Properties

 Label 486.2.e.d Level $486$ Weight $2$ Character orbit 486.e Analytic conductor $3.881$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [486,2,Mod(55,486)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(486, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([16]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("486.55");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$486 = 2 \cdot 3^{5}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 486.e (of order $$9$$, degree $$6$$, not minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$3.88072953823$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} - x^{3} + 1$$ x^6 - x^3 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 54) Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{18}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\zeta_{18}^{4} - \zeta_{18}) q^{2} - \zeta_{18}^{5} q^{4} + (\zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{2} + \zeta_{18} + 1) q^{5} + ( - 2 \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{7} + \zeta_{18}^{3} q^{8} +O(q^{10})$$ q + (z^4 - z) * q^2 - z^5 * q^4 + (z^5 - z^4 - z^2 + z + 1) * q^5 + (-2*z^4 - z^3 - z^2 + 1) * q^7 + z^3 * q^8 $$q + (\zeta_{18}^{4} - \zeta_{18}) q^{2} - \zeta_{18}^{5} q^{4} + (\zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{2} + \zeta_{18} + 1) q^{5} + ( - 2 \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{7} + \zeta_{18}^{3} q^{8} + (\zeta_{18}^{5} + \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18} + 1) q^{10} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{3} - \zeta_{18}^{2} - \zeta_{18} - 3) q^{11} + (2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 3 \zeta_{18}^{2} - 2 \zeta_{18} + 2) q^{13} + (\zeta_{18}^{4} + 2 \zeta_{18}^{2} + 1) q^{14} - \zeta_{18} q^{16} + (3 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + \zeta_{18} - 2) q^{17} + ( - \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{2} - \zeta_{18}) q^{19} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} - \zeta_{18}^{3}) q^{20} + ( - \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + \zeta_{18}^{2} + \zeta_{18} + 1) q^{22} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}) q^{23} + (\zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 2 \zeta_{18} - 1) q^{25} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 3) q^{26} + (\zeta_{18}^{4} - \zeta_{18}^{2} - \zeta_{18} - 2) q^{28} + (\zeta_{18}^{5} - \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + \zeta_{18} - 1) q^{29} + (4 \zeta_{18}^{5} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{3} + 3) q^{31} + ( - \zeta_{18}^{5} + \zeta_{18}^{2}) q^{32} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} - 3 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 4) q^{34} + (\zeta_{18}^{5} - 3 \zeta_{18}^{4} + \zeta_{18}^{3} - 3 \zeta_{18}^{2} + \zeta_{18}) q^{35} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 5 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - \zeta_{18} + 5) q^{37} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + 4 \zeta_{18}^{2} - 3 \zeta_{18} + 3) q^{38} + (\zeta_{18}^{3} - \zeta_{18}^{2} + \zeta_{18}) q^{40} + ( - 2 \zeta_{18}^{4} - 3 \zeta_{18}^{3} + \zeta_{18}^{2} - 3 \zeta_{18} - 2) q^{41} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{3} + 4 \zeta_{18}^{2} + 4 \zeta_{18} + 2) q^{43} + (\zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 3 \zeta_{18} - 1) q^{44} + (2 \zeta_{18}^{5} - \zeta_{18}^{3} + 2 \zeta_{18}) q^{46} + ( - \zeta_{18}^{5} - 3 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{47} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} + 3 \zeta_{18}^{3} + \zeta_{18}^{2} - 4 \zeta_{18} - 4) q^{49} + ( - 2 \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18} + 2) q^{50} + (3 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 3 \zeta_{18}) q^{52} + (\zeta_{18}^{5} - 3 \zeta_{18}^{4} + 2 \zeta_{18}^{2} + 2 \zeta_{18} - 2) q^{53} + ( - 4 \zeta_{18}^{5} + 5 \zeta_{18}^{4} - \zeta_{18}^{2} - \zeta_{18} - 3) q^{55} + ( - \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18} + 1) q^{56} + (\zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{3} + 3 \zeta_{18} - 2) q^{58} + ( - \zeta_{18}^{5} - 4 \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18}^{2} + 3 \zeta_{18} + 3) q^{59} + ( - 5 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - \zeta_{18}^{3} + 4 \zeta_{18}^{2} - 4) q^{61} + (3 \zeta_{18}^{4} - 4 \zeta_{18}^{3} + 3 \zeta_{18}^{2}) q^{62} + (\zeta_{18}^{3} - 1) q^{64} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{3} - 3 \zeta_{18}^{2} + \zeta_{18} + 1) q^{65} + (3 \zeta_{18}^{4} - \zeta_{18}^{2} + 3) q^{67} + (4 \zeta_{18}^{4} - \zeta_{18}^{3} + 2 \zeta_{18}^{2} - \zeta_{18} + 4) q^{68} + (\zeta_{18}^{5} - \zeta_{18}^{3} + 2 \zeta_{18}^{2} - \zeta_{18} + 3) q^{70} + ( - 6 \zeta_{18}^{5} - 6 \zeta_{18}^{4} - 4 \zeta_{18}^{3} + 5 \zeta_{18}^{2} + \zeta_{18} + 4) q^{71} + (7 \zeta_{18}^{5} - 5 \zeta_{18}^{4} + \zeta_{18}^{3} - 5 \zeta_{18}^{2} + 7 \zeta_{18}) q^{73} + ( - \zeta_{18}^{5} + 5 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 3) q^{74} + ( - 3 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 4 \zeta_{18} - 4) q^{76} + (\zeta_{18}^{5} + 6 \zeta_{18}^{4} + 6 \zeta_{18}^{3} + \zeta_{18} - 7) q^{77} + (5 \zeta_{18}^{5} - 3 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 5) q^{79} + (\zeta_{18}^{5} - \zeta_{18}^{2} - \zeta_{18} + 1) q^{80} + ( - 3 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 5 \zeta_{18}^{2} + 5 \zeta_{18} - 1) q^{82} + (2 \zeta_{18}^{5} + 4 \zeta_{18}^{3} - 4 \zeta_{18}^{2} - 2) q^{83} + (2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 5 \zeta_{18} - 7) q^{85} + (4 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 4 \zeta_{18}^{2} - 4 \zeta_{18} - 4) q^{86} + ( - 3 \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 2) q^{88} + ( - 4 \zeta_{18}^{5} + \zeta_{18}^{4} - 5 \zeta_{18}^{3} + \zeta_{18}^{2} - 4 \zeta_{18}) q^{89} + (5 \zeta_{18}^{5} + 5 \zeta_{18}^{4} + 4 \zeta_{18}^{3} - \zeta_{18}^{2} - 4 \zeta_{18} - 4) q^{91} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + \zeta_{18}) q^{92} + (\zeta_{18}^{4} + \zeta_{18}^{3} + 3 \zeta_{18}^{2} + \zeta_{18} + 1) q^{94} + ( - 2 \zeta_{18}^{4} + 5 \zeta_{18}^{3} - 10 \zeta_{18}^{2} + 5 \zeta_{18} - 2) q^{95} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + 3 \zeta_{18}^{2} + 6 \zeta_{18} + 2) q^{97} + ( - 4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + \zeta_{18}^{3} + 3 \zeta_{18}^{2} + \zeta_{18} - 1) q^{98} +O(q^{100})$$ q + (z^4 - z) * q^2 - z^5 * q^4 + (z^5 - z^4 - z^2 + z + 1) * q^5 + (-2*z^4 - z^3 - z^2 + 1) * q^7 + z^3 * q^8 + (z^5 + z^4 - z^3 - z + 1) * q^10 + (-2*z^5 + 2*z^3 - z^2 - z - 3) * q^11 + (2*z^4 - 2*z^3 - 3*z^2 - 2*z + 2) * q^13 + (z^4 + 2*z^2 + 1) * q^14 - z * q^16 + (3*z^5 + 3*z^4 + 2*z^3 - 4*z^2 + z - 2) * q^17 + (-z^5 - 3*z^4 + 3*z^3 - 3*z^2 - z) * q^19 + (-z^5 + z^4 - z^3) * q^20 + (-z^5 - 3*z^4 + 2*z^3 + z^2 + z + 1) * q^22 + (z^5 - 2*z^4 - 2*z^3 + 2*z) * q^23 + (z^5 + 2*z^4 + 2*z^3 - 2*z^2 - 2*z - 1) * q^25 + (-2*z^5 + 2*z^4 + 3) * q^26 + (z^4 - z^2 - z - 2) * q^28 + (z^5 - z^4 - 2*z^3 + 2*z^2 + z - 1) * q^29 + (4*z^5 - 3*z^4 - 3*z^3 + 3) * q^31 + (-z^5 + z^2) * q^32 + (z^5 - 2*z^4 - 3*z^3 - 4*z^2 + 4) * q^34 + (z^5 - 3*z^4 + z^3 - 3*z^2 + z) * q^35 + (-2*z^5 - 2*z^4 - 5*z^3 + 3*z^2 - z + 5) * q^37 + (-z^5 + z^3 + 4*z^2 - 3*z + 3) * q^38 + (z^3 - z^2 + z) * q^40 + (-2*z^4 - 3*z^3 + z^2 - 3*z - 2) * q^41 + (-2*z^5 + 2*z^3 + 4*z^2 + 4*z + 2) * q^43 + (z^5 + z^4 + z^3 + 2*z^2 - 3*z - 1) * q^44 + (2*z^5 - z^3 + 2*z) * q^46 + (-z^5 - 3*z^4 - 2*z^3 - z^2 + 1) * q^47 + (-z^5 + z^4 + 3*z^3 + z^2 - 4*z - 4) * q^49 + (-2*z^5 - z^4 - z^3 - z + 2) * q^50 + (3*z^4 + 2*z^3 - 2*z^2 - 3*z) * q^52 + (z^5 - 3*z^4 + 2*z^2 + 2*z - 2) * q^53 + (-4*z^5 + 5*z^4 - z^2 - z - 3) * q^55 + (-z^5 - 2*z^4 + 2*z + 1) * q^56 + (z^5 - z^4 - z^3 + 3*z - 2) * q^58 + (-z^5 - 4*z^4 + z^3 + z^2 + 3*z + 3) * q^59 + (-5*z^5 + 2*z^4 - z^3 + 4*z^2 - 4) * q^61 + (3*z^4 - 4*z^3 + 3*z^2) * q^62 + (z^3 - 1) * q^64 + (4*z^5 - 4*z^3 - 3*z^2 + z + 1) * q^65 + (3*z^4 - z^2 + 3) * q^67 + (4*z^4 - z^3 + 2*z^2 - z + 4) * q^68 + (z^5 - z^3 + 2*z^2 - z + 3) * q^70 + (-6*z^5 - 6*z^4 - 4*z^3 + 5*z^2 + z + 4) * q^71 + (7*z^5 - 5*z^4 + z^3 - 5*z^2 + 7*z) * q^73 + (-z^5 + 5*z^4 + 2*z^3 + 3*z^2 - 3) * q^74 + (-3*z^5 + 3*z^4 + z^3 + 3*z^2 - 4*z - 4) * q^76 + (z^5 + 6*z^4 + 6*z^3 + z - 7) * q^77 + (5*z^5 - 3*z^3 + 3*z^2 - 5) * q^79 + (z^5 - z^2 - z + 1) * q^80 + (-3*z^5 - 2*z^4 + 5*z^2 + 5*z - 1) * q^82 + (2*z^5 + 4*z^3 - 4*z^2 - 2) * q^83 + (2*z^4 + 2*z^3 + 5*z - 7) * q^85 + (4*z^5 + 2*z^4 + 2*z^3 - 4*z^2 - 4*z - 4) * q^86 + (-3*z^5 - z^4 - z^3 + 2*z^2 - 2) * q^88 + (-4*z^5 + z^4 - 5*z^3 + z^2 - 4*z) * q^89 + (5*z^5 + 5*z^4 + 4*z^3 - z^2 - 4*z - 4) * q^91 + (2*z^5 - 2*z^3 - 2*z^2 + z) * q^92 + (z^4 + z^3 + 3*z^2 + z + 1) * q^94 + (-2*z^4 + 5*z^3 - 10*z^2 + 5*z - 2) * q^95 + (-z^5 + z^3 + 3*z^2 + 6*z + 2) * q^97 + (-4*z^5 - 4*z^4 + z^3 + 3*z^2 + z - 1) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + 6 q^{5} + 3 q^{7} + 3 q^{8}+O(q^{10})$$ 6 * q + 6 * q^5 + 3 * q^7 + 3 * q^8 $$6 q + 6 q^{5} + 3 q^{7} + 3 q^{8} + 3 q^{10} - 12 q^{11} + 6 q^{13} + 6 q^{14} - 6 q^{17} + 9 q^{19} - 3 q^{20} + 12 q^{22} - 6 q^{23} + 18 q^{26} - 12 q^{28} - 12 q^{29} + 9 q^{31} + 15 q^{34} + 3 q^{35} + 15 q^{37} + 21 q^{38} + 3 q^{40} - 21 q^{41} + 18 q^{43} - 3 q^{44} - 3 q^{46} - 15 q^{49} + 9 q^{50} + 6 q^{52} - 12 q^{53} - 18 q^{55} + 6 q^{56} - 15 q^{58} + 21 q^{59} - 27 q^{61} - 12 q^{62} - 3 q^{64} - 6 q^{65} + 18 q^{67} + 21 q^{68} + 15 q^{70} + 12 q^{71} + 3 q^{73} - 12 q^{74} - 21 q^{76} - 24 q^{77} - 39 q^{79} + 6 q^{80} - 6 q^{82} - 36 q^{85} - 18 q^{86} - 15 q^{88} - 15 q^{89} - 12 q^{91} - 6 q^{92} + 9 q^{94} + 3 q^{95} + 15 q^{97} - 3 q^{98}+O(q^{100})$$ 6 * q + 6 * q^5 + 3 * q^7 + 3 * q^8 + 3 * q^10 - 12 * q^11 + 6 * q^13 + 6 * q^14 - 6 * q^17 + 9 * q^19 - 3 * q^20 + 12 * q^22 - 6 * q^23 + 18 * q^26 - 12 * q^28 - 12 * q^29 + 9 * q^31 + 15 * q^34 + 3 * q^35 + 15 * q^37 + 21 * q^38 + 3 * q^40 - 21 * q^41 + 18 * q^43 - 3 * q^44 - 3 * q^46 - 15 * q^49 + 9 * q^50 + 6 * q^52 - 12 * q^53 - 18 * q^55 + 6 * q^56 - 15 * q^58 + 21 * q^59 - 27 * q^61 - 12 * q^62 - 3 * q^64 - 6 * q^65 + 18 * q^67 + 21 * q^68 + 15 * q^70 + 12 * q^71 + 3 * q^73 - 12 * q^74 - 21 * q^76 - 24 * q^77 - 39 * q^79 + 6 * q^80 - 6 * q^82 - 36 * q^85 - 18 * q^86 - 15 * q^88 - 15 * q^89 - 12 * q^91 - 6 * q^92 + 9 * q^94 + 3 * q^95 + 15 * q^97 - 3 * q^98

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/486\mathbb{Z}\right)^\times$$.

 $$n$$ $$245$$ $$\chi(n)$$ $$-\zeta_{18}^{5}$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
55.1
 −0.173648 + 0.984808i 0.939693 + 0.342020i −0.766044 − 0.642788i −0.766044 + 0.642788i 0.939693 − 0.342020i −0.173648 − 0.984808i
0.939693 0.342020i 0 0.766044 0.642788i 0.233956 + 1.32683i 0 −0.0923963 0.0775297i 0.500000 0.866025i 0 0.673648 + 1.16679i
109.1 −0.766044 + 0.642788i 0 0.173648 0.984808i 0.826352 0.300767i 0 −0.613341 3.47843i 0.500000 + 0.866025i 0 −0.439693 + 0.761570i
217.1 −0.173648 + 0.984808i 0 −0.939693 0.342020i 1.93969 1.62760i 0 2.20574 0.802823i 0.500000 0.866025i 0 1.26604 + 2.19285i
271.1 −0.173648 0.984808i 0 −0.939693 + 0.342020i 1.93969 + 1.62760i 0 2.20574 + 0.802823i 0.500000 + 0.866025i 0 1.26604 2.19285i
379.1 −0.766044 0.642788i 0 0.173648 + 0.984808i 0.826352 + 0.300767i 0 −0.613341 + 3.47843i 0.500000 0.866025i 0 −0.439693 0.761570i
433.1 0.939693 + 0.342020i 0 0.766044 + 0.642788i 0.233956 1.32683i 0 −0.0923963 + 0.0775297i 0.500000 + 0.866025i 0 0.673648 1.16679i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 55.1 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 486.2.e.d 6
3.b odd 2 1 486.2.e.a 6
9.c even 3 1 54.2.e.a 6
9.c even 3 1 486.2.e.b 6
9.d odd 6 1 162.2.e.a 6
9.d odd 6 1 486.2.e.c 6
27.e even 9 1 54.2.e.a 6
27.e even 9 1 486.2.e.b 6
27.e even 9 1 inner 486.2.e.d 6
27.e even 9 1 1458.2.a.a 3
27.e even 9 2 1458.2.c.d 6
27.f odd 18 1 162.2.e.a 6
27.f odd 18 1 486.2.e.a 6
27.f odd 18 1 486.2.e.c 6
27.f odd 18 1 1458.2.a.d 3
27.f odd 18 2 1458.2.c.a 6
36.f odd 6 1 432.2.u.a 6
108.j odd 18 1 432.2.u.a 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.2.e.a 6 9.c even 3 1
54.2.e.a 6 27.e even 9 1
162.2.e.a 6 9.d odd 6 1
162.2.e.a 6 27.f odd 18 1
432.2.u.a 6 36.f odd 6 1
432.2.u.a 6 108.j odd 18 1
486.2.e.a 6 3.b odd 2 1
486.2.e.a 6 27.f odd 18 1
486.2.e.b 6 9.c even 3 1
486.2.e.b 6 27.e even 9 1
486.2.e.c 6 9.d odd 6 1
486.2.e.c 6 27.f odd 18 1
486.2.e.d 6 1.a even 1 1 trivial
486.2.e.d 6 27.e even 9 1 inner
1458.2.a.a 3 27.e even 9 1
1458.2.a.d 3 27.f odd 18 1
1458.2.c.a 6 27.f odd 18 2
1458.2.c.d 6 27.e even 9 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}^{6} - 6T_{5}^{5} + 18T_{5}^{4} - 30T_{5}^{3} + 36T_{5}^{2} - 27T_{5} + 9$$ acting on $$S_{2}^{\mathrm{new}}(486, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6} - T^{3} + 1$$
$3$ $$T^{6}$$
$5$ $$T^{6} - 6 T^{5} + 18 T^{4} - 30 T^{3} + \cdots + 9$$
$7$ $$T^{6} - 3 T^{5} + 12 T^{4} - 46 T^{3} + \cdots + 1$$
$11$ $$T^{6} + 12 T^{5} + 72 T^{4} + \cdots + 3249$$
$13$ $$T^{6} - 6 T^{5} - 12 T^{4} + 53 T^{3} + \cdots + 289$$
$17$ $$T^{6} + 6 T^{5} + 63 T^{4} + \cdots + 25281$$
$19$ $$T^{6} - 9 T^{5} + 93 T^{4} + \cdots + 32041$$
$23$ $$T^{6} + 6 T^{5} + 18 T^{4} + 3 T^{3} + \cdots + 9$$
$29$ $$T^{6} + 12 T^{5} + 54 T^{4} + 132 T^{3} + \cdots + 9$$
$31$ $$T^{6} - 9 T^{5} - 18 T^{4} + \cdots + 5041$$
$37$ $$T^{6} - 15 T^{5} + 171 T^{4} + \cdots + 289$$
$41$ $$T^{6} + 21 T^{5} + 207 T^{4} + \cdots + 47961$$
$43$ $$T^{6} - 18 T^{5} + 72 T^{4} + 224 T^{3} + \cdots + 64$$
$47$ $$T^{6} + 36 T^{4} - 90 T^{3} + 81 T + 81$$
$53$ $$(T^{3} + 6 T^{2} - 9 T + 3)^{2}$$
$59$ $$T^{6} - 21 T^{5} + 180 T^{4} + \cdots + 3249$$
$61$ $$T^{6} + 27 T^{5} + 270 T^{4} + \cdots + 2809$$
$67$ $$T^{6} - 18 T^{5} + 126 T^{4} - 406 T^{3} + \cdots + 1$$
$71$ $$T^{6} - 12 T^{5} + 189 T^{4} + \cdots + 106929$$
$73$ $$T^{6} - 3 T^{5} + 123 T^{4} + \cdots + 72361$$
$79$ $$T^{6} + 39 T^{5} + 654 T^{4} + \cdots + 466489$$
$83$ $$T^{6} + 36 T^{4} + 72 T^{3} + \cdots + 5184$$
$89$ $$T^{6} + 15 T^{5} + 189 T^{4} + \cdots + 25281$$
$97$ $$T^{6} - 15 T^{5} + 24 T^{4} + \cdots + 16129$$