Properties

Label 4842.2.a.o.1.1
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 10x^{5} + 7x^{4} + 27x^{3} - 15x^{2} - 20x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.49844\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.98038 q^{5} -2.56529 q^{7} +1.00000 q^{8} -2.98038 q^{10} +5.77573 q^{11} -0.953732 q^{13} -2.56529 q^{14} +1.00000 q^{16} -2.51668 q^{17} -7.19922 q^{19} -2.98038 q^{20} +5.77573 q^{22} +5.17399 q^{23} +3.88265 q^{25} -0.953732 q^{26} -2.56529 q^{28} -4.63236 q^{29} +8.16921 q^{31} +1.00000 q^{32} -2.51668 q^{34} +7.64552 q^{35} -9.43775 q^{37} -7.19922 q^{38} -2.98038 q^{40} -2.46810 q^{41} +5.86496 q^{43} +5.77573 q^{44} +5.17399 q^{46} +9.50969 q^{47} -0.419304 q^{49} +3.88265 q^{50} -0.953732 q^{52} +7.51226 q^{53} -17.2139 q^{55} -2.56529 q^{56} -4.63236 q^{58} +1.01485 q^{59} -5.86716 q^{61} +8.16921 q^{62} +1.00000 q^{64} +2.84248 q^{65} +12.1288 q^{67} -2.51668 q^{68} +7.64552 q^{70} +12.3537 q^{71} +0.650878 q^{73} -9.43775 q^{74} -7.19922 q^{76} -14.8164 q^{77} +15.5158 q^{79} -2.98038 q^{80} -2.46810 q^{82} +8.27171 q^{83} +7.50067 q^{85} +5.86496 q^{86} +5.77573 q^{88} -2.89852 q^{89} +2.44660 q^{91} +5.17399 q^{92} +9.50969 q^{94} +21.4564 q^{95} +0.956247 q^{97} -0.419304 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + 7 q^{4} + 6 q^{5} - 3 q^{7} + 7 q^{8} + 6 q^{10} + 12 q^{11} + 3 q^{13} - 3 q^{14} + 7 q^{16} + 8 q^{17} - 7 q^{19} + 6 q^{20} + 12 q^{22} + 22 q^{23} + 9 q^{25} + 3 q^{26} - 3 q^{28} + 7 q^{29}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.98038 −1.33287 −0.666433 0.745565i \(-0.732180\pi\)
−0.666433 + 0.745565i \(0.732180\pi\)
\(6\) 0 0
\(7\) −2.56529 −0.969587 −0.484794 0.874629i \(-0.661105\pi\)
−0.484794 + 0.874629i \(0.661105\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.98038 −0.942478
\(11\) 5.77573 1.74145 0.870724 0.491772i \(-0.163651\pi\)
0.870724 + 0.491772i \(0.163651\pi\)
\(12\) 0 0
\(13\) −0.953732 −0.264518 −0.132259 0.991215i \(-0.542223\pi\)
−0.132259 + 0.991215i \(0.542223\pi\)
\(14\) −2.56529 −0.685602
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.51668 −0.610385 −0.305193 0.952291i \(-0.598721\pi\)
−0.305193 + 0.952291i \(0.598721\pi\)
\(18\) 0 0
\(19\) −7.19922 −1.65161 −0.825807 0.563953i \(-0.809280\pi\)
−0.825807 + 0.563953i \(0.809280\pi\)
\(20\) −2.98038 −0.666433
\(21\) 0 0
\(22\) 5.77573 1.23139
\(23\) 5.17399 1.07885 0.539426 0.842033i \(-0.318641\pi\)
0.539426 + 0.842033i \(0.318641\pi\)
\(24\) 0 0
\(25\) 3.88265 0.776530
\(26\) −0.953732 −0.187042
\(27\) 0 0
\(28\) −2.56529 −0.484794
\(29\) −4.63236 −0.860208 −0.430104 0.902779i \(-0.641523\pi\)
−0.430104 + 0.902779i \(0.641523\pi\)
\(30\) 0 0
\(31\) 8.16921 1.46723 0.733617 0.679563i \(-0.237831\pi\)
0.733617 + 0.679563i \(0.237831\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.51668 −0.431608
\(35\) 7.64552 1.29233
\(36\) 0 0
\(37\) −9.43775 −1.55156 −0.775778 0.631006i \(-0.782642\pi\)
−0.775778 + 0.631006i \(0.782642\pi\)
\(38\) −7.19922 −1.16787
\(39\) 0 0
\(40\) −2.98038 −0.471239
\(41\) −2.46810 −0.385453 −0.192726 0.981253i \(-0.561733\pi\)
−0.192726 + 0.981253i \(0.561733\pi\)
\(42\) 0 0
\(43\) 5.86496 0.894398 0.447199 0.894435i \(-0.352422\pi\)
0.447199 + 0.894435i \(0.352422\pi\)
\(44\) 5.77573 0.870724
\(45\) 0 0
\(46\) 5.17399 0.762864
\(47\) 9.50969 1.38713 0.693565 0.720394i \(-0.256039\pi\)
0.693565 + 0.720394i \(0.256039\pi\)
\(48\) 0 0
\(49\) −0.419304 −0.0599006
\(50\) 3.88265 0.549089
\(51\) 0 0
\(52\) −0.953732 −0.132259
\(53\) 7.51226 1.03189 0.515944 0.856622i \(-0.327441\pi\)
0.515944 + 0.856622i \(0.327441\pi\)
\(54\) 0 0
\(55\) −17.2139 −2.32112
\(56\) −2.56529 −0.342801
\(57\) 0 0
\(58\) −4.63236 −0.608259
\(59\) 1.01485 0.132122 0.0660610 0.997816i \(-0.478957\pi\)
0.0660610 + 0.997816i \(0.478957\pi\)
\(60\) 0 0
\(61\) −5.86716 −0.751212 −0.375606 0.926779i \(-0.622565\pi\)
−0.375606 + 0.926779i \(0.622565\pi\)
\(62\) 8.16921 1.03749
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.84248 0.352566
\(66\) 0 0
\(67\) 12.1288 1.48177 0.740883 0.671634i \(-0.234407\pi\)
0.740883 + 0.671634i \(0.234407\pi\)
\(68\) −2.51668 −0.305193
\(69\) 0 0
\(70\) 7.64552 0.913815
\(71\) 12.3537 1.46611 0.733057 0.680167i \(-0.238093\pi\)
0.733057 + 0.680167i \(0.238093\pi\)
\(72\) 0 0
\(73\) 0.650878 0.0761795 0.0380897 0.999274i \(-0.487873\pi\)
0.0380897 + 0.999274i \(0.487873\pi\)
\(74\) −9.43775 −1.09712
\(75\) 0 0
\(76\) −7.19922 −0.825807
\(77\) −14.8164 −1.68849
\(78\) 0 0
\(79\) 15.5158 1.74567 0.872834 0.488018i \(-0.162280\pi\)
0.872834 + 0.488018i \(0.162280\pi\)
\(80\) −2.98038 −0.333216
\(81\) 0 0
\(82\) −2.46810 −0.272556
\(83\) 8.27171 0.907939 0.453969 0.891017i \(-0.350008\pi\)
0.453969 + 0.891017i \(0.350008\pi\)
\(84\) 0 0
\(85\) 7.50067 0.813562
\(86\) 5.86496 0.632435
\(87\) 0 0
\(88\) 5.77573 0.615695
\(89\) −2.89852 −0.307242 −0.153621 0.988130i \(-0.549093\pi\)
−0.153621 + 0.988130i \(0.549093\pi\)
\(90\) 0 0
\(91\) 2.44660 0.256473
\(92\) 5.17399 0.539426
\(93\) 0 0
\(94\) 9.50969 0.980850
\(95\) 21.4564 2.20138
\(96\) 0 0
\(97\) 0.956247 0.0970922 0.0485461 0.998821i \(-0.484541\pi\)
0.0485461 + 0.998821i \(0.484541\pi\)
\(98\) −0.419304 −0.0423561
\(99\) 0 0
\(100\) 3.88265 0.388265
\(101\) −5.92549 −0.589608 −0.294804 0.955558i \(-0.595254\pi\)
−0.294804 + 0.955558i \(0.595254\pi\)
\(102\) 0 0
\(103\) −7.57015 −0.745909 −0.372955 0.927850i \(-0.621655\pi\)
−0.372955 + 0.927850i \(0.621655\pi\)
\(104\) −0.953732 −0.0935211
\(105\) 0 0
\(106\) 7.51226 0.729655
\(107\) −16.0455 −1.55118 −0.775589 0.631238i \(-0.782547\pi\)
−0.775589 + 0.631238i \(0.782547\pi\)
\(108\) 0 0
\(109\) 2.50942 0.240359 0.120179 0.992752i \(-0.461653\pi\)
0.120179 + 0.992752i \(0.461653\pi\)
\(110\) −17.2139 −1.64128
\(111\) 0 0
\(112\) −2.56529 −0.242397
\(113\) 13.4589 1.26611 0.633055 0.774107i \(-0.281801\pi\)
0.633055 + 0.774107i \(0.281801\pi\)
\(114\) 0 0
\(115\) −15.4205 −1.43796
\(116\) −4.63236 −0.430104
\(117\) 0 0
\(118\) 1.01485 0.0934244
\(119\) 6.45602 0.591822
\(120\) 0 0
\(121\) 22.3591 2.03264
\(122\) −5.86716 −0.531187
\(123\) 0 0
\(124\) 8.16921 0.733617
\(125\) 3.33013 0.297856
\(126\) 0 0
\(127\) 2.35435 0.208915 0.104458 0.994529i \(-0.466689\pi\)
0.104458 + 0.994529i \(0.466689\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 2.84248 0.249302
\(131\) −8.14252 −0.711415 −0.355708 0.934597i \(-0.615760\pi\)
−0.355708 + 0.934597i \(0.615760\pi\)
\(132\) 0 0
\(133\) 18.4681 1.60138
\(134\) 12.1288 1.04777
\(135\) 0 0
\(136\) −2.51668 −0.215804
\(137\) 13.5630 1.15876 0.579382 0.815056i \(-0.303294\pi\)
0.579382 + 0.815056i \(0.303294\pi\)
\(138\) 0 0
\(139\) −17.6145 −1.49405 −0.747023 0.664798i \(-0.768518\pi\)
−0.747023 + 0.664798i \(0.768518\pi\)
\(140\) 7.64552 0.646165
\(141\) 0 0
\(142\) 12.3537 1.03670
\(143\) −5.50850 −0.460644
\(144\) 0 0
\(145\) 13.8062 1.14654
\(146\) 0.650878 0.0538670
\(147\) 0 0
\(148\) −9.43775 −0.775778
\(149\) −4.73354 −0.387787 −0.193893 0.981023i \(-0.562112\pi\)
−0.193893 + 0.981023i \(0.562112\pi\)
\(150\) 0 0
\(151\) 18.5426 1.50897 0.754486 0.656316i \(-0.227886\pi\)
0.754486 + 0.656316i \(0.227886\pi\)
\(152\) −7.19922 −0.583934
\(153\) 0 0
\(154\) −14.8164 −1.19394
\(155\) −24.3473 −1.95562
\(156\) 0 0
\(157\) 6.62583 0.528799 0.264399 0.964413i \(-0.414826\pi\)
0.264399 + 0.964413i \(0.414826\pi\)
\(158\) 15.5158 1.23437
\(159\) 0 0
\(160\) −2.98038 −0.235620
\(161\) −13.2728 −1.04604
\(162\) 0 0
\(163\) −7.35217 −0.575867 −0.287933 0.957650i \(-0.592968\pi\)
−0.287933 + 0.957650i \(0.592968\pi\)
\(164\) −2.46810 −0.192726
\(165\) 0 0
\(166\) 8.27171 0.642010
\(167\) 18.4854 1.43045 0.715223 0.698896i \(-0.246325\pi\)
0.715223 + 0.698896i \(0.246325\pi\)
\(168\) 0 0
\(169\) −12.0904 −0.930030
\(170\) 7.50067 0.575275
\(171\) 0 0
\(172\) 5.86496 0.447199
\(173\) 15.2035 1.15590 0.577951 0.816071i \(-0.303852\pi\)
0.577951 + 0.816071i \(0.303852\pi\)
\(174\) 0 0
\(175\) −9.96011 −0.752913
\(176\) 5.77573 0.435362
\(177\) 0 0
\(178\) −2.89852 −0.217253
\(179\) 8.92937 0.667412 0.333706 0.942677i \(-0.391701\pi\)
0.333706 + 0.942677i \(0.391701\pi\)
\(180\) 0 0
\(181\) 8.96265 0.666189 0.333094 0.942894i \(-0.391907\pi\)
0.333094 + 0.942894i \(0.391907\pi\)
\(182\) 2.44660 0.181354
\(183\) 0 0
\(184\) 5.17399 0.381432
\(185\) 28.1280 2.06802
\(186\) 0 0
\(187\) −14.5357 −1.06295
\(188\) 9.50969 0.693565
\(189\) 0 0
\(190\) 21.4564 1.55661
\(191\) 2.71179 0.196218 0.0981091 0.995176i \(-0.468721\pi\)
0.0981091 + 0.995176i \(0.468721\pi\)
\(192\) 0 0
\(193\) −10.4616 −0.753042 −0.376521 0.926408i \(-0.622880\pi\)
−0.376521 + 0.926408i \(0.622880\pi\)
\(194\) 0.956247 0.0686545
\(195\) 0 0
\(196\) −0.419304 −0.0299503
\(197\) 8.17270 0.582280 0.291140 0.956680i \(-0.405965\pi\)
0.291140 + 0.956680i \(0.405965\pi\)
\(198\) 0 0
\(199\) 23.4576 1.66287 0.831433 0.555625i \(-0.187521\pi\)
0.831433 + 0.555625i \(0.187521\pi\)
\(200\) 3.88265 0.274545
\(201\) 0 0
\(202\) −5.92549 −0.416916
\(203\) 11.8833 0.834047
\(204\) 0 0
\(205\) 7.35587 0.513757
\(206\) −7.57015 −0.527437
\(207\) 0 0
\(208\) −0.953732 −0.0661294
\(209\) −41.5807 −2.87620
\(210\) 0 0
\(211\) 23.7236 1.63320 0.816600 0.577203i \(-0.195856\pi\)
0.816600 + 0.577203i \(0.195856\pi\)
\(212\) 7.51226 0.515944
\(213\) 0 0
\(214\) −16.0455 −1.09685
\(215\) −17.4798 −1.19211
\(216\) 0 0
\(217\) −20.9564 −1.42261
\(218\) 2.50942 0.169959
\(219\) 0 0
\(220\) −17.2139 −1.16056
\(221\) 2.40024 0.161458
\(222\) 0 0
\(223\) −4.63802 −0.310585 −0.155292 0.987869i \(-0.549632\pi\)
−0.155292 + 0.987869i \(0.549632\pi\)
\(224\) −2.56529 −0.171400
\(225\) 0 0
\(226\) 13.4589 0.895274
\(227\) −2.30295 −0.152852 −0.0764261 0.997075i \(-0.524351\pi\)
−0.0764261 + 0.997075i \(0.524351\pi\)
\(228\) 0 0
\(229\) 1.98890 0.131430 0.0657150 0.997838i \(-0.479067\pi\)
0.0657150 + 0.997838i \(0.479067\pi\)
\(230\) −15.4205 −1.01679
\(231\) 0 0
\(232\) −4.63236 −0.304129
\(233\) −5.58928 −0.366166 −0.183083 0.983097i \(-0.558608\pi\)
−0.183083 + 0.983097i \(0.558608\pi\)
\(234\) 0 0
\(235\) −28.3425 −1.84886
\(236\) 1.01485 0.0660610
\(237\) 0 0
\(238\) 6.45602 0.418481
\(239\) 3.34553 0.216404 0.108202 0.994129i \(-0.465491\pi\)
0.108202 + 0.994129i \(0.465491\pi\)
\(240\) 0 0
\(241\) 26.7139 1.72079 0.860395 0.509627i \(-0.170217\pi\)
0.860395 + 0.509627i \(0.170217\pi\)
\(242\) 22.3591 1.43729
\(243\) 0 0
\(244\) −5.86716 −0.375606
\(245\) 1.24968 0.0798394
\(246\) 0 0
\(247\) 6.86613 0.436881
\(248\) 8.16921 0.518745
\(249\) 0 0
\(250\) 3.33013 0.210616
\(251\) 29.3076 1.84988 0.924940 0.380112i \(-0.124115\pi\)
0.924940 + 0.380112i \(0.124115\pi\)
\(252\) 0 0
\(253\) 29.8836 1.87877
\(254\) 2.35435 0.147725
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.3803 −0.647504 −0.323752 0.946142i \(-0.604944\pi\)
−0.323752 + 0.946142i \(0.604944\pi\)
\(258\) 0 0
\(259\) 24.2105 1.50437
\(260\) 2.84248 0.176283
\(261\) 0 0
\(262\) −8.14252 −0.503046
\(263\) 8.83916 0.545046 0.272523 0.962149i \(-0.412142\pi\)
0.272523 + 0.962149i \(0.412142\pi\)
\(264\) 0 0
\(265\) −22.3894 −1.37537
\(266\) 18.4681 1.13235
\(267\) 0 0
\(268\) 12.1288 0.740883
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) 7.39604 0.449277 0.224639 0.974442i \(-0.427880\pi\)
0.224639 + 0.974442i \(0.427880\pi\)
\(272\) −2.51668 −0.152596
\(273\) 0 0
\(274\) 13.5630 0.819370
\(275\) 22.4251 1.35229
\(276\) 0 0
\(277\) 13.5773 0.815779 0.407890 0.913031i \(-0.366265\pi\)
0.407890 + 0.913031i \(0.366265\pi\)
\(278\) −17.6145 −1.05645
\(279\) 0 0
\(280\) 7.64552 0.456907
\(281\) −13.5723 −0.809653 −0.404826 0.914394i \(-0.632668\pi\)
−0.404826 + 0.914394i \(0.632668\pi\)
\(282\) 0 0
\(283\) 20.5026 1.21875 0.609377 0.792880i \(-0.291419\pi\)
0.609377 + 0.792880i \(0.291419\pi\)
\(284\) 12.3537 0.733057
\(285\) 0 0
\(286\) −5.50850 −0.325724
\(287\) 6.33139 0.373730
\(288\) 0 0
\(289\) −10.6663 −0.627430
\(290\) 13.8062 0.810727
\(291\) 0 0
\(292\) 0.650878 0.0380897
\(293\) 26.0133 1.51971 0.759857 0.650090i \(-0.225269\pi\)
0.759857 + 0.650090i \(0.225269\pi\)
\(294\) 0 0
\(295\) −3.02463 −0.176101
\(296\) −9.43775 −0.548558
\(297\) 0 0
\(298\) −4.73354 −0.274207
\(299\) −4.93460 −0.285376
\(300\) 0 0
\(301\) −15.0453 −0.867197
\(302\) 18.5426 1.06700
\(303\) 0 0
\(304\) −7.19922 −0.412903
\(305\) 17.4863 1.00126
\(306\) 0 0
\(307\) −17.3993 −0.993031 −0.496516 0.868028i \(-0.665387\pi\)
−0.496516 + 0.868028i \(0.665387\pi\)
\(308\) −14.8164 −0.844243
\(309\) 0 0
\(310\) −24.3473 −1.38284
\(311\) 13.4740 0.764038 0.382019 0.924155i \(-0.375229\pi\)
0.382019 + 0.924155i \(0.375229\pi\)
\(312\) 0 0
\(313\) −9.89195 −0.559126 −0.279563 0.960127i \(-0.590190\pi\)
−0.279563 + 0.960127i \(0.590190\pi\)
\(314\) 6.62583 0.373917
\(315\) 0 0
\(316\) 15.5158 0.872834
\(317\) −19.2200 −1.07950 −0.539751 0.841825i \(-0.681482\pi\)
−0.539751 + 0.841825i \(0.681482\pi\)
\(318\) 0 0
\(319\) −26.7553 −1.49801
\(320\) −2.98038 −0.166608
\(321\) 0 0
\(322\) −13.2728 −0.739663
\(323\) 18.1182 1.00812
\(324\) 0 0
\(325\) −3.70301 −0.205406
\(326\) −7.35217 −0.407199
\(327\) 0 0
\(328\) −2.46810 −0.136278
\(329\) −24.3951 −1.34494
\(330\) 0 0
\(331\) −10.6168 −0.583550 −0.291775 0.956487i \(-0.594246\pi\)
−0.291775 + 0.956487i \(0.594246\pi\)
\(332\) 8.27171 0.453969
\(333\) 0 0
\(334\) 18.4854 1.01148
\(335\) −36.1483 −1.97499
\(336\) 0 0
\(337\) −4.73621 −0.257998 −0.128999 0.991645i \(-0.541176\pi\)
−0.128999 + 0.991645i \(0.541176\pi\)
\(338\) −12.0904 −0.657631
\(339\) 0 0
\(340\) 7.50067 0.406781
\(341\) 47.1832 2.55511
\(342\) 0 0
\(343\) 19.0326 1.02767
\(344\) 5.86496 0.316217
\(345\) 0 0
\(346\) 15.2035 0.817346
\(347\) 9.70333 0.520902 0.260451 0.965487i \(-0.416129\pi\)
0.260451 + 0.965487i \(0.416129\pi\)
\(348\) 0 0
\(349\) −34.9874 −1.87283 −0.936416 0.350893i \(-0.885878\pi\)
−0.936416 + 0.350893i \(0.885878\pi\)
\(350\) −9.96011 −0.532390
\(351\) 0 0
\(352\) 5.77573 0.307847
\(353\) −17.9950 −0.957777 −0.478888 0.877876i \(-0.658960\pi\)
−0.478888 + 0.877876i \(0.658960\pi\)
\(354\) 0 0
\(355\) −36.8187 −1.95413
\(356\) −2.89852 −0.153621
\(357\) 0 0
\(358\) 8.92937 0.471932
\(359\) 8.64349 0.456186 0.228093 0.973639i \(-0.426751\pi\)
0.228093 + 0.973639i \(0.426751\pi\)
\(360\) 0 0
\(361\) 32.8287 1.72783
\(362\) 8.96265 0.471067
\(363\) 0 0
\(364\) 2.44660 0.128236
\(365\) −1.93986 −0.101537
\(366\) 0 0
\(367\) −25.4599 −1.32899 −0.664497 0.747291i \(-0.731354\pi\)
−0.664497 + 0.747291i \(0.731354\pi\)
\(368\) 5.17399 0.269713
\(369\) 0 0
\(370\) 28.1280 1.46231
\(371\) −19.2711 −1.00051
\(372\) 0 0
\(373\) −5.63673 −0.291859 −0.145929 0.989295i \(-0.546617\pi\)
−0.145929 + 0.989295i \(0.546617\pi\)
\(374\) −14.5357 −0.751622
\(375\) 0 0
\(376\) 9.50969 0.490425
\(377\) 4.41803 0.227540
\(378\) 0 0
\(379\) −16.2741 −0.835944 −0.417972 0.908460i \(-0.637259\pi\)
−0.417972 + 0.908460i \(0.637259\pi\)
\(380\) 21.4564 1.10069
\(381\) 0 0
\(382\) 2.71179 0.138747
\(383\) −17.3292 −0.885483 −0.442742 0.896649i \(-0.645994\pi\)
−0.442742 + 0.896649i \(0.645994\pi\)
\(384\) 0 0
\(385\) 44.1585 2.25052
\(386\) −10.4616 −0.532481
\(387\) 0 0
\(388\) 0.956247 0.0485461
\(389\) −32.7406 −1.66002 −0.830008 0.557752i \(-0.811664\pi\)
−0.830008 + 0.557752i \(0.811664\pi\)
\(390\) 0 0
\(391\) −13.0213 −0.658516
\(392\) −0.419304 −0.0211781
\(393\) 0 0
\(394\) 8.17270 0.411734
\(395\) −46.2430 −2.32674
\(396\) 0 0
\(397\) −10.1894 −0.511392 −0.255696 0.966757i \(-0.582305\pi\)
−0.255696 + 0.966757i \(0.582305\pi\)
\(398\) 23.4576 1.17582
\(399\) 0 0
\(400\) 3.88265 0.194132
\(401\) −27.6214 −1.37935 −0.689673 0.724121i \(-0.742246\pi\)
−0.689673 + 0.724121i \(0.742246\pi\)
\(402\) 0 0
\(403\) −7.79124 −0.388109
\(404\) −5.92549 −0.294804
\(405\) 0 0
\(406\) 11.8833 0.589760
\(407\) −54.5099 −2.70195
\(408\) 0 0
\(409\) −32.3617 −1.60018 −0.800092 0.599877i \(-0.795216\pi\)
−0.800092 + 0.599877i \(0.795216\pi\)
\(410\) 7.35587 0.363281
\(411\) 0 0
\(412\) −7.57015 −0.372955
\(413\) −2.60338 −0.128104
\(414\) 0 0
\(415\) −24.6528 −1.21016
\(416\) −0.953732 −0.0467606
\(417\) 0 0
\(418\) −41.5807 −2.03378
\(419\) 20.7391 1.01317 0.506586 0.862189i \(-0.330907\pi\)
0.506586 + 0.862189i \(0.330907\pi\)
\(420\) 0 0
\(421\) −2.74188 −0.133631 −0.0668155 0.997765i \(-0.521284\pi\)
−0.0668155 + 0.997765i \(0.521284\pi\)
\(422\) 23.7236 1.15485
\(423\) 0 0
\(424\) 7.51226 0.364828
\(425\) −9.77140 −0.473983
\(426\) 0 0
\(427\) 15.0509 0.728366
\(428\) −16.0455 −0.775589
\(429\) 0 0
\(430\) −17.4798 −0.842950
\(431\) 1.93294 0.0931065 0.0465533 0.998916i \(-0.485176\pi\)
0.0465533 + 0.998916i \(0.485176\pi\)
\(432\) 0 0
\(433\) 4.35794 0.209429 0.104715 0.994502i \(-0.466607\pi\)
0.104715 + 0.994502i \(0.466607\pi\)
\(434\) −20.9564 −1.00594
\(435\) 0 0
\(436\) 2.50942 0.120179
\(437\) −37.2487 −1.78185
\(438\) 0 0
\(439\) 8.19465 0.391109 0.195555 0.980693i \(-0.437349\pi\)
0.195555 + 0.980693i \(0.437349\pi\)
\(440\) −17.2139 −0.820638
\(441\) 0 0
\(442\) 2.40024 0.114168
\(443\) 5.51425 0.261990 0.130995 0.991383i \(-0.458183\pi\)
0.130995 + 0.991383i \(0.458183\pi\)
\(444\) 0 0
\(445\) 8.63867 0.409512
\(446\) −4.63802 −0.219616
\(447\) 0 0
\(448\) −2.56529 −0.121198
\(449\) 19.1545 0.903956 0.451978 0.892029i \(-0.350719\pi\)
0.451978 + 0.892029i \(0.350719\pi\)
\(450\) 0 0
\(451\) −14.2551 −0.671246
\(452\) 13.4589 0.633055
\(453\) 0 0
\(454\) −2.30295 −0.108083
\(455\) −7.29178 −0.341844
\(456\) 0 0
\(457\) −41.6610 −1.94882 −0.974409 0.224783i \(-0.927833\pi\)
−0.974409 + 0.224783i \(0.927833\pi\)
\(458\) 1.98890 0.0929350
\(459\) 0 0
\(460\) −15.4205 −0.718982
\(461\) −28.7942 −1.34108 −0.670539 0.741874i \(-0.733937\pi\)
−0.670539 + 0.741874i \(0.733937\pi\)
\(462\) 0 0
\(463\) 1.89638 0.0881321 0.0440660 0.999029i \(-0.485969\pi\)
0.0440660 + 0.999029i \(0.485969\pi\)
\(464\) −4.63236 −0.215052
\(465\) 0 0
\(466\) −5.58928 −0.258918
\(467\) 9.53499 0.441227 0.220613 0.975361i \(-0.429194\pi\)
0.220613 + 0.975361i \(0.429194\pi\)
\(468\) 0 0
\(469\) −31.1138 −1.43670
\(470\) −28.3425 −1.30734
\(471\) 0 0
\(472\) 1.01485 0.0467122
\(473\) 33.8744 1.55755
\(474\) 0 0
\(475\) −27.9520 −1.28253
\(476\) 6.45602 0.295911
\(477\) 0 0
\(478\) 3.34553 0.153021
\(479\) −11.2845 −0.515602 −0.257801 0.966198i \(-0.582998\pi\)
−0.257801 + 0.966198i \(0.582998\pi\)
\(480\) 0 0
\(481\) 9.00108 0.410414
\(482\) 26.7139 1.21678
\(483\) 0 0
\(484\) 22.3591 1.01632
\(485\) −2.84998 −0.129411
\(486\) 0 0
\(487\) 13.3515 0.605014 0.302507 0.953147i \(-0.402176\pi\)
0.302507 + 0.953147i \(0.402176\pi\)
\(488\) −5.86716 −0.265594
\(489\) 0 0
\(490\) 1.24968 0.0564550
\(491\) −37.9516 −1.71273 −0.856365 0.516370i \(-0.827283\pi\)
−0.856365 + 0.516370i \(0.827283\pi\)
\(492\) 0 0
\(493\) 11.6582 0.525058
\(494\) 6.86613 0.308922
\(495\) 0 0
\(496\) 8.16921 0.366808
\(497\) −31.6908 −1.42153
\(498\) 0 0
\(499\) −27.6365 −1.23718 −0.618590 0.785714i \(-0.712296\pi\)
−0.618590 + 0.785714i \(0.712296\pi\)
\(500\) 3.33013 0.148928
\(501\) 0 0
\(502\) 29.3076 1.30806
\(503\) −20.9442 −0.933855 −0.466927 0.884296i \(-0.654639\pi\)
−0.466927 + 0.884296i \(0.654639\pi\)
\(504\) 0 0
\(505\) 17.6602 0.785868
\(506\) 29.8836 1.32849
\(507\) 0 0
\(508\) 2.35435 0.104458
\(509\) 25.5377 1.13194 0.565969 0.824426i \(-0.308502\pi\)
0.565969 + 0.824426i \(0.308502\pi\)
\(510\) 0 0
\(511\) −1.66969 −0.0738627
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −10.3803 −0.457854
\(515\) 22.5619 0.994197
\(516\) 0 0
\(517\) 54.9254 2.41562
\(518\) 24.2105 1.06375
\(519\) 0 0
\(520\) 2.84248 0.124651
\(521\) 38.8849 1.70358 0.851788 0.523886i \(-0.175518\pi\)
0.851788 + 0.523886i \(0.175518\pi\)
\(522\) 0 0
\(523\) −25.0299 −1.09448 −0.547240 0.836976i \(-0.684321\pi\)
−0.547240 + 0.836976i \(0.684321\pi\)
\(524\) −8.14252 −0.355708
\(525\) 0 0
\(526\) 8.83916 0.385406
\(527\) −20.5593 −0.895578
\(528\) 0 0
\(529\) 3.77022 0.163922
\(530\) −22.3894 −0.972532
\(531\) 0 0
\(532\) 18.4681 0.800692
\(533\) 2.35391 0.101959
\(534\) 0 0
\(535\) 47.8217 2.06751
\(536\) 12.1288 0.523883
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) −2.42179 −0.104314
\(540\) 0 0
\(541\) 0.997803 0.0428989 0.0214494 0.999770i \(-0.493172\pi\)
0.0214494 + 0.999770i \(0.493172\pi\)
\(542\) 7.39604 0.317687
\(543\) 0 0
\(544\) −2.51668 −0.107902
\(545\) −7.47902 −0.320366
\(546\) 0 0
\(547\) −15.8011 −0.675608 −0.337804 0.941217i \(-0.609684\pi\)
−0.337804 + 0.941217i \(0.609684\pi\)
\(548\) 13.5630 0.579382
\(549\) 0 0
\(550\) 22.4251 0.956211
\(551\) 33.3494 1.42073
\(552\) 0 0
\(553\) −39.8026 −1.69258
\(554\) 13.5773 0.576843
\(555\) 0 0
\(556\) −17.6145 −0.747023
\(557\) 36.3525 1.54031 0.770153 0.637860i \(-0.220180\pi\)
0.770153 + 0.637860i \(0.220180\pi\)
\(558\) 0 0
\(559\) −5.59360 −0.236584
\(560\) 7.64552 0.323082
\(561\) 0 0
\(562\) −13.5723 −0.572511
\(563\) 20.1622 0.849736 0.424868 0.905255i \(-0.360320\pi\)
0.424868 + 0.905255i \(0.360320\pi\)
\(564\) 0 0
\(565\) −40.1127 −1.68755
\(566\) 20.5026 0.861790
\(567\) 0 0
\(568\) 12.3537 0.518349
\(569\) 16.0424 0.672530 0.336265 0.941767i \(-0.390836\pi\)
0.336265 + 0.941767i \(0.390836\pi\)
\(570\) 0 0
\(571\) −32.2187 −1.34831 −0.674156 0.738589i \(-0.735493\pi\)
−0.674156 + 0.738589i \(0.735493\pi\)
\(572\) −5.50850 −0.230322
\(573\) 0 0
\(574\) 6.33139 0.264267
\(575\) 20.0888 0.837761
\(576\) 0 0
\(577\) 42.6582 1.77589 0.887943 0.459954i \(-0.152134\pi\)
0.887943 + 0.459954i \(0.152134\pi\)
\(578\) −10.6663 −0.443660
\(579\) 0 0
\(580\) 13.8062 0.573271
\(581\) −21.2193 −0.880326
\(582\) 0 0
\(583\) 43.3888 1.79698
\(584\) 0.650878 0.0269335
\(585\) 0 0
\(586\) 26.0133 1.07460
\(587\) 13.8741 0.572646 0.286323 0.958133i \(-0.407567\pi\)
0.286323 + 0.958133i \(0.407567\pi\)
\(588\) 0 0
\(589\) −58.8119 −2.42330
\(590\) −3.02463 −0.124522
\(591\) 0 0
\(592\) −9.43775 −0.387889
\(593\) −33.6435 −1.38157 −0.690786 0.723059i \(-0.742735\pi\)
−0.690786 + 0.723059i \(0.742735\pi\)
\(594\) 0 0
\(595\) −19.2414 −0.788819
\(596\) −4.73354 −0.193893
\(597\) 0 0
\(598\) −4.93460 −0.201791
\(599\) −12.8677 −0.525761 −0.262881 0.964828i \(-0.584673\pi\)
−0.262881 + 0.964828i \(0.584673\pi\)
\(600\) 0 0
\(601\) 17.2785 0.704804 0.352402 0.935849i \(-0.385365\pi\)
0.352402 + 0.935849i \(0.385365\pi\)
\(602\) −15.0453 −0.613201
\(603\) 0 0
\(604\) 18.5426 0.754486
\(605\) −66.6384 −2.70924
\(606\) 0 0
\(607\) −36.7366 −1.49109 −0.745547 0.666453i \(-0.767812\pi\)
−0.745547 + 0.666453i \(0.767812\pi\)
\(608\) −7.19922 −0.291967
\(609\) 0 0
\(610\) 17.4863 0.708001
\(611\) −9.06970 −0.366921
\(612\) 0 0
\(613\) −35.5029 −1.43395 −0.716975 0.697099i \(-0.754474\pi\)
−0.716975 + 0.697099i \(0.754474\pi\)
\(614\) −17.3993 −0.702179
\(615\) 0 0
\(616\) −14.8164 −0.596970
\(617\) −5.97403 −0.240505 −0.120253 0.992743i \(-0.538370\pi\)
−0.120253 + 0.992743i \(0.538370\pi\)
\(618\) 0 0
\(619\) 1.54631 0.0621513 0.0310757 0.999517i \(-0.490107\pi\)
0.0310757 + 0.999517i \(0.490107\pi\)
\(620\) −24.3473 −0.977812
\(621\) 0 0
\(622\) 13.4740 0.540256
\(623\) 7.43552 0.297898
\(624\) 0 0
\(625\) −29.3383 −1.17353
\(626\) −9.89195 −0.395362
\(627\) 0 0
\(628\) 6.62583 0.264399
\(629\) 23.7518 0.947047
\(630\) 0 0
\(631\) 33.5953 1.33741 0.668705 0.743528i \(-0.266849\pi\)
0.668705 + 0.743528i \(0.266849\pi\)
\(632\) 15.5158 0.617187
\(633\) 0 0
\(634\) −19.2200 −0.763324
\(635\) −7.01686 −0.278456
\(636\) 0 0
\(637\) 0.399904 0.0158448
\(638\) −26.7553 −1.05925
\(639\) 0 0
\(640\) −2.98038 −0.117810
\(641\) −22.6820 −0.895884 −0.447942 0.894063i \(-0.647843\pi\)
−0.447942 + 0.894063i \(0.647843\pi\)
\(642\) 0 0
\(643\) 35.9742 1.41868 0.709341 0.704865i \(-0.248993\pi\)
0.709341 + 0.704865i \(0.248993\pi\)
\(644\) −13.2728 −0.523021
\(645\) 0 0
\(646\) 18.1182 0.712849
\(647\) 29.8868 1.17497 0.587485 0.809235i \(-0.300118\pi\)
0.587485 + 0.809235i \(0.300118\pi\)
\(648\) 0 0
\(649\) 5.86149 0.230084
\(650\) −3.70301 −0.145244
\(651\) 0 0
\(652\) −7.35217 −0.287933
\(653\) 48.1187 1.88303 0.941516 0.336968i \(-0.109402\pi\)
0.941516 + 0.336968i \(0.109402\pi\)
\(654\) 0 0
\(655\) 24.2678 0.948220
\(656\) −2.46810 −0.0963632
\(657\) 0 0
\(658\) −24.3951 −0.951019
\(659\) 27.3372 1.06491 0.532454 0.846459i \(-0.321270\pi\)
0.532454 + 0.846459i \(0.321270\pi\)
\(660\) 0 0
\(661\) −20.6868 −0.804623 −0.402311 0.915503i \(-0.631793\pi\)
−0.402311 + 0.915503i \(0.631793\pi\)
\(662\) −10.6168 −0.412632
\(663\) 0 0
\(664\) 8.27171 0.321005
\(665\) −55.0418 −2.13443
\(666\) 0 0
\(667\) −23.9678 −0.928037
\(668\) 18.4854 0.715223
\(669\) 0 0
\(670\) −36.1483 −1.39653
\(671\) −33.8871 −1.30820
\(672\) 0 0
\(673\) −3.68048 −0.141872 −0.0709360 0.997481i \(-0.522599\pi\)
−0.0709360 + 0.997481i \(0.522599\pi\)
\(674\) −4.73621 −0.182432
\(675\) 0 0
\(676\) −12.0904 −0.465015
\(677\) 17.3358 0.666268 0.333134 0.942880i \(-0.391894\pi\)
0.333134 + 0.942880i \(0.391894\pi\)
\(678\) 0 0
\(679\) −2.45305 −0.0941393
\(680\) 7.50067 0.287637
\(681\) 0 0
\(682\) 47.1832 1.80674
\(683\) −2.26489 −0.0866636 −0.0433318 0.999061i \(-0.513797\pi\)
−0.0433318 + 0.999061i \(0.513797\pi\)
\(684\) 0 0
\(685\) −40.4228 −1.54448
\(686\) 19.0326 0.726670
\(687\) 0 0
\(688\) 5.86496 0.223599
\(689\) −7.16468 −0.272953
\(690\) 0 0
\(691\) −34.9262 −1.32865 −0.664327 0.747442i \(-0.731282\pi\)
−0.664327 + 0.747442i \(0.731282\pi\)
\(692\) 15.2035 0.577951
\(693\) 0 0
\(694\) 9.70333 0.368333
\(695\) 52.4980 1.99136
\(696\) 0 0
\(697\) 6.21143 0.235275
\(698\) −34.9874 −1.32429
\(699\) 0 0
\(700\) −9.96011 −0.376457
\(701\) 8.67601 0.327688 0.163844 0.986486i \(-0.447611\pi\)
0.163844 + 0.986486i \(0.447611\pi\)
\(702\) 0 0
\(703\) 67.9444 2.56257
\(704\) 5.77573 0.217681
\(705\) 0 0
\(706\) −17.9950 −0.677251
\(707\) 15.2006 0.571676
\(708\) 0 0
\(709\) −52.4850 −1.97111 −0.985557 0.169342i \(-0.945836\pi\)
−0.985557 + 0.169342i \(0.945836\pi\)
\(710\) −36.8187 −1.38178
\(711\) 0 0
\(712\) −2.89852 −0.108626
\(713\) 42.2675 1.58293
\(714\) 0 0
\(715\) 16.4174 0.613976
\(716\) 8.92937 0.333706
\(717\) 0 0
\(718\) 8.64349 0.322572
\(719\) −12.2225 −0.455822 −0.227911 0.973682i \(-0.573190\pi\)
−0.227911 + 0.973682i \(0.573190\pi\)
\(720\) 0 0
\(721\) 19.4196 0.723224
\(722\) 32.8287 1.22176
\(723\) 0 0
\(724\) 8.96265 0.333094
\(725\) −17.9858 −0.667977
\(726\) 0 0
\(727\) 32.8117 1.21692 0.608460 0.793585i \(-0.291788\pi\)
0.608460 + 0.793585i \(0.291788\pi\)
\(728\) 2.44660 0.0906769
\(729\) 0 0
\(730\) −1.93986 −0.0717975
\(731\) −14.7602 −0.545927
\(732\) 0 0
\(733\) −11.8567 −0.437937 −0.218968 0.975732i \(-0.570269\pi\)
−0.218968 + 0.975732i \(0.570269\pi\)
\(734\) −25.4599 −0.939741
\(735\) 0 0
\(736\) 5.17399 0.190716
\(737\) 70.0525 2.58042
\(738\) 0 0
\(739\) 23.7096 0.872173 0.436086 0.899905i \(-0.356364\pi\)
0.436086 + 0.899905i \(0.356364\pi\)
\(740\) 28.1280 1.03401
\(741\) 0 0
\(742\) −19.2711 −0.707464
\(743\) −16.3166 −0.598600 −0.299300 0.954159i \(-0.596753\pi\)
−0.299300 + 0.954159i \(0.596753\pi\)
\(744\) 0 0
\(745\) 14.1077 0.516867
\(746\) −5.63673 −0.206375
\(747\) 0 0
\(748\) −14.5357 −0.531477
\(749\) 41.1613 1.50400
\(750\) 0 0
\(751\) 30.5188 1.11365 0.556824 0.830630i \(-0.312020\pi\)
0.556824 + 0.830630i \(0.312020\pi\)
\(752\) 9.50969 0.346783
\(753\) 0 0
\(754\) 4.41803 0.160895
\(755\) −55.2639 −2.01126
\(756\) 0 0
\(757\) 21.0756 0.766007 0.383003 0.923747i \(-0.374890\pi\)
0.383003 + 0.923747i \(0.374890\pi\)
\(758\) −16.2741 −0.591101
\(759\) 0 0
\(760\) 21.4564 0.778305
\(761\) 9.37156 0.339719 0.169859 0.985468i \(-0.445669\pi\)
0.169859 + 0.985468i \(0.445669\pi\)
\(762\) 0 0
\(763\) −6.43738 −0.233049
\(764\) 2.71179 0.0981091
\(765\) 0 0
\(766\) −17.3292 −0.626131
\(767\) −0.967894 −0.0349486
\(768\) 0 0
\(769\) 26.9367 0.971363 0.485681 0.874136i \(-0.338572\pi\)
0.485681 + 0.874136i \(0.338572\pi\)
\(770\) 44.1585 1.59136
\(771\) 0 0
\(772\) −10.4616 −0.376521
\(773\) 14.7111 0.529121 0.264560 0.964369i \(-0.414773\pi\)
0.264560 + 0.964369i \(0.414773\pi\)
\(774\) 0 0
\(775\) 31.7182 1.13935
\(776\) 0.956247 0.0343273
\(777\) 0 0
\(778\) −32.7406 −1.17381
\(779\) 17.7684 0.636619
\(780\) 0 0
\(781\) 71.3516 2.55316
\(782\) −13.0213 −0.465641
\(783\) 0 0
\(784\) −0.419304 −0.0149751
\(785\) −19.7475 −0.704818
\(786\) 0 0
\(787\) 3.73905 0.133283 0.0666414 0.997777i \(-0.478772\pi\)
0.0666414 + 0.997777i \(0.478772\pi\)
\(788\) 8.17270 0.291140
\(789\) 0 0
\(790\) −46.2430 −1.64525
\(791\) −34.5260 −1.22760
\(792\) 0 0
\(793\) 5.59569 0.198709
\(794\) −10.1894 −0.361609
\(795\) 0 0
\(796\) 23.4576 0.831433
\(797\) −7.11196 −0.251919 −0.125959 0.992035i \(-0.540201\pi\)
−0.125959 + 0.992035i \(0.540201\pi\)
\(798\) 0 0
\(799\) −23.9329 −0.846685
\(800\) 3.88265 0.137272
\(801\) 0 0
\(802\) −27.6214 −0.975345
\(803\) 3.75929 0.132663
\(804\) 0 0
\(805\) 39.5579 1.39423
\(806\) −7.79124 −0.274435
\(807\) 0 0
\(808\) −5.92549 −0.208458
\(809\) 10.2508 0.360398 0.180199 0.983630i \(-0.442326\pi\)
0.180199 + 0.983630i \(0.442326\pi\)
\(810\) 0 0
\(811\) −17.6750 −0.620655 −0.310327 0.950630i \(-0.600439\pi\)
−0.310327 + 0.950630i \(0.600439\pi\)
\(812\) 11.8833 0.417023
\(813\) 0 0
\(814\) −54.5099 −1.91057
\(815\) 21.9123 0.767553
\(816\) 0 0
\(817\) −42.2231 −1.47720
\(818\) −32.3617 −1.13150
\(819\) 0 0
\(820\) 7.35587 0.256878
\(821\) −14.4456 −0.504153 −0.252077 0.967707i \(-0.581114\pi\)
−0.252077 + 0.967707i \(0.581114\pi\)
\(822\) 0 0
\(823\) −5.39437 −0.188036 −0.0940179 0.995571i \(-0.529971\pi\)
−0.0940179 + 0.995571i \(0.529971\pi\)
\(824\) −7.57015 −0.263719
\(825\) 0 0
\(826\) −2.60338 −0.0905831
\(827\) 40.7336 1.41645 0.708223 0.705989i \(-0.249497\pi\)
0.708223 + 0.705989i \(0.249497\pi\)
\(828\) 0 0
\(829\) −15.9379 −0.553547 −0.276773 0.960935i \(-0.589265\pi\)
−0.276773 + 0.960935i \(0.589265\pi\)
\(830\) −24.6528 −0.855712
\(831\) 0 0
\(832\) −0.953732 −0.0330647
\(833\) 1.05526 0.0365625
\(834\) 0 0
\(835\) −55.0936 −1.90659
\(836\) −41.5807 −1.43810
\(837\) 0 0
\(838\) 20.7391 0.716421
\(839\) −47.0290 −1.62362 −0.811811 0.583921i \(-0.801518\pi\)
−0.811811 + 0.583921i \(0.801518\pi\)
\(840\) 0 0
\(841\) −7.54122 −0.260042
\(842\) −2.74188 −0.0944914
\(843\) 0 0
\(844\) 23.7236 0.816600
\(845\) 36.0339 1.23961
\(846\) 0 0
\(847\) −57.3574 −1.97082
\(848\) 7.51226 0.257972
\(849\) 0 0
\(850\) −9.77140 −0.335156
\(851\) −48.8308 −1.67390
\(852\) 0 0
\(853\) 5.50121 0.188358 0.0941790 0.995555i \(-0.469977\pi\)
0.0941790 + 0.995555i \(0.469977\pi\)
\(854\) 15.0509 0.515032
\(855\) 0 0
\(856\) −16.0455 −0.548424
\(857\) 6.74343 0.230351 0.115176 0.993345i \(-0.463257\pi\)
0.115176 + 0.993345i \(0.463257\pi\)
\(858\) 0 0
\(859\) 38.3733 1.30928 0.654641 0.755940i \(-0.272820\pi\)
0.654641 + 0.755940i \(0.272820\pi\)
\(860\) −17.4798 −0.596056
\(861\) 0 0
\(862\) 1.93294 0.0658363
\(863\) −27.5099 −0.936449 −0.468224 0.883610i \(-0.655106\pi\)
−0.468224 + 0.883610i \(0.655106\pi\)
\(864\) 0 0
\(865\) −45.3122 −1.54066
\(866\) 4.35794 0.148089
\(867\) 0 0
\(868\) −20.9564 −0.711306
\(869\) 89.6153 3.03999
\(870\) 0 0
\(871\) −11.5676 −0.391953
\(872\) 2.50942 0.0849797
\(873\) 0 0
\(874\) −37.2487 −1.25996
\(875\) −8.54273 −0.288797
\(876\) 0 0
\(877\) 40.4307 1.36525 0.682625 0.730769i \(-0.260838\pi\)
0.682625 + 0.730769i \(0.260838\pi\)
\(878\) 8.19465 0.276556
\(879\) 0 0
\(880\) −17.2139 −0.580279
\(881\) −14.9852 −0.504866 −0.252433 0.967614i \(-0.581231\pi\)
−0.252433 + 0.967614i \(0.581231\pi\)
\(882\) 0 0
\(883\) 45.8998 1.54465 0.772325 0.635227i \(-0.219094\pi\)
0.772325 + 0.635227i \(0.219094\pi\)
\(884\) 2.40024 0.0807289
\(885\) 0 0
\(886\) 5.51425 0.185255
\(887\) −38.4897 −1.29236 −0.646179 0.763186i \(-0.723634\pi\)
−0.646179 + 0.763186i \(0.723634\pi\)
\(888\) 0 0
\(889\) −6.03959 −0.202561
\(890\) 8.63867 0.289569
\(891\) 0 0
\(892\) −4.63802 −0.155292
\(893\) −68.4623 −2.29100
\(894\) 0 0
\(895\) −26.6129 −0.889570
\(896\) −2.56529 −0.0857002
\(897\) 0 0
\(898\) 19.1545 0.639193
\(899\) −37.8427 −1.26213
\(900\) 0 0
\(901\) −18.9060 −0.629849
\(902\) −14.2551 −0.474643
\(903\) 0 0
\(904\) 13.4589 0.447637
\(905\) −26.7121 −0.887940
\(906\) 0 0
\(907\) −3.30242 −0.109655 −0.0548275 0.998496i \(-0.517461\pi\)
−0.0548275 + 0.998496i \(0.517461\pi\)
\(908\) −2.30295 −0.0764261
\(909\) 0 0
\(910\) −7.29178 −0.241720
\(911\) −0.593599 −0.0196668 −0.00983341 0.999952i \(-0.503130\pi\)
−0.00983341 + 0.999952i \(0.503130\pi\)
\(912\) 0 0
\(913\) 47.7752 1.58113
\(914\) −41.6610 −1.37802
\(915\) 0 0
\(916\) 1.98890 0.0657150
\(917\) 20.8879 0.689779
\(918\) 0 0
\(919\) 7.37035 0.243125 0.121563 0.992584i \(-0.461209\pi\)
0.121563 + 0.992584i \(0.461209\pi\)
\(920\) −15.4205 −0.508397
\(921\) 0 0
\(922\) −28.7942 −0.948285
\(923\) −11.7821 −0.387813
\(924\) 0 0
\(925\) −36.6435 −1.20483
\(926\) 1.89638 0.0623188
\(927\) 0 0
\(928\) −4.63236 −0.152065
\(929\) −0.386422 −0.0126781 −0.00633905 0.999980i \(-0.502018\pi\)
−0.00633905 + 0.999980i \(0.502018\pi\)
\(930\) 0 0
\(931\) 3.01866 0.0989327
\(932\) −5.58928 −0.183083
\(933\) 0 0
\(934\) 9.53499 0.311994
\(935\) 43.3218 1.41678
\(936\) 0 0
\(937\) −29.0617 −0.949405 −0.474702 0.880146i \(-0.657444\pi\)
−0.474702 + 0.880146i \(0.657444\pi\)
\(938\) −31.1138 −1.01590
\(939\) 0 0
\(940\) −28.3425 −0.924429
\(941\) 22.0276 0.718081 0.359040 0.933322i \(-0.383104\pi\)
0.359040 + 0.933322i \(0.383104\pi\)
\(942\) 0 0
\(943\) −12.7699 −0.415847
\(944\) 1.01485 0.0330305
\(945\) 0 0
\(946\) 33.8744 1.10135
\(947\) 6.64851 0.216047 0.108024 0.994148i \(-0.465548\pi\)
0.108024 + 0.994148i \(0.465548\pi\)
\(948\) 0 0
\(949\) −0.620763 −0.0201508
\(950\) −27.9520 −0.906884
\(951\) 0 0
\(952\) 6.45602 0.209241
\(953\) 57.4933 1.86239 0.931195 0.364521i \(-0.118767\pi\)
0.931195 + 0.364521i \(0.118767\pi\)
\(954\) 0 0
\(955\) −8.08216 −0.261532
\(956\) 3.34553 0.108202
\(957\) 0 0
\(958\) −11.2845 −0.364586
\(959\) −34.7929 −1.12352
\(960\) 0 0
\(961\) 35.7360 1.15277
\(962\) 9.00108 0.290207
\(963\) 0 0
\(964\) 26.7139 0.860395
\(965\) 31.1795 1.00370
\(966\) 0 0
\(967\) 44.0592 1.41685 0.708424 0.705788i \(-0.249407\pi\)
0.708424 + 0.705788i \(0.249407\pi\)
\(968\) 22.3591 0.718647
\(969\) 0 0
\(970\) −2.84998 −0.0915072
\(971\) −25.8900 −0.830850 −0.415425 0.909627i \(-0.636367\pi\)
−0.415425 + 0.909627i \(0.636367\pi\)
\(972\) 0 0
\(973\) 45.1864 1.44861
\(974\) 13.3515 0.427810
\(975\) 0 0
\(976\) −5.86716 −0.187803
\(977\) −16.1799 −0.517642 −0.258821 0.965925i \(-0.583334\pi\)
−0.258821 + 0.965925i \(0.583334\pi\)
\(978\) 0 0
\(979\) −16.7410 −0.535046
\(980\) 1.24968 0.0399197
\(981\) 0 0
\(982\) −37.9516 −1.21108
\(983\) 27.7004 0.883504 0.441752 0.897137i \(-0.354357\pi\)
0.441752 + 0.897137i \(0.354357\pi\)
\(984\) 0 0
\(985\) −24.3577 −0.776101
\(986\) 11.6582 0.371272
\(987\) 0 0
\(988\) 6.86613 0.218441
\(989\) 30.3453 0.964923
\(990\) 0 0
\(991\) −15.6306 −0.496523 −0.248262 0.968693i \(-0.579859\pi\)
−0.248262 + 0.968693i \(0.579859\pi\)
\(992\) 8.16921 0.259373
\(993\) 0 0
\(994\) −31.6908 −1.00517
\(995\) −69.9126 −2.21638
\(996\) 0 0
\(997\) 59.0197 1.86917 0.934586 0.355737i \(-0.115770\pi\)
0.934586 + 0.355737i \(0.115770\pi\)
\(998\) −27.6365 −0.874819
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.o.1.1 7
3.2 odd 2 538.2.a.d.1.4 7
12.11 even 2 4304.2.a.i.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.d.1.4 7 3.2 odd 2
4304.2.a.i.1.4 7 12.11 even 2
4842.2.a.o.1.1 7 1.1 even 1 trivial