Properties

Label 4842.2.a.o.1.5
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 10x^{5} + 7x^{4} + 27x^{3} - 15x^{2} - 20x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.30699\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.40321 q^{5} +1.52017 q^{7} +1.00000 q^{8} +2.40321 q^{10} -5.07638 q^{11} +5.11021 q^{13} +1.52017 q^{14} +1.00000 q^{16} +6.65764 q^{17} -5.71222 q^{19} +2.40321 q^{20} -5.07638 q^{22} +6.36685 q^{23} +0.775401 q^{25} +5.11021 q^{26} +1.52017 q^{28} +6.00511 q^{29} +2.77822 q^{31} +1.00000 q^{32} +6.65764 q^{34} +3.65329 q^{35} -1.59410 q^{37} -5.71222 q^{38} +2.40321 q^{40} -9.69619 q^{41} -9.26120 q^{43} -5.07638 q^{44} +6.36685 q^{46} +7.55235 q^{47} -4.68907 q^{49} +0.775401 q^{50} +5.11021 q^{52} +9.42058 q^{53} -12.1996 q^{55} +1.52017 q^{56} +6.00511 q^{58} +6.31332 q^{59} -7.97918 q^{61} +2.77822 q^{62} +1.00000 q^{64} +12.2809 q^{65} -2.54885 q^{67} +6.65764 q^{68} +3.65329 q^{70} -1.98957 q^{71} +12.7523 q^{73} -1.59410 q^{74} -5.71222 q^{76} -7.71699 q^{77} +3.64283 q^{79} +2.40321 q^{80} -9.69619 q^{82} +0.689504 q^{83} +15.9997 q^{85} -9.26120 q^{86} -5.07638 q^{88} -2.78972 q^{89} +7.76841 q^{91} +6.36685 q^{92} +7.55235 q^{94} -13.7276 q^{95} +11.9363 q^{97} -4.68907 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + 7 q^{4} + 6 q^{5} - 3 q^{7} + 7 q^{8} + 6 q^{10} + 12 q^{11} + 3 q^{13} - 3 q^{14} + 7 q^{16} + 8 q^{17} - 7 q^{19} + 6 q^{20} + 12 q^{22} + 22 q^{23} + 9 q^{25} + 3 q^{26} - 3 q^{28} + 7 q^{29}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.40321 1.07475 0.537373 0.843344i \(-0.319417\pi\)
0.537373 + 0.843344i \(0.319417\pi\)
\(6\) 0 0
\(7\) 1.52017 0.574572 0.287286 0.957845i \(-0.407247\pi\)
0.287286 + 0.957845i \(0.407247\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.40321 0.759961
\(11\) −5.07638 −1.53059 −0.765294 0.643681i \(-0.777406\pi\)
−0.765294 + 0.643681i \(0.777406\pi\)
\(12\) 0 0
\(13\) 5.11021 1.41732 0.708659 0.705552i \(-0.249301\pi\)
0.708659 + 0.705552i \(0.249301\pi\)
\(14\) 1.52017 0.406284
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.65764 1.61471 0.807357 0.590063i \(-0.200897\pi\)
0.807357 + 0.590063i \(0.200897\pi\)
\(18\) 0 0
\(19\) −5.71222 −1.31047 −0.655236 0.755424i \(-0.727431\pi\)
−0.655236 + 0.755424i \(0.727431\pi\)
\(20\) 2.40321 0.537373
\(21\) 0 0
\(22\) −5.07638 −1.08229
\(23\) 6.36685 1.32758 0.663790 0.747919i \(-0.268947\pi\)
0.663790 + 0.747919i \(0.268947\pi\)
\(24\) 0 0
\(25\) 0.775401 0.155080
\(26\) 5.11021 1.00219
\(27\) 0 0
\(28\) 1.52017 0.287286
\(29\) 6.00511 1.11512 0.557560 0.830137i \(-0.311738\pi\)
0.557560 + 0.830137i \(0.311738\pi\)
\(30\) 0 0
\(31\) 2.77822 0.498984 0.249492 0.968377i \(-0.419736\pi\)
0.249492 + 0.968377i \(0.419736\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.65764 1.14178
\(35\) 3.65329 0.617519
\(36\) 0 0
\(37\) −1.59410 −0.262069 −0.131034 0.991378i \(-0.541830\pi\)
−0.131034 + 0.991378i \(0.541830\pi\)
\(38\) −5.71222 −0.926644
\(39\) 0 0
\(40\) 2.40321 0.379980
\(41\) −9.69619 −1.51429 −0.757146 0.653246i \(-0.773407\pi\)
−0.757146 + 0.653246i \(0.773407\pi\)
\(42\) 0 0
\(43\) −9.26120 −1.41232 −0.706160 0.708053i \(-0.749574\pi\)
−0.706160 + 0.708053i \(0.749574\pi\)
\(44\) −5.07638 −0.765294
\(45\) 0 0
\(46\) 6.36685 0.938741
\(47\) 7.55235 1.10162 0.550811 0.834630i \(-0.314318\pi\)
0.550811 + 0.834630i \(0.314318\pi\)
\(48\) 0 0
\(49\) −4.68907 −0.669867
\(50\) 0.775401 0.109658
\(51\) 0 0
\(52\) 5.11021 0.708659
\(53\) 9.42058 1.29402 0.647008 0.762483i \(-0.276020\pi\)
0.647008 + 0.762483i \(0.276020\pi\)
\(54\) 0 0
\(55\) −12.1996 −1.64499
\(56\) 1.52017 0.203142
\(57\) 0 0
\(58\) 6.00511 0.788509
\(59\) 6.31332 0.821924 0.410962 0.911652i \(-0.365193\pi\)
0.410962 + 0.911652i \(0.365193\pi\)
\(60\) 0 0
\(61\) −7.97918 −1.02163 −0.510815 0.859691i \(-0.670656\pi\)
−0.510815 + 0.859691i \(0.670656\pi\)
\(62\) 2.77822 0.352835
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 12.2809 1.52326
\(66\) 0 0
\(67\) −2.54885 −0.311392 −0.155696 0.987805i \(-0.549762\pi\)
−0.155696 + 0.987805i \(0.549762\pi\)
\(68\) 6.65764 0.807357
\(69\) 0 0
\(70\) 3.65329 0.436652
\(71\) −1.98957 −0.236118 −0.118059 0.993007i \(-0.537667\pi\)
−0.118059 + 0.993007i \(0.537667\pi\)
\(72\) 0 0
\(73\) 12.7523 1.49254 0.746269 0.665644i \(-0.231843\pi\)
0.746269 + 0.665644i \(0.231843\pi\)
\(74\) −1.59410 −0.185311
\(75\) 0 0
\(76\) −5.71222 −0.655236
\(77\) −7.71699 −0.879432
\(78\) 0 0
\(79\) 3.64283 0.409851 0.204925 0.978778i \(-0.434305\pi\)
0.204925 + 0.978778i \(0.434305\pi\)
\(80\) 2.40321 0.268687
\(81\) 0 0
\(82\) −9.69619 −1.07077
\(83\) 0.689504 0.0756829 0.0378415 0.999284i \(-0.487952\pi\)
0.0378415 + 0.999284i \(0.487952\pi\)
\(84\) 0 0
\(85\) 15.9997 1.73541
\(86\) −9.26120 −0.998660
\(87\) 0 0
\(88\) −5.07638 −0.541144
\(89\) −2.78972 −0.295709 −0.147855 0.989009i \(-0.547237\pi\)
−0.147855 + 0.989009i \(0.547237\pi\)
\(90\) 0 0
\(91\) 7.76841 0.814350
\(92\) 6.36685 0.663790
\(93\) 0 0
\(94\) 7.55235 0.778965
\(95\) −13.7276 −1.40843
\(96\) 0 0
\(97\) 11.9363 1.21194 0.605972 0.795486i \(-0.292784\pi\)
0.605972 + 0.795486i \(0.292784\pi\)
\(98\) −4.68907 −0.473668
\(99\) 0 0
\(100\) 0.775401 0.0775401
\(101\) 14.5273 1.44552 0.722759 0.691100i \(-0.242873\pi\)
0.722759 + 0.691100i \(0.242873\pi\)
\(102\) 0 0
\(103\) −10.1048 −0.995656 −0.497828 0.867276i \(-0.665869\pi\)
−0.497828 + 0.867276i \(0.665869\pi\)
\(104\) 5.11021 0.501097
\(105\) 0 0
\(106\) 9.42058 0.915007
\(107\) 12.2725 1.18643 0.593214 0.805045i \(-0.297859\pi\)
0.593214 + 0.805045i \(0.297859\pi\)
\(108\) 0 0
\(109\) 14.2163 1.36168 0.680838 0.732434i \(-0.261616\pi\)
0.680838 + 0.732434i \(0.261616\pi\)
\(110\) −12.1996 −1.16319
\(111\) 0 0
\(112\) 1.52017 0.143643
\(113\) −12.7024 −1.19494 −0.597471 0.801891i \(-0.703828\pi\)
−0.597471 + 0.801891i \(0.703828\pi\)
\(114\) 0 0
\(115\) 15.3009 1.42681
\(116\) 6.00511 0.557560
\(117\) 0 0
\(118\) 6.31332 0.581188
\(119\) 10.1208 0.927769
\(120\) 0 0
\(121\) 14.7697 1.34270
\(122\) −7.97918 −0.722401
\(123\) 0 0
\(124\) 2.77822 0.249492
\(125\) −10.1526 −0.908075
\(126\) 0 0
\(127\) −17.1800 −1.52448 −0.762238 0.647297i \(-0.775899\pi\)
−0.762238 + 0.647297i \(0.775899\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 12.2809 1.07711
\(131\) −5.22919 −0.456877 −0.228438 0.973558i \(-0.573362\pi\)
−0.228438 + 0.973558i \(0.573362\pi\)
\(132\) 0 0
\(133\) −8.68356 −0.752960
\(134\) −2.54885 −0.220187
\(135\) 0 0
\(136\) 6.65764 0.570888
\(137\) 12.9664 1.10779 0.553895 0.832586i \(-0.313141\pi\)
0.553895 + 0.832586i \(0.313141\pi\)
\(138\) 0 0
\(139\) −0.692646 −0.0587495 −0.0293747 0.999568i \(-0.509352\pi\)
−0.0293747 + 0.999568i \(0.509352\pi\)
\(140\) 3.65329 0.308759
\(141\) 0 0
\(142\) −1.98957 −0.166961
\(143\) −25.9414 −2.16933
\(144\) 0 0
\(145\) 14.4315 1.19847
\(146\) 12.7523 1.05538
\(147\) 0 0
\(148\) −1.59410 −0.131034
\(149\) −11.5986 −0.950197 −0.475099 0.879933i \(-0.657588\pi\)
−0.475099 + 0.879933i \(0.657588\pi\)
\(150\) 0 0
\(151\) 1.14291 0.0930089 0.0465045 0.998918i \(-0.485192\pi\)
0.0465045 + 0.998918i \(0.485192\pi\)
\(152\) −5.71222 −0.463322
\(153\) 0 0
\(154\) −7.71699 −0.621852
\(155\) 6.67665 0.536281
\(156\) 0 0
\(157\) −12.2350 −0.976460 −0.488230 0.872715i \(-0.662357\pi\)
−0.488230 + 0.872715i \(0.662357\pi\)
\(158\) 3.64283 0.289808
\(159\) 0 0
\(160\) 2.40321 0.189990
\(161\) 9.67872 0.762790
\(162\) 0 0
\(163\) −23.6815 −1.85488 −0.927438 0.373978i \(-0.877994\pi\)
−0.927438 + 0.373978i \(0.877994\pi\)
\(164\) −9.69619 −0.757146
\(165\) 0 0
\(166\) 0.689504 0.0535159
\(167\) 3.54694 0.274470 0.137235 0.990538i \(-0.456178\pi\)
0.137235 + 0.990538i \(0.456178\pi\)
\(168\) 0 0
\(169\) 13.1142 1.00879
\(170\) 15.9997 1.22712
\(171\) 0 0
\(172\) −9.26120 −0.706160
\(173\) −20.8927 −1.58844 −0.794220 0.607630i \(-0.792120\pi\)
−0.794220 + 0.607630i \(0.792120\pi\)
\(174\) 0 0
\(175\) 1.17874 0.0891047
\(176\) −5.07638 −0.382647
\(177\) 0 0
\(178\) −2.78972 −0.209098
\(179\) −2.13073 −0.159258 −0.0796290 0.996825i \(-0.525374\pi\)
−0.0796290 + 0.996825i \(0.525374\pi\)
\(180\) 0 0
\(181\) 18.5589 1.37948 0.689738 0.724059i \(-0.257726\pi\)
0.689738 + 0.724059i \(0.257726\pi\)
\(182\) 7.76841 0.575833
\(183\) 0 0
\(184\) 6.36685 0.469371
\(185\) −3.83095 −0.281657
\(186\) 0 0
\(187\) −33.7967 −2.47146
\(188\) 7.55235 0.550811
\(189\) 0 0
\(190\) −13.7276 −0.995907
\(191\) −15.6213 −1.13032 −0.565160 0.824982i \(-0.691185\pi\)
−0.565160 + 0.824982i \(0.691185\pi\)
\(192\) 0 0
\(193\) −18.5417 −1.33466 −0.667330 0.744762i \(-0.732563\pi\)
−0.667330 + 0.744762i \(0.732563\pi\)
\(194\) 11.9363 0.856974
\(195\) 0 0
\(196\) −4.68907 −0.334934
\(197\) 9.98285 0.711249 0.355624 0.934629i \(-0.384268\pi\)
0.355624 + 0.934629i \(0.384268\pi\)
\(198\) 0 0
\(199\) 5.33431 0.378139 0.189070 0.981964i \(-0.439453\pi\)
0.189070 + 0.981964i \(0.439453\pi\)
\(200\) 0.775401 0.0548292
\(201\) 0 0
\(202\) 14.5273 1.02214
\(203\) 9.12880 0.640716
\(204\) 0 0
\(205\) −23.3020 −1.62748
\(206\) −10.1048 −0.704035
\(207\) 0 0
\(208\) 5.11021 0.354329
\(209\) 28.9974 2.00579
\(210\) 0 0
\(211\) −19.7945 −1.36271 −0.681355 0.731953i \(-0.738609\pi\)
−0.681355 + 0.731953i \(0.738609\pi\)
\(212\) 9.42058 0.647008
\(213\) 0 0
\(214\) 12.2725 0.838931
\(215\) −22.2566 −1.51789
\(216\) 0 0
\(217\) 4.22338 0.286702
\(218\) 14.2163 0.962850
\(219\) 0 0
\(220\) −12.1996 −0.822497
\(221\) 34.0219 2.28856
\(222\) 0 0
\(223\) 29.2824 1.96089 0.980447 0.196783i \(-0.0630495\pi\)
0.980447 + 0.196783i \(0.0630495\pi\)
\(224\) 1.52017 0.101571
\(225\) 0 0
\(226\) −12.7024 −0.844951
\(227\) 5.90479 0.391915 0.195957 0.980612i \(-0.437219\pi\)
0.195957 + 0.980612i \(0.437219\pi\)
\(228\) 0 0
\(229\) 14.2761 0.943391 0.471695 0.881762i \(-0.343642\pi\)
0.471695 + 0.881762i \(0.343642\pi\)
\(230\) 15.3009 1.00891
\(231\) 0 0
\(232\) 6.00511 0.394254
\(233\) 27.0850 1.77440 0.887198 0.461389i \(-0.152649\pi\)
0.887198 + 0.461389i \(0.152649\pi\)
\(234\) 0 0
\(235\) 18.1498 1.18397
\(236\) 6.31332 0.410962
\(237\) 0 0
\(238\) 10.1208 0.656032
\(239\) −7.97200 −0.515666 −0.257833 0.966190i \(-0.583008\pi\)
−0.257833 + 0.966190i \(0.583008\pi\)
\(240\) 0 0
\(241\) −2.36516 −0.152353 −0.0761767 0.997094i \(-0.524271\pi\)
−0.0761767 + 0.997094i \(0.524271\pi\)
\(242\) 14.7697 0.949430
\(243\) 0 0
\(244\) −7.97918 −0.510815
\(245\) −11.2688 −0.719938
\(246\) 0 0
\(247\) −29.1906 −1.85735
\(248\) 2.77822 0.176417
\(249\) 0 0
\(250\) −10.1526 −0.642106
\(251\) 23.0435 1.45449 0.727246 0.686376i \(-0.240800\pi\)
0.727246 + 0.686376i \(0.240800\pi\)
\(252\) 0 0
\(253\) −32.3206 −2.03198
\(254\) −17.1800 −1.07797
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −23.2436 −1.44990 −0.724948 0.688803i \(-0.758136\pi\)
−0.724948 + 0.688803i \(0.758136\pi\)
\(258\) 0 0
\(259\) −2.42331 −0.150577
\(260\) 12.2809 0.761628
\(261\) 0 0
\(262\) −5.22919 −0.323061
\(263\) −4.62308 −0.285072 −0.142536 0.989790i \(-0.545526\pi\)
−0.142536 + 0.989790i \(0.545526\pi\)
\(264\) 0 0
\(265\) 22.6396 1.39074
\(266\) −8.68356 −0.532423
\(267\) 0 0
\(268\) −2.54885 −0.155696
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) 12.4311 0.755135 0.377568 0.925982i \(-0.376761\pi\)
0.377568 + 0.925982i \(0.376761\pi\)
\(272\) 6.65764 0.403679
\(273\) 0 0
\(274\) 12.9664 0.783326
\(275\) −3.93623 −0.237364
\(276\) 0 0
\(277\) −4.92762 −0.296072 −0.148036 0.988982i \(-0.547295\pi\)
−0.148036 + 0.988982i \(0.547295\pi\)
\(278\) −0.692646 −0.0415422
\(279\) 0 0
\(280\) 3.65329 0.218326
\(281\) 21.3194 1.27181 0.635905 0.771767i \(-0.280627\pi\)
0.635905 + 0.771767i \(0.280627\pi\)
\(282\) 0 0
\(283\) −29.9997 −1.78330 −0.891649 0.452728i \(-0.850451\pi\)
−0.891649 + 0.452728i \(0.850451\pi\)
\(284\) −1.98957 −0.118059
\(285\) 0 0
\(286\) −25.9414 −1.53395
\(287\) −14.7399 −0.870069
\(288\) 0 0
\(289\) 27.3241 1.60730
\(290\) 14.4315 0.847447
\(291\) 0 0
\(292\) 12.7523 0.746269
\(293\) −16.9481 −0.990120 −0.495060 0.868859i \(-0.664854\pi\)
−0.495060 + 0.868859i \(0.664854\pi\)
\(294\) 0 0
\(295\) 15.1722 0.883360
\(296\) −1.59410 −0.0926553
\(297\) 0 0
\(298\) −11.5986 −0.671891
\(299\) 32.5360 1.88160
\(300\) 0 0
\(301\) −14.0786 −0.811479
\(302\) 1.14291 0.0657672
\(303\) 0 0
\(304\) −5.71222 −0.327618
\(305\) −19.1756 −1.09799
\(306\) 0 0
\(307\) 18.4715 1.05422 0.527112 0.849796i \(-0.323275\pi\)
0.527112 + 0.849796i \(0.323275\pi\)
\(308\) −7.71699 −0.439716
\(309\) 0 0
\(310\) 6.67665 0.379208
\(311\) −13.9141 −0.788995 −0.394497 0.918897i \(-0.629081\pi\)
−0.394497 + 0.918897i \(0.629081\pi\)
\(312\) 0 0
\(313\) 21.9666 1.24162 0.620812 0.783959i \(-0.286803\pi\)
0.620812 + 0.783959i \(0.286803\pi\)
\(314\) −12.2350 −0.690462
\(315\) 0 0
\(316\) 3.64283 0.204925
\(317\) 3.38070 0.189879 0.0949395 0.995483i \(-0.469734\pi\)
0.0949395 + 0.995483i \(0.469734\pi\)
\(318\) 0 0
\(319\) −30.4842 −1.70679
\(320\) 2.40321 0.134343
\(321\) 0 0
\(322\) 9.67872 0.539374
\(323\) −38.0299 −2.11604
\(324\) 0 0
\(325\) 3.96246 0.219798
\(326\) −23.6815 −1.31159
\(327\) 0 0
\(328\) −9.69619 −0.535383
\(329\) 11.4809 0.632961
\(330\) 0 0
\(331\) 21.9585 1.20695 0.603476 0.797382i \(-0.293782\pi\)
0.603476 + 0.797382i \(0.293782\pi\)
\(332\) 0.689504 0.0378415
\(333\) 0 0
\(334\) 3.54694 0.194080
\(335\) −6.12542 −0.334667
\(336\) 0 0
\(337\) 3.21883 0.175341 0.0876705 0.996150i \(-0.472058\pi\)
0.0876705 + 0.996150i \(0.472058\pi\)
\(338\) 13.1142 0.713321
\(339\) 0 0
\(340\) 15.9997 0.867704
\(341\) −14.1033 −0.763738
\(342\) 0 0
\(343\) −17.7694 −0.959459
\(344\) −9.26120 −0.499330
\(345\) 0 0
\(346\) −20.8927 −1.12320
\(347\) −15.8474 −0.850734 −0.425367 0.905021i \(-0.639855\pi\)
−0.425367 + 0.905021i \(0.639855\pi\)
\(348\) 0 0
\(349\) −17.0834 −0.914451 −0.457226 0.889351i \(-0.651157\pi\)
−0.457226 + 0.889351i \(0.651157\pi\)
\(350\) 1.17874 0.0630066
\(351\) 0 0
\(352\) −5.07638 −0.270572
\(353\) 4.73633 0.252090 0.126045 0.992025i \(-0.459772\pi\)
0.126045 + 0.992025i \(0.459772\pi\)
\(354\) 0 0
\(355\) −4.78134 −0.253767
\(356\) −2.78972 −0.147855
\(357\) 0 0
\(358\) −2.13073 −0.112612
\(359\) −18.2662 −0.964051 −0.482025 0.876157i \(-0.660099\pi\)
−0.482025 + 0.876157i \(0.660099\pi\)
\(360\) 0 0
\(361\) 13.6294 0.717338
\(362\) 18.5589 0.975437
\(363\) 0 0
\(364\) 7.76841 0.407175
\(365\) 30.6463 1.60410
\(366\) 0 0
\(367\) 5.99172 0.312765 0.156383 0.987697i \(-0.450017\pi\)
0.156383 + 0.987697i \(0.450017\pi\)
\(368\) 6.36685 0.331895
\(369\) 0 0
\(370\) −3.83095 −0.199162
\(371\) 14.3209 0.743505
\(372\) 0 0
\(373\) −16.9416 −0.877203 −0.438601 0.898682i \(-0.644526\pi\)
−0.438601 + 0.898682i \(0.644526\pi\)
\(374\) −33.7967 −1.74759
\(375\) 0 0
\(376\) 7.55235 0.389483
\(377\) 30.6873 1.58048
\(378\) 0 0
\(379\) −16.7293 −0.859325 −0.429663 0.902989i \(-0.641368\pi\)
−0.429663 + 0.902989i \(0.641368\pi\)
\(380\) −13.7276 −0.704213
\(381\) 0 0
\(382\) −15.6213 −0.799257
\(383\) 26.8421 1.37157 0.685785 0.727804i \(-0.259459\pi\)
0.685785 + 0.727804i \(0.259459\pi\)
\(384\) 0 0
\(385\) −18.5455 −0.945167
\(386\) −18.5417 −0.943747
\(387\) 0 0
\(388\) 11.9363 0.605972
\(389\) −8.89100 −0.450792 −0.225396 0.974267i \(-0.572368\pi\)
−0.225396 + 0.974267i \(0.572368\pi\)
\(390\) 0 0
\(391\) 42.3882 2.14366
\(392\) −4.68907 −0.236834
\(393\) 0 0
\(394\) 9.98285 0.502929
\(395\) 8.75448 0.440486
\(396\) 0 0
\(397\) −15.3011 −0.767939 −0.383970 0.923346i \(-0.625443\pi\)
−0.383970 + 0.923346i \(0.625443\pi\)
\(398\) 5.33431 0.267385
\(399\) 0 0
\(400\) 0.775401 0.0387701
\(401\) 9.91869 0.495316 0.247658 0.968848i \(-0.420339\pi\)
0.247658 + 0.968848i \(0.420339\pi\)
\(402\) 0 0
\(403\) 14.1973 0.707218
\(404\) 14.5273 0.722759
\(405\) 0 0
\(406\) 9.12880 0.453055
\(407\) 8.09227 0.401119
\(408\) 0 0
\(409\) −13.4737 −0.666233 −0.333117 0.942886i \(-0.608100\pi\)
−0.333117 + 0.942886i \(0.608100\pi\)
\(410\) −23.3020 −1.15080
\(411\) 0 0
\(412\) −10.1048 −0.497828
\(413\) 9.59734 0.472254
\(414\) 0 0
\(415\) 1.65702 0.0813400
\(416\) 5.11021 0.250549
\(417\) 0 0
\(418\) 28.9974 1.41831
\(419\) 24.5320 1.19847 0.599233 0.800574i \(-0.295472\pi\)
0.599233 + 0.800574i \(0.295472\pi\)
\(420\) 0 0
\(421\) −27.8189 −1.35581 −0.677906 0.735149i \(-0.737112\pi\)
−0.677906 + 0.735149i \(0.737112\pi\)
\(422\) −19.7945 −0.963581
\(423\) 0 0
\(424\) 9.42058 0.457504
\(425\) 5.16234 0.250410
\(426\) 0 0
\(427\) −12.1297 −0.586999
\(428\) 12.2725 0.593214
\(429\) 0 0
\(430\) −22.2566 −1.07331
\(431\) −32.5743 −1.56905 −0.784525 0.620097i \(-0.787093\pi\)
−0.784525 + 0.620097i \(0.787093\pi\)
\(432\) 0 0
\(433\) −5.11693 −0.245904 −0.122952 0.992413i \(-0.539236\pi\)
−0.122952 + 0.992413i \(0.539236\pi\)
\(434\) 4.22338 0.202729
\(435\) 0 0
\(436\) 14.2163 0.680838
\(437\) −36.3688 −1.73976
\(438\) 0 0
\(439\) 18.8040 0.897466 0.448733 0.893666i \(-0.351875\pi\)
0.448733 + 0.893666i \(0.351875\pi\)
\(440\) −12.1996 −0.581593
\(441\) 0 0
\(442\) 34.0219 1.61826
\(443\) −16.7817 −0.797325 −0.398662 0.917098i \(-0.630525\pi\)
−0.398662 + 0.917098i \(0.630525\pi\)
\(444\) 0 0
\(445\) −6.70426 −0.317812
\(446\) 29.2824 1.38656
\(447\) 0 0
\(448\) 1.52017 0.0718215
\(449\) −29.1983 −1.37795 −0.688977 0.724784i \(-0.741940\pi\)
−0.688977 + 0.724784i \(0.741940\pi\)
\(450\) 0 0
\(451\) 49.2216 2.31775
\(452\) −12.7024 −0.597471
\(453\) 0 0
\(454\) 5.90479 0.277126
\(455\) 18.6691 0.875220
\(456\) 0 0
\(457\) 6.74219 0.315387 0.157693 0.987488i \(-0.449594\pi\)
0.157693 + 0.987488i \(0.449594\pi\)
\(458\) 14.2761 0.667078
\(459\) 0 0
\(460\) 15.3009 0.713406
\(461\) −17.8901 −0.833226 −0.416613 0.909084i \(-0.636783\pi\)
−0.416613 + 0.909084i \(0.636783\pi\)
\(462\) 0 0
\(463\) 17.2936 0.803703 0.401851 0.915705i \(-0.368367\pi\)
0.401851 + 0.915705i \(0.368367\pi\)
\(464\) 6.00511 0.278780
\(465\) 0 0
\(466\) 27.0850 1.25469
\(467\) 3.00187 0.138910 0.0694550 0.997585i \(-0.477874\pi\)
0.0694550 + 0.997585i \(0.477874\pi\)
\(468\) 0 0
\(469\) −3.87470 −0.178917
\(470\) 18.1498 0.837190
\(471\) 0 0
\(472\) 6.31332 0.290594
\(473\) 47.0134 2.16168
\(474\) 0 0
\(475\) −4.42926 −0.203228
\(476\) 10.1208 0.463884
\(477\) 0 0
\(478\) −7.97200 −0.364631
\(479\) 25.7701 1.17747 0.588734 0.808327i \(-0.299627\pi\)
0.588734 + 0.808327i \(0.299627\pi\)
\(480\) 0 0
\(481\) −8.14619 −0.371434
\(482\) −2.36516 −0.107730
\(483\) 0 0
\(484\) 14.7697 0.671349
\(485\) 28.6853 1.30253
\(486\) 0 0
\(487\) 9.85904 0.446756 0.223378 0.974732i \(-0.428292\pi\)
0.223378 + 0.974732i \(0.428292\pi\)
\(488\) −7.97918 −0.361200
\(489\) 0 0
\(490\) −11.2688 −0.509073
\(491\) −9.75565 −0.440266 −0.220133 0.975470i \(-0.570649\pi\)
−0.220133 + 0.975470i \(0.570649\pi\)
\(492\) 0 0
\(493\) 39.9798 1.80060
\(494\) −29.1906 −1.31335
\(495\) 0 0
\(496\) 2.77822 0.124746
\(497\) −3.02448 −0.135667
\(498\) 0 0
\(499\) −3.06163 −0.137058 −0.0685288 0.997649i \(-0.521830\pi\)
−0.0685288 + 0.997649i \(0.521830\pi\)
\(500\) −10.1526 −0.454037
\(501\) 0 0
\(502\) 23.0435 1.02848
\(503\) 15.0940 0.673010 0.336505 0.941682i \(-0.390755\pi\)
0.336505 + 0.941682i \(0.390755\pi\)
\(504\) 0 0
\(505\) 34.9121 1.55357
\(506\) −32.3206 −1.43683
\(507\) 0 0
\(508\) −17.1800 −0.762238
\(509\) −13.2575 −0.587629 −0.293814 0.955863i \(-0.594925\pi\)
−0.293814 + 0.955863i \(0.594925\pi\)
\(510\) 0 0
\(511\) 19.3856 0.857570
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −23.2436 −1.02523
\(515\) −24.2839 −1.07008
\(516\) 0 0
\(517\) −38.3386 −1.68613
\(518\) −2.42331 −0.106474
\(519\) 0 0
\(520\) 12.2809 0.538553
\(521\) −20.2639 −0.887776 −0.443888 0.896082i \(-0.646401\pi\)
−0.443888 + 0.896082i \(0.646401\pi\)
\(522\) 0 0
\(523\) −2.18471 −0.0955307 −0.0477654 0.998859i \(-0.515210\pi\)
−0.0477654 + 0.998859i \(0.515210\pi\)
\(524\) −5.22919 −0.228438
\(525\) 0 0
\(526\) −4.62308 −0.201576
\(527\) 18.4964 0.805716
\(528\) 0 0
\(529\) 17.5368 0.762470
\(530\) 22.6396 0.983401
\(531\) 0 0
\(532\) −8.68356 −0.376480
\(533\) −49.5496 −2.14623
\(534\) 0 0
\(535\) 29.4933 1.27511
\(536\) −2.54885 −0.110094
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) 23.8035 1.02529
\(540\) 0 0
\(541\) 21.9779 0.944903 0.472452 0.881357i \(-0.343369\pi\)
0.472452 + 0.881357i \(0.343369\pi\)
\(542\) 12.4311 0.533961
\(543\) 0 0
\(544\) 6.65764 0.285444
\(545\) 34.1647 1.46346
\(546\) 0 0
\(547\) −2.59714 −0.111046 −0.0555229 0.998457i \(-0.517683\pi\)
−0.0555229 + 0.998457i \(0.517683\pi\)
\(548\) 12.9664 0.553895
\(549\) 0 0
\(550\) −3.93623 −0.167842
\(551\) −34.3025 −1.46133
\(552\) 0 0
\(553\) 5.53774 0.235489
\(554\) −4.92762 −0.209354
\(555\) 0 0
\(556\) −0.692646 −0.0293747
\(557\) −32.9165 −1.39471 −0.697357 0.716724i \(-0.745641\pi\)
−0.697357 + 0.716724i \(0.745641\pi\)
\(558\) 0 0
\(559\) −47.3266 −2.00170
\(560\) 3.65329 0.154380
\(561\) 0 0
\(562\) 21.3194 0.899306
\(563\) 16.1700 0.681485 0.340742 0.940157i \(-0.389322\pi\)
0.340742 + 0.940157i \(0.389322\pi\)
\(564\) 0 0
\(565\) −30.5265 −1.28426
\(566\) −29.9997 −1.26098
\(567\) 0 0
\(568\) −1.98957 −0.0834803
\(569\) 11.9495 0.500951 0.250476 0.968123i \(-0.419413\pi\)
0.250476 + 0.968123i \(0.419413\pi\)
\(570\) 0 0
\(571\) −18.1326 −0.758824 −0.379412 0.925228i \(-0.623874\pi\)
−0.379412 + 0.925228i \(0.623874\pi\)
\(572\) −25.9414 −1.08466
\(573\) 0 0
\(574\) −14.7399 −0.615232
\(575\) 4.93687 0.205882
\(576\) 0 0
\(577\) 22.5512 0.938817 0.469408 0.882981i \(-0.344467\pi\)
0.469408 + 0.882981i \(0.344467\pi\)
\(578\) 27.3241 1.13653
\(579\) 0 0
\(580\) 14.4315 0.599236
\(581\) 1.04817 0.0434853
\(582\) 0 0
\(583\) −47.8225 −1.98060
\(584\) 12.7523 0.527692
\(585\) 0 0
\(586\) −16.9481 −0.700121
\(587\) −22.1880 −0.915796 −0.457898 0.889005i \(-0.651397\pi\)
−0.457898 + 0.889005i \(0.651397\pi\)
\(588\) 0 0
\(589\) −15.8698 −0.653905
\(590\) 15.1722 0.624630
\(591\) 0 0
\(592\) −1.59410 −0.0655172
\(593\) −30.4282 −1.24954 −0.624768 0.780811i \(-0.714806\pi\)
−0.624768 + 0.780811i \(0.714806\pi\)
\(594\) 0 0
\(595\) 24.3223 0.997117
\(596\) −11.5986 −0.475099
\(597\) 0 0
\(598\) 32.5360 1.33049
\(599\) −15.6413 −0.639086 −0.319543 0.947572i \(-0.603529\pi\)
−0.319543 + 0.947572i \(0.603529\pi\)
\(600\) 0 0
\(601\) −19.9435 −0.813512 −0.406756 0.913537i \(-0.633340\pi\)
−0.406756 + 0.913537i \(0.633340\pi\)
\(602\) −14.0786 −0.573802
\(603\) 0 0
\(604\) 1.14291 0.0465045
\(605\) 35.4946 1.44306
\(606\) 0 0
\(607\) −11.4793 −0.465932 −0.232966 0.972485i \(-0.574843\pi\)
−0.232966 + 0.972485i \(0.574843\pi\)
\(608\) −5.71222 −0.231661
\(609\) 0 0
\(610\) −19.1756 −0.776398
\(611\) 38.5941 1.56135
\(612\) 0 0
\(613\) 11.2663 0.455044 0.227522 0.973773i \(-0.426938\pi\)
0.227522 + 0.973773i \(0.426938\pi\)
\(614\) 18.4715 0.745449
\(615\) 0 0
\(616\) −7.71699 −0.310926
\(617\) −10.0317 −0.403861 −0.201930 0.979400i \(-0.564721\pi\)
−0.201930 + 0.979400i \(0.564721\pi\)
\(618\) 0 0
\(619\) 10.0658 0.404579 0.202289 0.979326i \(-0.435162\pi\)
0.202289 + 0.979326i \(0.435162\pi\)
\(620\) 6.67665 0.268141
\(621\) 0 0
\(622\) −13.9141 −0.557904
\(623\) −4.24085 −0.169906
\(624\) 0 0
\(625\) −28.2758 −1.13103
\(626\) 21.9666 0.877961
\(627\) 0 0
\(628\) −12.2350 −0.488230
\(629\) −10.6129 −0.423166
\(630\) 0 0
\(631\) −35.3530 −1.40738 −0.703691 0.710506i \(-0.748466\pi\)
−0.703691 + 0.710506i \(0.748466\pi\)
\(632\) 3.64283 0.144904
\(633\) 0 0
\(634\) 3.38070 0.134265
\(635\) −41.2870 −1.63842
\(636\) 0 0
\(637\) −23.9621 −0.949414
\(638\) −30.4842 −1.20688
\(639\) 0 0
\(640\) 2.40321 0.0949951
\(641\) −0.166926 −0.00659316 −0.00329658 0.999995i \(-0.501049\pi\)
−0.00329658 + 0.999995i \(0.501049\pi\)
\(642\) 0 0
\(643\) −30.9571 −1.22083 −0.610415 0.792082i \(-0.708997\pi\)
−0.610415 + 0.792082i \(0.708997\pi\)
\(644\) 9.67872 0.381395
\(645\) 0 0
\(646\) −38.0299 −1.49626
\(647\) 0.959927 0.0377386 0.0188693 0.999822i \(-0.493993\pi\)
0.0188693 + 0.999822i \(0.493993\pi\)
\(648\) 0 0
\(649\) −32.0488 −1.25803
\(650\) 3.96246 0.155421
\(651\) 0 0
\(652\) −23.6815 −0.927438
\(653\) −27.5173 −1.07684 −0.538418 0.842678i \(-0.680978\pi\)
−0.538418 + 0.842678i \(0.680978\pi\)
\(654\) 0 0
\(655\) −12.5668 −0.491027
\(656\) −9.69619 −0.378573
\(657\) 0 0
\(658\) 11.4809 0.447571
\(659\) −3.87281 −0.150863 −0.0754316 0.997151i \(-0.524033\pi\)
−0.0754316 + 0.997151i \(0.524033\pi\)
\(660\) 0 0
\(661\) 2.60845 0.101457 0.0507285 0.998712i \(-0.483846\pi\)
0.0507285 + 0.998712i \(0.483846\pi\)
\(662\) 21.9585 0.853443
\(663\) 0 0
\(664\) 0.689504 0.0267580
\(665\) −20.8684 −0.809242
\(666\) 0 0
\(667\) 38.2336 1.48041
\(668\) 3.54694 0.137235
\(669\) 0 0
\(670\) −6.12542 −0.236645
\(671\) 40.5054 1.56369
\(672\) 0 0
\(673\) −12.9907 −0.500753 −0.250376 0.968149i \(-0.580554\pi\)
−0.250376 + 0.968149i \(0.580554\pi\)
\(674\) 3.21883 0.123985
\(675\) 0 0
\(676\) 13.1142 0.504394
\(677\) −30.7406 −1.18146 −0.590728 0.806871i \(-0.701159\pi\)
−0.590728 + 0.806871i \(0.701159\pi\)
\(678\) 0 0
\(679\) 18.1452 0.696349
\(680\) 15.9997 0.613560
\(681\) 0 0
\(682\) −14.1033 −0.540045
\(683\) 6.20328 0.237362 0.118681 0.992932i \(-0.462133\pi\)
0.118681 + 0.992932i \(0.462133\pi\)
\(684\) 0 0
\(685\) 31.1608 1.19059
\(686\) −17.7694 −0.678440
\(687\) 0 0
\(688\) −9.26120 −0.353080
\(689\) 48.1411 1.83403
\(690\) 0 0
\(691\) 18.1544 0.690626 0.345313 0.938488i \(-0.387773\pi\)
0.345313 + 0.938488i \(0.387773\pi\)
\(692\) −20.8927 −0.794220
\(693\) 0 0
\(694\) −15.8474 −0.601560
\(695\) −1.66457 −0.0631408
\(696\) 0 0
\(697\) −64.5537 −2.44515
\(698\) −17.0834 −0.646615
\(699\) 0 0
\(700\) 1.17874 0.0445524
\(701\) 46.2492 1.74681 0.873404 0.486996i \(-0.161907\pi\)
0.873404 + 0.486996i \(0.161907\pi\)
\(702\) 0 0
\(703\) 9.10585 0.343434
\(704\) −5.07638 −0.191323
\(705\) 0 0
\(706\) 4.73633 0.178254
\(707\) 22.0840 0.830554
\(708\) 0 0
\(709\) −35.6219 −1.33781 −0.668904 0.743349i \(-0.733236\pi\)
−0.668904 + 0.743349i \(0.733236\pi\)
\(710\) −4.78134 −0.179440
\(711\) 0 0
\(712\) −2.78972 −0.104549
\(713\) 17.6885 0.662441
\(714\) 0 0
\(715\) −62.3425 −2.33148
\(716\) −2.13073 −0.0796290
\(717\) 0 0
\(718\) −18.2662 −0.681687
\(719\) 37.4220 1.39561 0.697803 0.716290i \(-0.254161\pi\)
0.697803 + 0.716290i \(0.254161\pi\)
\(720\) 0 0
\(721\) −15.3611 −0.572076
\(722\) 13.6294 0.507234
\(723\) 0 0
\(724\) 18.5589 0.689738
\(725\) 4.65637 0.172933
\(726\) 0 0
\(727\) −24.4331 −0.906172 −0.453086 0.891467i \(-0.649677\pi\)
−0.453086 + 0.891467i \(0.649677\pi\)
\(728\) 7.76841 0.287916
\(729\) 0 0
\(730\) 30.6463 1.13427
\(731\) −61.6577 −2.28049
\(732\) 0 0
\(733\) 37.4726 1.38408 0.692042 0.721857i \(-0.256711\pi\)
0.692042 + 0.721857i \(0.256711\pi\)
\(734\) 5.99172 0.221159
\(735\) 0 0
\(736\) 6.36685 0.234685
\(737\) 12.9389 0.476612
\(738\) 0 0
\(739\) −18.6134 −0.684707 −0.342353 0.939571i \(-0.611224\pi\)
−0.342353 + 0.939571i \(0.611224\pi\)
\(740\) −3.83095 −0.140829
\(741\) 0 0
\(742\) 14.3209 0.525737
\(743\) −0.773612 −0.0283811 −0.0141905 0.999899i \(-0.504517\pi\)
−0.0141905 + 0.999899i \(0.504517\pi\)
\(744\) 0 0
\(745\) −27.8739 −1.02122
\(746\) −16.9416 −0.620276
\(747\) 0 0
\(748\) −33.7967 −1.23573
\(749\) 18.6563 0.681688
\(750\) 0 0
\(751\) −11.0543 −0.403377 −0.201689 0.979450i \(-0.564643\pi\)
−0.201689 + 0.979450i \(0.564643\pi\)
\(752\) 7.55235 0.275406
\(753\) 0 0
\(754\) 30.6873 1.11757
\(755\) 2.74666 0.0999610
\(756\) 0 0
\(757\) 31.9235 1.16028 0.580140 0.814517i \(-0.302998\pi\)
0.580140 + 0.814517i \(0.302998\pi\)
\(758\) −16.7293 −0.607635
\(759\) 0 0
\(760\) −13.7276 −0.497954
\(761\) −14.7166 −0.533477 −0.266739 0.963769i \(-0.585946\pi\)
−0.266739 + 0.963769i \(0.585946\pi\)
\(762\) 0 0
\(763\) 21.6113 0.782380
\(764\) −15.6213 −0.565160
\(765\) 0 0
\(766\) 26.8421 0.969846
\(767\) 32.2624 1.16493
\(768\) 0 0
\(769\) −18.0186 −0.649768 −0.324884 0.945754i \(-0.605325\pi\)
−0.324884 + 0.945754i \(0.605325\pi\)
\(770\) −18.5455 −0.668334
\(771\) 0 0
\(772\) −18.5417 −0.667330
\(773\) −48.8663 −1.75760 −0.878799 0.477193i \(-0.841654\pi\)
−0.878799 + 0.477193i \(0.841654\pi\)
\(774\) 0 0
\(775\) 2.15424 0.0773825
\(776\) 11.9363 0.428487
\(777\) 0 0
\(778\) −8.89100 −0.318758
\(779\) 55.3868 1.98444
\(780\) 0 0
\(781\) 10.0998 0.361399
\(782\) 42.3882 1.51580
\(783\) 0 0
\(784\) −4.68907 −0.167467
\(785\) −29.4033 −1.04945
\(786\) 0 0
\(787\) −31.8942 −1.13691 −0.568453 0.822715i \(-0.692458\pi\)
−0.568453 + 0.822715i \(0.692458\pi\)
\(788\) 9.98285 0.355624
\(789\) 0 0
\(790\) 8.75448 0.311471
\(791\) −19.3099 −0.686579
\(792\) 0 0
\(793\) −40.7753 −1.44797
\(794\) −15.3011 −0.543015
\(795\) 0 0
\(796\) 5.33431 0.189070
\(797\) 26.0846 0.923964 0.461982 0.886889i \(-0.347139\pi\)
0.461982 + 0.886889i \(0.347139\pi\)
\(798\) 0 0
\(799\) 50.2808 1.77881
\(800\) 0.775401 0.0274146
\(801\) 0 0
\(802\) 9.91869 0.350241
\(803\) −64.7353 −2.28446
\(804\) 0 0
\(805\) 23.2600 0.819806
\(806\) 14.1973 0.500079
\(807\) 0 0
\(808\) 14.5273 0.511068
\(809\) 2.45878 0.0864461 0.0432231 0.999065i \(-0.486237\pi\)
0.0432231 + 0.999065i \(0.486237\pi\)
\(810\) 0 0
\(811\) −20.3841 −0.715783 −0.357891 0.933763i \(-0.616504\pi\)
−0.357891 + 0.933763i \(0.616504\pi\)
\(812\) 9.12880 0.320358
\(813\) 0 0
\(814\) 8.09227 0.283634
\(815\) −56.9114 −1.99352
\(816\) 0 0
\(817\) 52.9020 1.85081
\(818\) −13.4737 −0.471098
\(819\) 0 0
\(820\) −23.3020 −0.813740
\(821\) 8.31824 0.290309 0.145154 0.989409i \(-0.453632\pi\)
0.145154 + 0.989409i \(0.453632\pi\)
\(822\) 0 0
\(823\) −25.5967 −0.892244 −0.446122 0.894972i \(-0.647195\pi\)
−0.446122 + 0.894972i \(0.647195\pi\)
\(824\) −10.1048 −0.352017
\(825\) 0 0
\(826\) 9.59734 0.333934
\(827\) −28.4900 −0.990693 −0.495347 0.868695i \(-0.664959\pi\)
−0.495347 + 0.868695i \(0.664959\pi\)
\(828\) 0 0
\(829\) −15.2875 −0.530956 −0.265478 0.964117i \(-0.585530\pi\)
−0.265478 + 0.964117i \(0.585530\pi\)
\(830\) 1.65702 0.0575161
\(831\) 0 0
\(832\) 5.11021 0.177165
\(833\) −31.2181 −1.08164
\(834\) 0 0
\(835\) 8.52403 0.294986
\(836\) 28.9974 1.00290
\(837\) 0 0
\(838\) 24.5320 0.847444
\(839\) −33.9640 −1.17257 −0.586283 0.810106i \(-0.699409\pi\)
−0.586283 + 0.810106i \(0.699409\pi\)
\(840\) 0 0
\(841\) 7.06129 0.243493
\(842\) −27.8189 −0.958704
\(843\) 0 0
\(844\) −19.7945 −0.681355
\(845\) 31.5162 1.08419
\(846\) 0 0
\(847\) 22.4525 0.771476
\(848\) 9.42058 0.323504
\(849\) 0 0
\(850\) 5.16234 0.177067
\(851\) −10.1494 −0.347917
\(852\) 0 0
\(853\) −18.6395 −0.638203 −0.319102 0.947720i \(-0.603381\pi\)
−0.319102 + 0.947720i \(0.603381\pi\)
\(854\) −12.1297 −0.415071
\(855\) 0 0
\(856\) 12.2725 0.419465
\(857\) −38.5929 −1.31831 −0.659154 0.752008i \(-0.729085\pi\)
−0.659154 + 0.752008i \(0.729085\pi\)
\(858\) 0 0
\(859\) 36.7533 1.25400 0.627002 0.779017i \(-0.284282\pi\)
0.627002 + 0.779017i \(0.284282\pi\)
\(860\) −22.2566 −0.758943
\(861\) 0 0
\(862\) −32.5743 −1.10949
\(863\) −39.5677 −1.34690 −0.673450 0.739233i \(-0.735188\pi\)
−0.673450 + 0.739233i \(0.735188\pi\)
\(864\) 0 0
\(865\) −50.2094 −1.70717
\(866\) −5.11693 −0.173880
\(867\) 0 0
\(868\) 4.22338 0.143351
\(869\) −18.4924 −0.627313
\(870\) 0 0
\(871\) −13.0252 −0.441341
\(872\) 14.2163 0.481425
\(873\) 0 0
\(874\) −36.3688 −1.23019
\(875\) −15.4337 −0.521754
\(876\) 0 0
\(877\) 4.55367 0.153766 0.0768832 0.997040i \(-0.475503\pi\)
0.0768832 + 0.997040i \(0.475503\pi\)
\(878\) 18.8040 0.634604
\(879\) 0 0
\(880\) −12.1996 −0.411248
\(881\) 16.4979 0.555828 0.277914 0.960606i \(-0.410357\pi\)
0.277914 + 0.960606i \(0.410357\pi\)
\(882\) 0 0
\(883\) −43.4286 −1.46149 −0.730744 0.682652i \(-0.760827\pi\)
−0.730744 + 0.682652i \(0.760827\pi\)
\(884\) 34.0219 1.14428
\(885\) 0 0
\(886\) −16.7817 −0.563794
\(887\) 9.36355 0.314397 0.157199 0.987567i \(-0.449754\pi\)
0.157199 + 0.987567i \(0.449754\pi\)
\(888\) 0 0
\(889\) −26.1165 −0.875920
\(890\) −6.70426 −0.224727
\(891\) 0 0
\(892\) 29.2824 0.980447
\(893\) −43.1406 −1.44365
\(894\) 0 0
\(895\) −5.12058 −0.171162
\(896\) 1.52017 0.0507854
\(897\) 0 0
\(898\) −29.1983 −0.974360
\(899\) 16.6835 0.556427
\(900\) 0 0
\(901\) 62.7188 2.08947
\(902\) 49.2216 1.63890
\(903\) 0 0
\(904\) −12.7024 −0.422476
\(905\) 44.6010 1.48259
\(906\) 0 0
\(907\) −43.0813 −1.43049 −0.715246 0.698873i \(-0.753685\pi\)
−0.715246 + 0.698873i \(0.753685\pi\)
\(908\) 5.90479 0.195957
\(909\) 0 0
\(910\) 18.6691 0.618874
\(911\) 3.70489 0.122749 0.0613743 0.998115i \(-0.480452\pi\)
0.0613743 + 0.998115i \(0.480452\pi\)
\(912\) 0 0
\(913\) −3.50019 −0.115839
\(914\) 6.74219 0.223012
\(915\) 0 0
\(916\) 14.2761 0.471695
\(917\) −7.94928 −0.262508
\(918\) 0 0
\(919\) 42.2046 1.39220 0.696101 0.717944i \(-0.254917\pi\)
0.696101 + 0.717944i \(0.254917\pi\)
\(920\) 15.3009 0.504454
\(921\) 0 0
\(922\) −17.8901 −0.589180
\(923\) −10.1671 −0.334654
\(924\) 0 0
\(925\) −1.23607 −0.0406417
\(926\) 17.2936 0.568304
\(927\) 0 0
\(928\) 6.00511 0.197127
\(929\) 40.9616 1.34391 0.671954 0.740593i \(-0.265455\pi\)
0.671954 + 0.740593i \(0.265455\pi\)
\(930\) 0 0
\(931\) 26.7850 0.877843
\(932\) 27.0850 0.887198
\(933\) 0 0
\(934\) 3.00187 0.0982243
\(935\) −81.2205 −2.65619
\(936\) 0 0
\(937\) −11.2419 −0.367258 −0.183629 0.982996i \(-0.558785\pi\)
−0.183629 + 0.982996i \(0.558785\pi\)
\(938\) −3.87470 −0.126513
\(939\) 0 0
\(940\) 18.1498 0.591983
\(941\) −1.14007 −0.0371652 −0.0185826 0.999827i \(-0.505915\pi\)
−0.0185826 + 0.999827i \(0.505915\pi\)
\(942\) 0 0
\(943\) −61.7342 −2.01034
\(944\) 6.31332 0.205481
\(945\) 0 0
\(946\) 47.0134 1.52854
\(947\) 20.5389 0.667424 0.333712 0.942675i \(-0.391699\pi\)
0.333712 + 0.942675i \(0.391699\pi\)
\(948\) 0 0
\(949\) 65.1667 2.11540
\(950\) −4.42926 −0.143704
\(951\) 0 0
\(952\) 10.1208 0.328016
\(953\) 18.6016 0.602567 0.301283 0.953535i \(-0.402585\pi\)
0.301283 + 0.953535i \(0.402585\pi\)
\(954\) 0 0
\(955\) −37.5413 −1.21481
\(956\) −7.97200 −0.257833
\(957\) 0 0
\(958\) 25.7701 0.832595
\(959\) 19.7111 0.636505
\(960\) 0 0
\(961\) −23.2815 −0.751015
\(962\) −8.14619 −0.262644
\(963\) 0 0
\(964\) −2.36516 −0.0761767
\(965\) −44.5595 −1.43442
\(966\) 0 0
\(967\) −21.3331 −0.686026 −0.343013 0.939331i \(-0.611447\pi\)
−0.343013 + 0.939331i \(0.611447\pi\)
\(968\) 14.7697 0.474715
\(969\) 0 0
\(970\) 28.6853 0.921030
\(971\) −13.0827 −0.419844 −0.209922 0.977718i \(-0.567321\pi\)
−0.209922 + 0.977718i \(0.567321\pi\)
\(972\) 0 0
\(973\) −1.05294 −0.0337558
\(974\) 9.85904 0.315904
\(975\) 0 0
\(976\) −7.97918 −0.255407
\(977\) 22.6902 0.725924 0.362962 0.931804i \(-0.381766\pi\)
0.362962 + 0.931804i \(0.381766\pi\)
\(978\) 0 0
\(979\) 14.1617 0.452609
\(980\) −11.2688 −0.359969
\(981\) 0 0
\(982\) −9.75565 −0.311315
\(983\) 51.3612 1.63817 0.819084 0.573674i \(-0.194482\pi\)
0.819084 + 0.573674i \(0.194482\pi\)
\(984\) 0 0
\(985\) 23.9909 0.764412
\(986\) 39.9798 1.27322
\(987\) 0 0
\(988\) −29.1906 −0.928677
\(989\) −58.9647 −1.87497
\(990\) 0 0
\(991\) −11.0015 −0.349475 −0.174737 0.984615i \(-0.555908\pi\)
−0.174737 + 0.984615i \(0.555908\pi\)
\(992\) 2.77822 0.0882087
\(993\) 0 0
\(994\) −3.02448 −0.0959308
\(995\) 12.8195 0.406404
\(996\) 0 0
\(997\) 12.2415 0.387693 0.193846 0.981032i \(-0.437904\pi\)
0.193846 + 0.981032i \(0.437904\pi\)
\(998\) −3.06163 −0.0969143
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.o.1.5 7
3.2 odd 2 538.2.a.d.1.3 7
12.11 even 2 4304.2.a.i.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.d.1.3 7 3.2 odd 2
4304.2.a.i.1.5 7 12.11 even 2
4842.2.a.o.1.5 7 1.1 even 1 trivial