[N,k,chi] = [486,2,Mod(19,486)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(486, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([52]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("486.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{72} - 9 T_{5}^{70} - 30 T_{5}^{69} + 63 T_{5}^{68} + 81 T_{5}^{67} - 1665 T_{5}^{66} + 4023 T_{5}^{65} - 18009 T_{5}^{64} - 92904 T_{5}^{63} + 832275 T_{5}^{62} + 782244 T_{5}^{61} - 3669129 T_{5}^{60} + \cdots + 18487617876729 \)
acting on \(S_{2}^{\mathrm{new}}(486, [\chi])\).