Properties

Label 486.2.e.b
Level $486$
Weight $2$
Character orbit 486.e
Analytic conductor $3.881$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(55,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{18}^{4} - \zeta_{18}) q^{2} - \zeta_{18}^{5} q^{4} + (\zeta_{18}^{5} + \zeta_{18}^{3} - \zeta_{18}^{2} - \zeta_{18} - 1) q^{5} + ( - \zeta_{18}^{5} - 2 \zeta_{18}^{4} + \zeta_{18}^{2} - 1) q^{7} + \zeta_{18}^{3} q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{18}^{4} - \zeta_{18}) q^{2} - \zeta_{18}^{5} q^{4} + (\zeta_{18}^{5} + \zeta_{18}^{3} - \zeta_{18}^{2} - \zeta_{18} - 1) q^{5} + ( - \zeta_{18}^{5} - 2 \zeta_{18}^{4} + \zeta_{18}^{2} - 1) q^{7} + \zeta_{18}^{3} q^{8} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} + 1) q^{10} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + 3 \zeta_{18}^{2} - \zeta_{18} + 2) q^{11} + (2 \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 2 \zeta_{18}) q^{13} + ( - \zeta_{18}^{4} + \zeta_{18}^{3} + 2 \zeta_{18}^{2} + \zeta_{18} - 1) q^{14} - \zeta_{18} q^{16} + (\zeta_{18}^{5} + \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 4 \zeta_{18} - 2) q^{17} + (4 \zeta_{18}^{5} - \zeta_{18}^{4} + 3 \zeta_{18}^{3} - \zeta_{18}^{2} + 4 \zeta_{18}) q^{19} + (\zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{20} + ( - \zeta_{18}^{5} + 2 \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18}^{2} - 3 \zeta_{18} - 3) q^{22} + (\zeta_{18}^{5} - 2 \zeta_{18} + 2) q^{23} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - 2 \zeta_{18} + 2) q^{25} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{2} - 2 \zeta_{18} + 3) q^{26} + (\zeta_{18}^{5} - \zeta_{18}^{4} - 2) q^{28} + (2 \zeta_{18}^{5} - \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{2} + \zeta_{18} - 2) q^{29} + (4 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}) q^{31} + ( - \zeta_{18}^{5} + \zeta_{18}^{2}) q^{32} + ( - 4 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 3) q^{34} + (2 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18}^{2} + 2 \zeta_{18}) q^{35} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} - 5 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 3 \zeta_{18} + 5) q^{37} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{3} - 3 \zeta_{18}^{2} - 3 \zeta_{18} + 1) q^{38} + ( - \zeta_{18}^{4} - \zeta_{18}^{2} - 1) q^{40} + (5 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} - 2 \zeta_{18} + 5) q^{41} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 4 \zeta_{18} + 2) q^{43} + ( - 3 \zeta_{18}^{5} - 3 \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18}^{2} + 2 \zeta_{18} - 1) q^{44} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 2 \zeta_{18}) q^{46} + ( - \zeta_{18}^{5} - 3 \zeta_{18}^{4} + \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 2) q^{47} + ( - \zeta_{18}^{5} + 3 \zeta_{18}^{4} - 4 \zeta_{18}^{3} + \zeta_{18}^{2} + \zeta_{18} + 1) q^{49} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - \zeta_{18} - 1) q^{50} + ( - 2 \zeta_{18}^{5} + 3 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 3 \zeta_{18} + 2) q^{52} + ( - 3 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} - 2) q^{53} + (5 \zeta_{18}^{5} - \zeta_{18}^{4} - 4 \zeta_{18}^{2} - 4 \zeta_{18} - 3) q^{55} + ( - 2 \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} + 2 \zeta_{18}) q^{56} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - \zeta_{18} + 3) q^{58} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} + 3 \zeta_{18}^{3} + \zeta_{18}^{2} - 4 \zeta_{18} - 4) q^{59} + (4 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 5 \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{61} + ( - 3 \zeta_{18}^{5} - 4 \zeta_{18}^{3} - 3 \zeta_{18}) q^{62} + (\zeta_{18}^{3} - 1) q^{64} + ( - 3 \zeta_{18}^{5} + 3 \zeta_{18}^{3} - \zeta_{18}^{2} + \zeta_{18} - 4) q^{65} + ( - 3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - \zeta_{18}^{2} + 3 \zeta_{18} - 3) q^{67} + ( - 3 \zeta_{18}^{4} + 4 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + 4 \zeta_{18} - 3) q^{68} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} - 3 \zeta_{18}^{2} - \zeta_{18} - 1) q^{70} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 4 \zeta_{18}^{3} - 6 \zeta_{18}^{2} + 5 \zeta_{18} + 4) q^{71} + ( - 2 \zeta_{18}^{5} + 7 \zeta_{18}^{4} + \zeta_{18}^{3} + 7 \zeta_{18}^{2} - 2 \zeta_{18}) q^{73} + (3 \zeta_{18}^{5} + 5 \zeta_{18}^{4} + \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2) q^{74} + ( - 3 \zeta_{18}^{5} + \zeta_{18}^{4} - 4 \zeta_{18}^{3} + 3 \zeta_{18}^{2} + 3 \zeta_{18} + 3) q^{76} + (\zeta_{18}^{5} - 7 \zeta_{18}^{4} - 7 \zeta_{18}^{3} + 6 \zeta_{18} + 1) q^{77} + (3 \zeta_{18}^{5} + 8 \zeta_{18}^{3} - 8 \zeta_{18}^{2} - 3) q^{79} + ( - \zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} + 1) q^{80} + ( - 2 \zeta_{18}^{5} + 5 \zeta_{18}^{4} - 3 \zeta_{18}^{2} - 3 \zeta_{18} - 1) q^{82} + ( - 4 \zeta_{18}^{5} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + 4) q^{83} + ( - 7 \zeta_{18}^{4} - 7 \zeta_{18}^{3} + 2 \zeta_{18} + 5) q^{85} + (4 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{86} + (2 \zeta_{18}^{5} - \zeta_{18}^{4} + 3 \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{88} + (3 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 5 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 3 \zeta_{18}) q^{89} + ( - 4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{3} + 5 \zeta_{18}^{2} - \zeta_{18} - 4) q^{91} + ( - 2 \zeta_{18}^{5} + 2 \zeta_{18}^{3} + \zeta_{18} - 2) q^{92} + ( - 2 \zeta_{18}^{4} + \zeta_{18}^{3} + 3 \zeta_{18}^{2} + \zeta_{18} - 2) q^{94} + ( - 3 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 10 \zeta_{18}^{2} - 2 \zeta_{18} - 3) q^{95} + (3 \zeta_{18}^{5} - 3 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 6 \zeta_{18} + 1) q^{97} + (\zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 3 \zeta_{18} - 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} - 6 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{5} - 6 q^{7} + 3 q^{8} + 3 q^{10} + 15 q^{11} + 6 q^{13} - 3 q^{14} - 6 q^{17} + 9 q^{19} - 3 q^{20} - 15 q^{22} + 12 q^{23} + 9 q^{25} + 18 q^{26} - 12 q^{28} - 3 q^{29} + 9 q^{31} - 21 q^{34} + 3 q^{35} + 15 q^{37} - 6 q^{38} - 6 q^{40} + 24 q^{41} - 3 q^{44} - 3 q^{46} - 9 q^{47} - 6 q^{49} + 6 q^{52} - 12 q^{53} - 18 q^{55} - 3 q^{56} + 12 q^{58} - 15 q^{59} + 9 q^{61} - 12 q^{62} - 3 q^{64} - 15 q^{65} - 9 q^{67} - 6 q^{68} - 12 q^{70} + 12 q^{71} + 3 q^{73} + 15 q^{74} + 6 q^{76} - 15 q^{77} + 6 q^{79} + 6 q^{80} - 6 q^{82} + 18 q^{83} + 9 q^{85} + 3 q^{88} - 15 q^{89} - 12 q^{91} - 6 q^{92} - 9 q^{94} - 24 q^{95} - 3 q^{97} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(-\zeta_{18}^{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
−0.173648 + 0.984808i
0.939693 + 0.342020i
−0.766044 0.642788i
−0.766044 + 0.642788i
0.939693 0.342020i
−0.173648 0.984808i
0.939693 0.342020i 0 0.766044 0.642788i −0.152704 0.866025i 0 −2.70574 2.27038i 0.500000 0.866025i 0 −0.439693 0.761570i
109.1 −0.766044 + 0.642788i 0 0.173648 0.984808i −2.37939 + 0.866025i 0 −0.407604 2.31164i 0.500000 + 0.866025i 0 1.26604 2.19285i
217.1 −0.173648 + 0.984808i 0 −0.939693 0.342020i 1.03209 0.866025i 0 0.113341 0.0412527i 0.500000 0.866025i 0 0.673648 + 1.16679i
271.1 −0.173648 0.984808i 0 −0.939693 + 0.342020i 1.03209 + 0.866025i 0 0.113341 + 0.0412527i 0.500000 + 0.866025i 0 0.673648 1.16679i
379.1 −0.766044 0.642788i 0 0.173648 + 0.984808i −2.37939 0.866025i 0 −0.407604 + 2.31164i 0.500000 0.866025i 0 1.26604 + 2.19285i
433.1 0.939693 + 0.342020i 0 0.766044 + 0.642788i −0.152704 + 0.866025i 0 −2.70574 + 2.27038i 0.500000 + 0.866025i 0 −0.439693 + 0.761570i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 55.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 486.2.e.b 6
3.b odd 2 1 486.2.e.c 6
9.c even 3 1 54.2.e.a 6
9.c even 3 1 486.2.e.d 6
9.d odd 6 1 162.2.e.a 6
9.d odd 6 1 486.2.e.a 6
27.e even 9 1 54.2.e.a 6
27.e even 9 1 inner 486.2.e.b 6
27.e even 9 1 486.2.e.d 6
27.e even 9 1 1458.2.a.a 3
27.e even 9 2 1458.2.c.d 6
27.f odd 18 1 162.2.e.a 6
27.f odd 18 1 486.2.e.a 6
27.f odd 18 1 486.2.e.c 6
27.f odd 18 1 1458.2.a.d 3
27.f odd 18 2 1458.2.c.a 6
36.f odd 6 1 432.2.u.a 6
108.j odd 18 1 432.2.u.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.2.e.a 6 9.c even 3 1
54.2.e.a 6 27.e even 9 1
162.2.e.a 6 9.d odd 6 1
162.2.e.a 6 27.f odd 18 1
432.2.u.a 6 36.f odd 6 1
432.2.u.a 6 108.j odd 18 1
486.2.e.a 6 9.d odd 6 1
486.2.e.a 6 27.f odd 18 1
486.2.e.b 6 1.a even 1 1 trivial
486.2.e.b 6 27.e even 9 1 inner
486.2.e.c 6 3.b odd 2 1
486.2.e.c 6 27.f odd 18 1
486.2.e.d 6 9.c even 3 1
486.2.e.d 6 27.e even 9 1
1458.2.a.a 3 27.e even 9 1
1458.2.a.d 3 27.f odd 18 1
1458.2.c.a 6 27.f odd 18 2
1458.2.c.d 6 27.e even 9 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 3T_{5}^{5} - 3T_{5}^{3} + 9T_{5}^{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(486, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 3 T^{5} - 3 T^{3} + 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} + 6 T^{5} + 21 T^{4} + 35 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} - 15 T^{5} + 108 T^{4} + \cdots + 3249 \) Copy content Toggle raw display
$13$ \( T^{6} - 6 T^{5} + 42 T^{4} - 271 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$17$ \( T^{6} + 6 T^{5} + 63 T^{4} + \cdots + 25281 \) Copy content Toggle raw display
$19$ \( T^{6} - 9 T^{5} + 93 T^{4} + \cdots + 32041 \) Copy content Toggle raw display
$23$ \( T^{6} - 12 T^{5} + 54 T^{4} - 105 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + 36 T^{4} + 159 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$31$ \( T^{6} - 9 T^{5} + 90 T^{4} + \cdots + 5041 \) Copy content Toggle raw display
$37$ \( T^{6} - 15 T^{5} + 171 T^{4} + \cdots + 289 \) Copy content Toggle raw display
$41$ \( T^{6} - 24 T^{5} + 270 T^{4} + \cdots + 47961 \) Copy content Toggle raw display
$43$ \( T^{6} + 108 T^{4} - 424 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$47$ \( T^{6} + 9 T^{5} + 36 T^{4} - 9 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$53$ \( (T^{3} + 6 T^{2} - 9 T + 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 15 T^{5} + 135 T^{4} + \cdots + 3249 \) Copy content Toggle raw display
$61$ \( T^{6} - 9 T^{5} + 144 T^{4} + \cdots + 2809 \) Copy content Toggle raw display
$67$ \( T^{6} + 9 T^{5} + 72 T^{4} + 323 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{6} - 12 T^{5} + 189 T^{4} + \cdots + 106929 \) Copy content Toggle raw display
$73$ \( T^{6} - 3 T^{5} + 123 T^{4} + \cdots + 72361 \) Copy content Toggle raw display
$79$ \( T^{6} - 6 T^{5} + 159 T^{4} + \cdots + 466489 \) Copy content Toggle raw display
$83$ \( T^{6} - 18 T^{5} + 144 T^{4} + \cdots + 5184 \) Copy content Toggle raw display
$89$ \( T^{6} + 15 T^{5} + 189 T^{4} + \cdots + 25281 \) Copy content Toggle raw display
$97$ \( T^{6} + 3 T^{5} + 114 T^{4} + \cdots + 16129 \) Copy content Toggle raw display
show more
show less