0.000279215 + 0.00479394i −0.998445 0.0557477i \(-0.982246\pi\)
0.998166 + 0.0605416i \(0.0192828\pi\)
\(548\) 0.767287 4.35150i 0.0327769 0.185887i
\(549\) 0 0
\(550\) −8.23780 46.7189i −0.351261 1.99210i
\(551\) −1.23593 + 0.144460i −0.0526526 + 0.00615420i
\(552\) 0 0
\(553\) −4.51480 + 15.0805i −0.191989 + 0.641287i
\(554\) 11.6978 2.77242i 0.496990 0.117789i
\(555\) 0 0
\(556\) −0.489520 + 1.13483i −0.0207603 + 0.0481277i
\(557\) −25.6731 + 21.5423i −1.08780 + 0.912775i −0.996545 0.0830527i \(-0.973533\pi\)
−0.0912573 + 0.995827i \(0.529089\pi\)
\(558\) 0 0
\(559\) 0.167133 + 0.140242i 0.00706899 + 0.00593159i
\(560\) 12.1672 6.11061i 0.514159 0.258221i
\(561\) 0 0
\(562\) −9.21194 1.07672i −0.388582 0.0454187i
\(563\) 2.65296 + 45.5495i 0.111809 + 1.91968i 0.330357 + 0.943856i \(0.392831\pi\)
−0.218549 + 0.975826i \(0.570132\pi\)
\(564\) 0 0
\(565\) 31.7019 33.6021i 1.33371 1.41365i
\(566\) −23.8697 −1.00332
\(567\) 0 0
\(568\) 2.58006 0.108257
\(569\) −3.01473 + 3.19543i −0.126384 + 0.133959i −0.787475 0.616346i \(-0.788612\pi\)
0.661091 + 0.750306i \(0.270094\pi\)
\(570\) 0 0
\(571\) −2.32506 39.9197i −0.0973006 1.67059i −0.595371 0.803451i \(-0.702995\pi\)
0.498071 0.867136i \(-0.334042\pi\)
\(572\) −1.08949 0.127343i −0.0455538 0.00532447i
\(573\) 0 0
\(574\) −16.2569 + 8.16455i −0.678552 + 0.340782i
\(575\) 60.3771 + 50.6624i 2.51790 + 2.11277i
\(576\) 0 0
\(577\) −3.85975 + 3.23872i −0.160684 + 0.134830i −0.719584 0.694405i \(-0.755668\pi\)
0.558901 + 0.829234i \(0.311223\pi\)
\(578\) −5.62702 + 13.0449i −0.234053 + 0.542596i
\(579\) 0 0
\(580\) −2.74447 + 0.650452i −0.113958 + 0.0270086i
\(581\) −14.9151 + 49.8199i −0.618783 + 2.06688i
\(582\) 0 0
\(583\) −25.4518 + 2.97489i −1.05411 + 0.123207i
\(584\) −0.971631 5.51039i −0.0402064 0.228022i
\(585\) 0 0
\(586\) −2.37293 + 13.4576i −0.0980250 + 0.555927i
\(587\) 1.27552 21.8998i 0.0526463 0.903902i −0.863823 0.503796i \(-0.831936\pi\)
0.916469 0.400106i \(-0.131027\pi\)
\(588\) 0 0
\(589\) 3.73581 + 8.66058i 0.153931 + 0.356853i
\(590\) −40.0192 20.0984i −1.64756 0.827438i
\(591\) 0 0
\(592\) −5.33763 1.26504i −0.219375 0.0519929i
\(593\) −4.13250 + 7.15770i −0.169701 + 0.293931i −0.938315 0.345782i \(-0.887614\pi\)
0.768614 + 0.639713i \(0.220947\pi\)
\(594\) 0 0
\(595\) −11.3777 19.7068i −0.466441 0.807899i
\(596\) 2.31124 + 7.72009i 0.0946722 + 0.316227i
\(597\) 0 0
\(598\) 1.52260 1.00143i 0.0622638 0.0409515i
\(599\) 8.18252 10.9910i 0.334329 0.449081i −0.602890 0.797825i \(-0.705984\pi\)
0.937218 + 0.348743i \(0.113391\pi\)
\(600\) 0 0
\(601\) 26.4263 + 17.3809i 1.07795 + 0.708980i 0.958853 0.283902i \(-0.0916292\pi\)
0.119098 + 0.992882i \(0.462000\pi\)
\(602\) −3.57904 + 1.30266i −0.145871 + 0.0530926i
\(603\) 0 0
\(604\) −6.99114 2.54457i −0.284465 0.103537i
\(605\) −37.3599 50.1830i −1.51889 2.04023i
\(606\) 0 0
\(607\) −0.851718 0.902768i −0.0345702 0.0366422i 0.709858 0.704345i \(-0.248759\pi\)
−0.744428 + 0.667703i \(0.767278\pi\)
\(608\) −1.13327 1.20120i −0.0459602 0.0487149i
\(609\) 0 0
\(610\) 4.75652 + 6.38911i 0.192586 + 0.258688i
\(611\) 1.06497 + 0.387619i 0.0430842 + 0.0156814i
\(612\) 0 0
\(613\) −30.1068 + 10.9580i −1.21600 + 0.442589i −0.868782 0.495195i \(-0.835097\pi\)
−0.347221 + 0.937783i \(0.612875\pi\)
\(614\) 11.2705 + 7.41270i 0.454839 + 0.299152i
\(615\) 0 0
\(616\) 11.4348 15.3596i 0.460722 0.618857i
\(617\) 6.97735 4.58907i 0.280897 0.184749i −0.401240 0.915973i \(-0.631421\pi\)
0.682138 + 0.731224i \(0.261050\pi\)
\(618\) 0 0
\(619\) −7.76825 25.9478i −0.312232 1.04293i −0.959745 0.280874i \(-0.909376\pi\)
0.647512 0.762055i \(-0.275809\pi\)
\(620\) 10.6895 + 18.5147i 0.429300 + 0.743569i
\(621\) 0 0
\(622\) −2.95334 + 5.11534i −0.118418 + 0.205107i
\(623\) 1.83404 + 0.434676i 0.0734793 + 0.0174149i
\(624\) 0 0
\(625\) 9.96269 + 5.00345i 0.398508 + 0.200138i
\(626\) 3.49181 + 8.09493i 0.139561 + 0.323538i
\(627\) 0 0
\(628\) 1.14647 19.6841i 0.0457492 0.785483i
\(629\) −1.59198 + 9.02857i −0.0634764 + 0.359992i
\(630\) 0 0
\(631\) 3.72186 + 21.1077i 0.148165 + 0.840284i 0.964771 + 0.263089i \(0.0847414\pi\)
−0.816607 + 0.577194i \(0.804147\pi\)
\(632\) 4.29849 0.502421i 0.170985 0.0199852i
\(633\) 0 0
\(634\) −2.09512 + 6.99818i −0.0832078 + 0.277933i
\(635\) 66.8285 15.8387i 2.65201 0.628538i
\(636\) 0 0
\(637\) −0.514212 + 1.19208i −0.0203738 + 0.0472318i
\(638\) −3.03870 + 2.54977i −0.120303 + 0.100946i
\(639\) 0 0
\(640\) −2.86744 2.40607i −0.113346 0.0951083i
\(641\) 14.0757 7.06906i 0.555955 0.279211i −0.148556 0.988904i \(-0.547463\pi\)
0.704511 + 0.709693i \(0.251166\pi\)
\(642\) 0 0
\(643\) 44.1265 + 5.15764i 1.74018 + 0.203398i 0.926079 0.377329i \(-0.123157\pi\)
0.814099 + 0.580726i \(0.197231\pi\)
\(644\) 1.84981 + 31.7601i 0.0728929 + 1.25152i
\(645\) 0 0
\(646\) −1.89402 + 2.00755i −0.0745194 + 0.0789859i
\(647\) −18.9018 −0.743108 −0.371554 0.928411i \(-0.621175\pi\)
−0.371554 + 0.928411i \(0.621175\pi\)
\(648\) 0 0
\(649\) −62.9820 −2.47226
\(650\) 1.28852 1.36575i 0.0505399 0.0535691i
\(651\) 0 0
\(652\) −0.421574 7.23815i −0.0165101 0.283468i
\(653\) −19.0339 2.22475i −0.744856 0.0870611i −0.264805 0.964302i \(-0.585308\pi\)
−0.480051 + 0.877241i \(0.659382\pi\)
\(654\) 0 0
\(655\) 0.663544 0.333245i 0.0259268 0.0130209i
\(656\) 3.83126 + 3.21481i 0.149586 + 0.125517i
\(657\) 0 0
\(658\) −15.1558 + 12.7172i −0.590833 + 0.495768i
\(659\) −0.654481 + 1.51726i −0.0254950 + 0.0591040i −0.930488 0.366323i \(-0.880617\pi\)
0.904993 + 0.425427i \(0.139876\pi\)
\(660\) 0 0
\(661\) −41.3076 + 9.79007i −1.60668 + 0.380790i −0.933468 0.358661i \(-0.883233\pi\)
−0.673211 + 0.739451i \(0.735085\pi\)
\(662\) 9.18443 30.6781i 0.356963 1.19234i
\(663\) 0 0
\(664\) 14.2005 1.65980i 0.551086 0.0644128i
\(665\) 3.90445 + 22.1432i 0.151408 + 0.858677i
\(666\) 0 0
\(667\) 1.14441 6.49026i 0.0443116 0.251304i
\(668\) −1.09516 + 18.8032i −0.0423730 + 0.727517i
\(669\) 0 0
\(670\) 9.26363 + 21.4755i 0.357885 + 0.829671i
\(671\) 10.0107 + 5.02757i 0.386460 + 0.194087i
\(672\) 0 0
\(673\) 12.3539 + 2.92794i 0.476209 + 0.112864i 0.461710 0.887031i \(-0.347236\pi\)
0.0144998 + 0.999895i \(0.495384\pi\)
\(674\) −12.9912 + 22.5014i −0.500401 + 0.866720i
\(675\) 0 0
\(676\) 6.47829 + 11.2207i 0.249165 + 0.431567i
\(677\) 3.18713 + 10.6457i 0.122491 + 0.409149i 0.997137 0.0756130i \(-0.0240914\pi\)
−0.874646 + 0.484762i \(0.838906\pi\)
\(678\) 0 0
\(679\) −5.65488 + 3.71927i −0.217014 + 0.142733i
\(680\) −3.73579 + 5.01804i −0.143261 + 0.192433i
\(681\) 0 0
\(682\) 25.1208 + 16.5222i 0.961925 + 0.632668i
\(683\) 19.0189 6.92231i 0.727737 0.264875i 0.0485305 0.998822i \(-0.484546\pi\)
0.679207 + 0.733947i \(0.262324\pi\)
\(684\) 0 0
\(685\) 15.5423 + 5.65692i 0.593840 + 0.216140i
\(686\) 1.67095 + 2.24448i 0.0637973 + 0.0856947i
\(687\) 0 0
\(688\) 0.718564 + 0.761633i 0.0273950 + 0.0290370i
\(689\) −0.696010 0.737728i −0.0265159 0.0281052i
\(690\) 0 0
\(691\) 15.8395 + 21.2762i 0.602564 + 0.809384i 0.993832 0.110893i \(-0.0353711\pi\)
−0.391269 + 0.920277i \(0.627964\pi\)
\(692\) 4.33617 + 1.57824i 0.164836 + 0.0599955i
\(693\) 0 0
\(694\) 12.2929 4.47425i 0.466632 0.169840i
\(695\) −3.86517 2.54216i −0.146614 0.0964297i
\(696\) 0 0
\(697\) 4.99149 6.70473i 0.189066 0.253960i
\(698\) 16.7308 11.0040i 0.633269 0.416508i
\(699\) 0 0
\(700\) 9.40089 + 31.4011i 0.355320 + 1.18685i
\(701\) 5.03336 + 8.71804i 0.190107 + 0.329276i 0.945286 0.326244i \(-0.105783\pi\)
−0.755178 + 0.655520i \(0.772450\pi\)
\(702\) 0 0
\(703\) 4.52941 7.84517i 0.170830 0.295886i
\(704\) −5.12249 1.21405i −0.193061 0.0457563i
\(705\) 0 0
\(706\) −26.0235 13.0695i −0.979406 0.491876i
\(707\) −16.5714 38.4169i −0.623232 1.44481i
\(708\) 0 0
\(709\) 2.70801 46.4947i 0.101701 1.74614i −0.433261 0.901269i \(-0.642637\pi\)
0.534962 0.844876i \(-0.320326\pi\)
\(710\) −1.67703 + 9.51092i −0.0629379 + 0.356938i
\(711\) 0 0
\(712\) −0.0899818 0.510312i −0.00337221 0.0191247i
\(713\) −49.6163 + 5.79931i −1.85814 + 0.217186i
\(714\) 0 0
\(715\) 1.17759 3.93342i 0.0440393 0.147102i
\(716\) −24.3593 + 5.77326i −0.910350 + 0.215757i
\(717\) 0 0
\(718\) 6.15792 14.2757i 0.229811 0.532763i
\(719\) 27.0503 22.6979i 1.00881 0.846490i 0.0206270 0.999787i \(-0.493434\pi\)
0.988180 + 0.153298i \(0.0489893\pi\)
\(720\) 0 0
\(721\) 41.4179 + 34.7538i 1.54248 + 1.29430i
\(722\) −14.5419 + 7.30323i −0.541195 + 0.271798i
\(723\) 0 0
\(724\) −15.6570 1.83005i −0.581889 0.0680131i
\(725\) −0.394811 6.77865i −0.0146629 0.251753i
\(726\) 0 0
\(727\) −4.09655 + 4.34209i −0.151933 + 0.161039i −0.798870 0.601504i \(-0.794568\pi\)
0.646937 + 0.762544i \(0.276050\pi\)
\(728\) 0.757901 0.0280897
\(729\) 0 0
\(730\) 20.9446 0.775194
\(731\) 1.20093 1.27291i 0.0444180 0.0470803i
\(732\) 0 0
\(733\) 2.73945 + 47.0345i 0.101184 + 1.73726i 0.542631 + 0.839971i \(0.317428\pi\)
−0.441447 + 0.897287i \(0.645535\pi\)
\(734\) 9.17828 + 1.07279i 0.338776 + 0.0395973i
\(735\) 0 0
\(736\) 7.81600 3.92534i 0.288101 0.144690i
\(737\) 25.1976 + 21.1433i 0.928166 + 0.778824i
\(738\) 0 0
\(739\) −9.19760 + 7.71770i −0.338339 + 0.283900i −0.796088 0.605182i \(-0.793101\pi\)
0.457748 + 0.889082i \(0.348656\pi\)
\(740\) 8.13278 18.8539i 0.298967 0.693083i
\(741\) 0 0
\(742\) 17.2283 4.08318i 0.632471 0.149898i
\(743\) −9.51664 + 31.7878i −0.349132 + 1.16618i 0.585533 + 0.810649i \(0.300885\pi\)
−0.934664 + 0.355532i \(0.884300\pi\)
\(744\) 0 0
\(745\) −29.9610 + 3.50194i −1.09769 + 0.128301i
\(746\) 5.84734 + 33.1619i 0.214086 + 1.21414i
\(747\) 0 0
\(748\) −1.52781 + 8.66466i −0.0558624 + 0.316811i
\(749\) 0.541164 9.29142i 0.0197737 0.339501i
\(750\) 0 0
\(751\) −14.2808 33.1067i −0.521115 1.20808i −0.952118 0.305731i \(-0.901099\pi\)
0.431003 0.902351i \(-0.358160\pi\)
\(752\) 4.86062 + 2.44109i 0.177248 + 0.0890175i
\(753\) 0 0
\(754\) −0.152770 0.0362072i −0.00556357 0.00131859i
\(755\) 13.9243 24.1176i 0.506757 0.877729i
\(756\) 0 0
\(757\) −14.8811 25.7749i −0.540864 0.936804i −0.998855 0.0478471i \(-0.984764\pi\)
0.457990 0.888957i \(-0.348569\pi\)
\(758\) 0.0674426 + 0.225274i 0.00244963 + 0.00818232i
\(759\) 0 0
\(760\) 5.16461 3.39682i 0.187340 0.123216i
\(761\) −32.1802 + 43.2255i −1.16653 + 1.56692i −0.411250 + 0.911522i \(0.634908\pi\)
−0.755281 + 0.655401i \(0.772500\pi\)
\(762\) 0 0
\(763\) 32.7358 + 21.5307i 1.18511 + 0.779462i
\(764\) 1.25239 0.455834i 0.0453100 0.0164915i
\(765\) 0 0
\(766\) 13.8183 + 5.02946i 0.499276 + 0.181722i
\(767\) −1.48860 1.99954i −0.0537503 0.0721992i
\(768\) 0 0
\(769\) −5.85019 6.20084i −0.210963 0.223608i 0.613248 0.789890i \(-0.289863\pi\)
−0.824211 + 0.566283i \(0.808381\pi\)
\(770\) 49.1878 + 52.1361i 1.77261 + 1.87885i
\(771\) 0 0
\(772\) 7.98972 + 10.7321i 0.287556 + 0.386255i
\(773\) −36.4284 13.2589i −1.31024 0.476888i −0.409921 0.912121i \(-0.634444\pi\)
−0.900318 + 0.435234i \(0.856666\pi\)
\(774\) 0 0
\(775\) −48.3642 + 17.6031i −1.73730 + 0.632324i
\(776\) 1.55465 + 1.02251i 0.0558085 + 0.0367058i
\(777\) 0 0
\(778\) −12.7609 + 17.1409i −0.457501 + 0.614530i
\(779\) −6.90057 + 4.53857i −0.247238 + 0.162611i
\(780\) 0 0
\(781\) 3.89549 + 13.0118i 0.139392 + 0.465600i
\(782\) −7.30882 12.6592i −0.261363 0.452694i
\(783\) 0 0
\(784\) −3.11536 + 5.39596i −0.111263 + 0.192713i
\(785\) 71.8168 + 17.0209i 2.56325 + 0.607502i
\(786\) 0 0
\(787\) 6.04121 + 3.03401i 0.215346 + 0.108151i 0.553202 0.833047i \(-0.313406\pi\)
−0.337857 + 0.941198i \(0.609702\pi\)
\(788\) −10.4139 24.1421i −0.370979 0.860026i
\(789\) 0 0
\(790\) −0.941921 + 16.1722i −0.0335120 + 0.575379i
\(791\) −7.79524 + 44.2090i −0.277167 + 1.57189i
\(792\) 0 0
\(793\) 0.0769927 + 0.436647i 0.00273409 + 0.0155058i
\(794\) 23.0698 2.69647i 0.818716 0.0956942i
\(795\) 0 0
\(796\) −0.665384 + 2.22254i −0.0235839 + 0.0787758i
\(797\) −1.49748 + 0.354909i −0.0530434 + 0.0125715i −0.257052 0.966398i \(-0.582751\pi\)
0.204008 + 0.978969i \(0.434603\pi\)
\(798\) 0 0
\(799\) 3.60053 8.34698i 0.127378 0.295295i
\(800\) 6.90314 5.79243i 0.244063 0.204793i
\(801\) 0 0
\(802\) −12.2930 10.3151i −0.434082 0.364238i
\(803\) 26.3232 13.2200i 0.928924 0.466523i
\(804\) 0 0
\(805\) −118.280 13.8250i −4.16882 0.487266i
\(806\) 0.0691955 + 1.18804i 0.00243731 + 0.0418469i
\(807\) 0 0
\(808\) −7.89336 + 8.36648i −0.277688 + 0.294332i
\(809\) 35.4763 1.24728 0.623639 0.781712i \(-0.285653\pi\)
0.623639 + 0.781712i \(0.285653\pi\)
\(810\) 0 0
\(811\) 2.83568 0.0995740 0.0497870 0.998760i \(-0.484146\pi\)
0.0497870 + 0.998760i \(0.484146\pi\)
\(812\) 1.88085 1.99358i 0.0660049 0.0699611i
\(813\) 0 0
\(814\) −1.67909 28.8289i −0.0588521 1.01045i
\(815\) 26.9561 + 3.15072i 0.944232 + 0.110365i
\(816\) 0 0
\(817\) −1.54527 + 0.776063i −0.0540621 + 0.0271510i
\(818\) 2.71014 + 2.27408i 0.0947580 + 0.0795114i
\(819\) 0 0
\(820\) −14.3411 + 12.0336i −0.500814 + 0.420233i
\(821\) 21.4821 49.8012i 0.749731 1.73807i 0.0783916 0.996923i \(-0.475022\pi\)
0.671340 0.741150i \(-0.265719\pi\)
\(822\) 0 0
\(823\) 7.83046 1.85585i 0.272953 0.0646910i −0.0918599 0.995772i \(-0.529281\pi\)
0.364813 + 0.931081i \(0.381133\pi\)
\(824\) 4.26311 14.2398i 0.148513 0.496066i
\(825\) 0 0
\(826\) 43.2229 5.05203i 1.50392 0.175783i
\(827\) −8.15370 46.2420i −0.283532 1.60799i −0.710482 0.703715i \(-0.751523\pi\)
0.426950 0.904275i \(-0.359588\pi\)
\(828\) 0 0
\(829\) 4.57598 25.9517i 0.158930 0.901339i −0.796174 0.605068i \(-0.793146\pi\)
0.955104 0.296271i \(-0.0957430\pi\)
\(830\) −3.11173 + 53.4264i −0.108010 + 1.85446i
\(831\) 0 0
\(832\) −0.0825284 0.191322i −0.00286116 0.00663291i
\(833\) 9.30571 + 4.67350i 0.322424 + 0.161927i
\(834\) 0 0
\(835\) −68.6026 16.2591i −2.37409 0.562670i
\(836\) 4.34685 7.52896i 0.150339 0.260395i
\(837\) 0 0
\(838\) −15.6389 27.0873i −0.540235 0.935715i
\(839\) 1.55115 + 5.18120i 0.0535516 + 0.178875i 0.980581 0.196113i \(-0.0628320\pi\)
−0.927030 + 0.374988i \(0.877647\pi\)
\(840\) 0 0
\(841\) 23.7548 15.6238i 0.819130 0.538751i
\(842\) 10.6536 14.3103i 0.367147 0.493165i
\(843\) 0 0
\(844\) 8.16315 + 5.36899i 0.280987 + 0.184808i
\(845\) −45.5740 + 16.5876i −1.56779 + 0.570630i
\(846\) 0 0
\(847\) 57.1284 + 20.7930i 1.96296 + 0.714458i
\(848\) −2.90675 3.90444i −0.0998181 0.134079i
\(849\) 0 0
\(850\) −10.3353 10.9548i −0.354497 0.375745i
\(851\) 32.9244 + 34.8978i 1.12863 + 1.19628i
\(852\) 0 0
\(853\) −12.8338 17.2388i −0.439421 0.590244i 0.526148 0.850393i \(-0.323636\pi\)
−0.965569 + 0.260149i \(0.916228\pi\)
\(854\) −7.27338 2.64729i −0.248890 0.0905885i
\(855\) 0 0
\(856\) −2.40443 + 0.875140i −0.0821816 + 0.0299117i
\(857\) 12.5216 + 8.23558i 0.427729 + 0.281322i 0.745066 0.666991i \(-0.232418\pi\)
−0.317336 + 0.948313i \(0.602788\pi\)
\(858\) 0 0
\(859\) −30.0492 + 40.3630i −1.02526 + 1.37717i −0.101229 + 0.994863i \(0.532277\pi\)
−0.924036 + 0.382306i \(0.875130\pi\)
\(860\) −3.27469 + 2.15379i −0.111666 + 0.0734438i
\(861\) 0 0
\(862\) 5.24057 + 17.5047i 0.178494 + 0.596213i
\(863\) −12.2875 21.2826i −0.418272 0.724468i 0.577494 0.816395i \(-0.304031\pi\)
−0.995766 + 0.0919267i \(0.970697\pi\)
\(864\) 0 0
\(865\) −8.63637 + 14.9586i −0.293645 + 0.508609i
\(866\) −27.5696 6.53411i −0.936853 0.222038i
\(867\) 0 0
\(868\) −18.5651 9.32372i −0.630139 0.316468i
\(869\) 9.02387 + 20.9197i 0.306114 + 0.709652i
\(870\) 0 0
\(871\) −0.0756989 + 1.29970i −0.00256496 + 0.0440386i
\(872\) 1.87051 10.6082i 0.0633436 0.359239i
\(873\) 0 0
\(874\) 2.50814 + 14.2244i 0.0848391 + 0.481147i
\(875\) −54.2480 + 6.34068i −1.83392 + 0.214354i
\(876\) 0 0
\(877\) 11.9131 39.7924i 0.402275 1.34369i −0.481772 0.876296i \(-0.660007\pi\)
0.884048 0.467397i \(-0.154808\pi\)
\(878\) 3.08166 0.730367i 0.104001 0.0246487i
\(879\) 0 0
\(880\) 7.80498 18.0940i 0.263106 0.609948i
\(881\) −39.4074 + 33.0667i −1.32767 + 1.11405i −0.343053 + 0.939316i \(0.611461\pi\)
−0.984616 + 0.174731i \(0.944095\pi\)
\(882\) 0 0
\(883\) 11.6864 + 9.80605i 0.393279 + 0.330000i 0.817889 0.575376i \(-0.195144\pi\)
−0.424610 + 0.905376i \(0.639589\pi\)
\(884\) −0.311194 + 0.156288i −0.0104666 + 0.00525653i
\(885\) 0 0
\(886\) −31.7592 3.71211i −1.06697 0.124711i
\(887\) −2.91698 50.0825i −0.0979424 1.68161i −0.587180 0.809456i \(-0.699762\pi\)
0.489238 0.872150i \(-0.337275\pi\)
\(888\) 0 0
\(889\) −45.7991 + 48.5442i −1.53605 + 1.62812i
\(890\) 1.93966 0.0650175
\(891\) 0 0
\(892\) 5.85506 0.196042
\(893\) −6.16404 + 6.53351i −0.206272 + 0.218635i
\(894\) 0 0
\(895\) −5.44859 93.5487i −0.182126 3.12699i
\(896\) 3.61281 + 0.422277i 0.120696 + 0.0141073i
\(897\) 0 0
\(898\) −2.19341 + 1.10157i −0.0731950 + 0.0367599i
\(899\) 3.29674 + 2.76629i 0.109952 + 0.0922611i
\(900\) 0 0
\(901\) −6.23194 + 5.22922i −0.207616 + 0.174211i
\(902\) −10.4284 + 24.1758i −0.347229 + 0.804966i
\(903\) 0 0
\(904\) 12.0088 2.84614i 0.399407 0.0946613i
\(905\) 16.9232 56.5273i 0.562545 1.87903i
\(906\) 0 0
\(907\) 54.9677 6.42481i 1.82517 0.213332i 0.866762 0.498722i \(-0.166197\pi\)
0.958411 + 0.285390i \(0.0921232\pi\)
\(908\) −1.30773 7.41652i −0.0433986 0.246126i
\(909\) 0 0
\(910\) −0.492633 + 2.79386i −0.0163306 + 0.0926157i
\(911\) 2.36181 40.5508i 0.0782503 1.34351i −0.699364 0.714765i \(-0.746534\pi\)
0.777615 0.628741i \(-0.216429\pi\)
\(912\) 0 0
\(913\) 29.8113 + 69.1103i 0.986610 + 2.28722i
\(914\) −19.7913 9.93956i −0.654638 0.328771i
\(915\) 0 0
\(916\) 10.9890 + 2.60444i 0.363086 + 0.0860530i
\(917\) −0.360771 + 0.624874i −0.0119137 + 0.0206352i
\(918\) 0 0
\(919\) −16.3221 28.2707i −0.538417 0.932565i −0.998990 0.0449430i \(-0.985689\pi\)
0.460573 0.887622i \(-0.347644\pi\)
\(920\) 9.38967 + 31.3637i 0.309568 + 1.03403i
\(921\) 0 0
\(922\) 6.97700 4.58885i 0.229775 0.151126i
\(923\) −0.321026 + 0.431213i −0.0105667 + 0.0141935i
\(924\) 0 0
\(925\) 41.2999 + 27.1633i 1.35793 + 0.893125i
\(926\) 22.9823 8.36487i 0.755245 0.274887i
\(927\) 0 0
\(928\) −0.708062 0.257713i −0.0232433 0.00845986i
\(929\) −28.9953 38.9475i −0.951306 1.27783i −0.960619 0.277869i \(-0.910372\pi\)
0.00931285 0.999957i \(-0.497036\pi\)
\(930\) 0 0
\(931\) −7.06109 7.48432i −0.231418 0.245289i
\(932\) 5.21887 + 5.53168i 0.170950 + 0.181196i
\(933\) 0 0
\(934\) 16.9772 + 22.8044i 0.555511 + 0.746181i
\(935\) −30.9476 11.2640i −1.01209 0.368372i
\(936\) 0 0
\(937\) 4.72115 1.71836i 0.154233 0.0561363i −0.263750 0.964591i \(-0.584959\pi\)
0.417983 + 0.908455i \(0.362737\pi\)
\(938\) −18.9884 12.4889i −0.619995 0.407777i
\(939\) 0 0
\(940\) −12.1580 + 16.3311i −0.396551 + 0.532660i
\(941\) 19.7386 12.9823i 0.643459 0.423210i −0.185403 0.982663i \(-0.559359\pi\)
0.828862 + 0.559453i \(0.188989\pi\)
\(942\) 0 0
\(943\) −12.5458 41.9058i −0.408547 1.36464i
\(944\) −5.98189 10.3609i −0.194694 0.337220i
\(945\) 0 0
\(946\) −2.75617 + 4.77383i −0.0896109 + 0.155211i
\(947\) −17.0613 4.04359i −0.554416 0.131399i −0.0561488 0.998422i \(-0.517882\pi\)
−0.498268 + 0.867023i \(0.666030\pi\)
\(948\) 0 0
\(949\) 1.04186 + 0.523244i 0.0338203 + 0.0169852i
\(950\) 5.89430 + 13.6645i 0.191236 + 0.443336i
\(951\) 0 0
\(952\) 0.353472 6.06888i 0.0114561 0.196693i
\(953\) −8.32666 + 47.2228i −0.269727 + 1.52970i 0.485502 + 0.874236i \(0.338637\pi\)
−0.755229 + 0.655462i \(0.772474\pi\)
\(954\) 0 0
\(955\) 0.866296 + 4.91301i 0.0280327 + 0.158981i
\(956\) −18.9755 + 2.21792i −0.613711 + 0.0717325i
\(957\) 0 0
\(958\) 4.53707 15.1549i 0.146586 0.489631i
\(959\) −15.6391 + 3.70654i −0.505014 + 0.119690i
\(960\) 0 0
\(961\) 0.641865 1.48801i 0.0207053 0.0480003i
\(962\) 0.875569 0.734689i 0.0282295 0.0236873i
\(963\) 0 0
\(964\) −4.96143 4.16313i −0.159797 0.134085i
\(965\) −44.7551 + 22.4768i −1.44072 + 0.723555i
\(966\) 0 0
\(967\) 41.5836 + 4.86042i 1.33724 + 0.156301i 0.754468 0.656337i \(-0.227895\pi\)
0.582770 + 0.812637i \(0.301969\pi\)
\(968\) −0.971820 16.6855i −0.0312355 0.536292i
\(969\) 0 0
\(970\) −4.77979 + 5.06629i −0.153470 + 0.162669i
\(971\) −2.57508 −0.0826384 −0.0413192 0.999146i \(-0.513156\pi\)
−0.0413192 + 0.999146i \(0.513156\pi\)
\(972\) 0 0
\(973\) 4.49551 0.144120
\(974\) −6.68517 + 7.08586i −0.214207 + 0.227046i
\(975\) 0 0
\(976\) 0.123728 + 2.12434i 0.00396045 + 0.0679983i
\(977\) 9.91440 + 1.15883i 0.317190 + 0.0370741i 0.273198 0.961958i \(-0.411919\pi\)
0.0439914 + 0.999032i \(0.485993\pi\)
\(978\) 0 0
\(979\) 2.43776 1.22429i 0.0779112 0.0391285i
\(980\) −17.8662 14.9916i −0.570716 0.478888i
\(981\) 0 0
\(982\) 4.60685 3.86561i 0.147010 0.123356i
\(983\) −2.72214 + 6.31062i −0.0868227 + 0.201278i −0.956096 0.293055i \(-0.905328\pi\)
0.869273 + 0.494332i \(0.164587\pi\)
\(984\) 0 0
\(985\) 95.7643 22.6966i 3.05131 0.723173i
\(986\) −0.361178 + 1.20642i −0.0115023 + 0.0384202i
\(987\) 0 0
\(988\) 0.341768 0.0399469i 0.0108731 0.00127088i
\(989\) −1.59032 9.01914i −0.0505692 0.286792i
\(990\) 0 0
\(991\) −4.53010 + 25.6915i −0.143903 + 0.816117i 0.824338 + 0.566099i \(0.191548\pi\)
−0.968241 + 0.250019i \(0.919563\pi\)
\(992\) −0.332091 + 5.70178i −0.0105439 + 0.181032i
\(993\) 0 0
\(994\) −3.71710 8.61721i −0.117899 0.273321i
\(995\) −7.76048 3.89746i −0.246024 0.123558i
\(996\) 0 0
\(997\) −50.0674 11.8662i −1.58565 0.375806i −0.659124 0.752035i \(-0.729073\pi\)
−0.926527 + 0.376228i \(0.877221\pi\)
\(998\) −4.84606 + 8.39362i −0.153399 + 0.265696i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.g.a.127.4 72
3.2 odd 2 162.2.g.a.151.1 yes 72
81.22 even 27 inner 486.2.g.a.199.4 72
81.59 odd 54 162.2.g.a.103.1 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.g.a.103.1 72 81.59 odd 54
162.2.g.a.151.1 yes 72 3.2 odd 2
486.2.g.a.127.4 72 1.1 even 1 trivial
486.2.g.a.199.4 72 81.22 even 27 inner