Properties

Label 4842.2.a.n.1.2
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.19866\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.84433 q^{5} -4.95403 q^{7} -1.00000 q^{8} +3.84433 q^{10} +0.453515 q^{11} -0.0945931 q^{13} +4.95403 q^{14} +1.00000 q^{16} -1.41349 q^{17} -2.49192 q^{19} -3.84433 q^{20} -0.453515 q^{22} +2.25654 q^{23} +9.77888 q^{25} +0.0945931 q^{26} -4.95403 q^{28} +6.64864 q^{29} +5.36736 q^{31} -1.00000 q^{32} +1.41349 q^{34} +19.0449 q^{35} +7.31117 q^{37} +2.49192 q^{38} +3.84433 q^{40} +10.6653 q^{41} -12.2765 q^{43} +0.453515 q^{44} -2.25654 q^{46} +1.43212 q^{47} +17.5424 q^{49} -9.77888 q^{50} -0.0945931 q^{52} -9.96897 q^{53} -1.74346 q^{55} +4.95403 q^{56} -6.64864 q^{58} -7.89955 q^{59} +0.950317 q^{61} -5.36736 q^{62} +1.00000 q^{64} +0.363647 q^{65} -8.06276 q^{67} -1.41349 q^{68} -19.0449 q^{70} +3.06085 q^{71} +12.8264 q^{73} -7.31117 q^{74} -2.49192 q^{76} -2.24672 q^{77} +13.7673 q^{79} -3.84433 q^{80} -10.6653 q^{82} -10.1171 q^{83} +5.43392 q^{85} +12.2765 q^{86} -0.453515 q^{88} +1.77803 q^{89} +0.468616 q^{91} +2.25654 q^{92} -1.43212 q^{94} +9.57975 q^{95} -12.9137 q^{97} -17.5424 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{2} + 7 q^{4} - 7 q^{5} + 6 q^{7} - 7 q^{8} + 7 q^{10} + 3 q^{11} - 9 q^{13} - 6 q^{14} + 7 q^{16} - 8 q^{17} - 11 q^{19} - 7 q^{20} - 3 q^{22} - 12 q^{23} + 22 q^{25} + 9 q^{26} + 6 q^{28} + 5 q^{29}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.84433 −1.71924 −0.859619 0.510936i \(-0.829299\pi\)
−0.859619 + 0.510936i \(0.829299\pi\)
\(6\) 0 0
\(7\) −4.95403 −1.87245 −0.936223 0.351407i \(-0.885703\pi\)
−0.936223 + 0.351407i \(0.885703\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.84433 1.21568
\(11\) 0.453515 0.136740 0.0683699 0.997660i \(-0.478220\pi\)
0.0683699 + 0.997660i \(0.478220\pi\)
\(12\) 0 0
\(13\) −0.0945931 −0.0262354 −0.0131177 0.999914i \(-0.504176\pi\)
−0.0131177 + 0.999914i \(0.504176\pi\)
\(14\) 4.95403 1.32402
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.41349 −0.342822 −0.171411 0.985200i \(-0.554833\pi\)
−0.171411 + 0.985200i \(0.554833\pi\)
\(18\) 0 0
\(19\) −2.49192 −0.571685 −0.285842 0.958277i \(-0.592273\pi\)
−0.285842 + 0.958277i \(0.592273\pi\)
\(20\) −3.84433 −0.859619
\(21\) 0 0
\(22\) −0.453515 −0.0966896
\(23\) 2.25654 0.470521 0.235261 0.971932i \(-0.424406\pi\)
0.235261 + 0.971932i \(0.424406\pi\)
\(24\) 0 0
\(25\) 9.77888 1.95578
\(26\) 0.0945931 0.0185512
\(27\) 0 0
\(28\) −4.95403 −0.936223
\(29\) 6.64864 1.23462 0.617311 0.786720i \(-0.288222\pi\)
0.617311 + 0.786720i \(0.288222\pi\)
\(30\) 0 0
\(31\) 5.36736 0.964006 0.482003 0.876170i \(-0.339909\pi\)
0.482003 + 0.876170i \(0.339909\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.41349 0.242412
\(35\) 19.0449 3.21918
\(36\) 0 0
\(37\) 7.31117 1.20195 0.600974 0.799268i \(-0.294779\pi\)
0.600974 + 0.799268i \(0.294779\pi\)
\(38\) 2.49192 0.404242
\(39\) 0 0
\(40\) 3.84433 0.607842
\(41\) 10.6653 1.66563 0.832817 0.553548i \(-0.186726\pi\)
0.832817 + 0.553548i \(0.186726\pi\)
\(42\) 0 0
\(43\) −12.2765 −1.87215 −0.936076 0.351798i \(-0.885570\pi\)
−0.936076 + 0.351798i \(0.885570\pi\)
\(44\) 0.453515 0.0683699
\(45\) 0 0
\(46\) −2.25654 −0.332709
\(47\) 1.43212 0.208897 0.104448 0.994530i \(-0.466692\pi\)
0.104448 + 0.994530i \(0.466692\pi\)
\(48\) 0 0
\(49\) 17.5424 2.50605
\(50\) −9.77888 −1.38294
\(51\) 0 0
\(52\) −0.0945931 −0.0131177
\(53\) −9.96897 −1.36934 −0.684672 0.728852i \(-0.740054\pi\)
−0.684672 + 0.728852i \(0.740054\pi\)
\(54\) 0 0
\(55\) −1.74346 −0.235088
\(56\) 4.95403 0.662010
\(57\) 0 0
\(58\) −6.64864 −0.873009
\(59\) −7.89955 −1.02843 −0.514217 0.857660i \(-0.671917\pi\)
−0.514217 + 0.857660i \(0.671917\pi\)
\(60\) 0 0
\(61\) 0.950317 0.121676 0.0608378 0.998148i \(-0.480623\pi\)
0.0608378 + 0.998148i \(0.480623\pi\)
\(62\) −5.36736 −0.681655
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.363647 0.0451049
\(66\) 0 0
\(67\) −8.06276 −0.985023 −0.492512 0.870306i \(-0.663921\pi\)
−0.492512 + 0.870306i \(0.663921\pi\)
\(68\) −1.41349 −0.171411
\(69\) 0 0
\(70\) −19.0449 −2.27630
\(71\) 3.06085 0.363256 0.181628 0.983367i \(-0.441863\pi\)
0.181628 + 0.983367i \(0.441863\pi\)
\(72\) 0 0
\(73\) 12.8264 1.50121 0.750607 0.660749i \(-0.229761\pi\)
0.750607 + 0.660749i \(0.229761\pi\)
\(74\) −7.31117 −0.849906
\(75\) 0 0
\(76\) −2.49192 −0.285842
\(77\) −2.24672 −0.256038
\(78\) 0 0
\(79\) 13.7673 1.54894 0.774469 0.632611i \(-0.218017\pi\)
0.774469 + 0.632611i \(0.218017\pi\)
\(80\) −3.84433 −0.429809
\(81\) 0 0
\(82\) −10.6653 −1.17778
\(83\) −10.1171 −1.11049 −0.555246 0.831686i \(-0.687376\pi\)
−0.555246 + 0.831686i \(0.687376\pi\)
\(84\) 0 0
\(85\) 5.43392 0.589392
\(86\) 12.2765 1.32381
\(87\) 0 0
\(88\) −0.453515 −0.0483448
\(89\) 1.77803 0.188471 0.0942354 0.995550i \(-0.469959\pi\)
0.0942354 + 0.995550i \(0.469959\pi\)
\(90\) 0 0
\(91\) 0.468616 0.0491244
\(92\) 2.25654 0.235261
\(93\) 0 0
\(94\) −1.43212 −0.147712
\(95\) 9.57975 0.982862
\(96\) 0 0
\(97\) −12.9137 −1.31119 −0.655593 0.755115i \(-0.727581\pi\)
−0.655593 + 0.755115i \(0.727581\pi\)
\(98\) −17.5424 −1.77205
\(99\) 0 0
\(100\) 9.77888 0.977888
\(101\) 6.03448 0.600453 0.300226 0.953868i \(-0.402938\pi\)
0.300226 + 0.953868i \(0.402938\pi\)
\(102\) 0 0
\(103\) −1.09297 −0.107694 −0.0538468 0.998549i \(-0.517148\pi\)
−0.0538468 + 0.998549i \(0.517148\pi\)
\(104\) 0.0945931 0.00927561
\(105\) 0 0
\(106\) 9.96897 0.968272
\(107\) −5.58489 −0.539911 −0.269956 0.962873i \(-0.587009\pi\)
−0.269956 + 0.962873i \(0.587009\pi\)
\(108\) 0 0
\(109\) −6.76759 −0.648218 −0.324109 0.946020i \(-0.605064\pi\)
−0.324109 + 0.946020i \(0.605064\pi\)
\(110\) 1.74346 0.166232
\(111\) 0 0
\(112\) −4.95403 −0.468111
\(113\) 0.653864 0.0615103 0.0307552 0.999527i \(-0.490209\pi\)
0.0307552 + 0.999527i \(0.490209\pi\)
\(114\) 0 0
\(115\) −8.67489 −0.808937
\(116\) 6.64864 0.617311
\(117\) 0 0
\(118\) 7.89955 0.727213
\(119\) 7.00247 0.641915
\(120\) 0 0
\(121\) −10.7943 −0.981302
\(122\) −0.950317 −0.0860376
\(123\) 0 0
\(124\) 5.36736 0.482003
\(125\) −18.3716 −1.64321
\(126\) 0 0
\(127\) 8.29619 0.736168 0.368084 0.929792i \(-0.380014\pi\)
0.368084 + 0.929792i \(0.380014\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −0.363647 −0.0318940
\(131\) 15.8736 1.38688 0.693440 0.720514i \(-0.256094\pi\)
0.693440 + 0.720514i \(0.256094\pi\)
\(132\) 0 0
\(133\) 12.3450 1.07045
\(134\) 8.06276 0.696517
\(135\) 0 0
\(136\) 1.41349 0.121206
\(137\) 5.16032 0.440876 0.220438 0.975401i \(-0.429251\pi\)
0.220438 + 0.975401i \(0.429251\pi\)
\(138\) 0 0
\(139\) 15.2369 1.29237 0.646187 0.763179i \(-0.276363\pi\)
0.646187 + 0.763179i \(0.276363\pi\)
\(140\) 19.0449 1.60959
\(141\) 0 0
\(142\) −3.06085 −0.256861
\(143\) −0.0428993 −0.00358742
\(144\) 0 0
\(145\) −25.5596 −2.12261
\(146\) −12.8264 −1.06152
\(147\) 0 0
\(148\) 7.31117 0.600974
\(149\) −16.0979 −1.31879 −0.659397 0.751795i \(-0.729188\pi\)
−0.659397 + 0.751795i \(0.729188\pi\)
\(150\) 0 0
\(151\) −7.57215 −0.616212 −0.308106 0.951352i \(-0.599695\pi\)
−0.308106 + 0.951352i \(0.599695\pi\)
\(152\) 2.49192 0.202121
\(153\) 0 0
\(154\) 2.24672 0.181046
\(155\) −20.6339 −1.65735
\(156\) 0 0
\(157\) 21.8948 1.74739 0.873696 0.486472i \(-0.161717\pi\)
0.873696 + 0.486472i \(0.161717\pi\)
\(158\) −13.7673 −1.09527
\(159\) 0 0
\(160\) 3.84433 0.303921
\(161\) −11.1790 −0.881025
\(162\) 0 0
\(163\) −6.02116 −0.471614 −0.235807 0.971800i \(-0.575773\pi\)
−0.235807 + 0.971800i \(0.575773\pi\)
\(164\) 10.6653 0.832817
\(165\) 0 0
\(166\) 10.1171 0.785237
\(167\) −19.6784 −1.52276 −0.761382 0.648304i \(-0.775479\pi\)
−0.761382 + 0.648304i \(0.775479\pi\)
\(168\) 0 0
\(169\) −12.9911 −0.999312
\(170\) −5.43392 −0.416763
\(171\) 0 0
\(172\) −12.2765 −0.936076
\(173\) −12.4812 −0.948931 −0.474466 0.880274i \(-0.657359\pi\)
−0.474466 + 0.880274i \(0.657359\pi\)
\(174\) 0 0
\(175\) −48.4448 −3.66209
\(176\) 0.453515 0.0341849
\(177\) 0 0
\(178\) −1.77803 −0.133269
\(179\) −7.84995 −0.586733 −0.293366 0.956000i \(-0.594776\pi\)
−0.293366 + 0.956000i \(0.594776\pi\)
\(180\) 0 0
\(181\) −17.9797 −1.33642 −0.668209 0.743973i \(-0.732939\pi\)
−0.668209 + 0.743973i \(0.732939\pi\)
\(182\) −0.468616 −0.0347362
\(183\) 0 0
\(184\) −2.25654 −0.166354
\(185\) −28.1065 −2.06643
\(186\) 0 0
\(187\) −0.641038 −0.0468774
\(188\) 1.43212 0.104448
\(189\) 0 0
\(190\) −9.57975 −0.694988
\(191\) 12.3054 0.890386 0.445193 0.895435i \(-0.353135\pi\)
0.445193 + 0.895435i \(0.353135\pi\)
\(192\) 0 0
\(193\) 5.82207 0.419081 0.209541 0.977800i \(-0.432803\pi\)
0.209541 + 0.977800i \(0.432803\pi\)
\(194\) 12.9137 0.927148
\(195\) 0 0
\(196\) 17.5424 1.25303
\(197\) 21.6619 1.54334 0.771671 0.636021i \(-0.219421\pi\)
0.771671 + 0.636021i \(0.219421\pi\)
\(198\) 0 0
\(199\) 5.71843 0.405369 0.202684 0.979244i \(-0.435033\pi\)
0.202684 + 0.979244i \(0.435033\pi\)
\(200\) −9.77888 −0.691471
\(201\) 0 0
\(202\) −6.03448 −0.424584
\(203\) −32.9375 −2.31176
\(204\) 0 0
\(205\) −41.0008 −2.86362
\(206\) 1.09297 0.0761509
\(207\) 0 0
\(208\) −0.0945931 −0.00655885
\(209\) −1.13012 −0.0781721
\(210\) 0 0
\(211\) −20.0839 −1.38264 −0.691318 0.722551i \(-0.742970\pi\)
−0.691318 + 0.722551i \(0.742970\pi\)
\(212\) −9.96897 −0.684672
\(213\) 0 0
\(214\) 5.58489 0.381775
\(215\) 47.1950 3.21867
\(216\) 0 0
\(217\) −26.5900 −1.80505
\(218\) 6.76759 0.458359
\(219\) 0 0
\(220\) −1.74346 −0.117544
\(221\) 0.133706 0.00899406
\(222\) 0 0
\(223\) −5.45166 −0.365070 −0.182535 0.983199i \(-0.558430\pi\)
−0.182535 + 0.983199i \(0.558430\pi\)
\(224\) 4.95403 0.331005
\(225\) 0 0
\(226\) −0.653864 −0.0434944
\(227\) −14.8158 −0.983360 −0.491680 0.870776i \(-0.663617\pi\)
−0.491680 + 0.870776i \(0.663617\pi\)
\(228\) 0 0
\(229\) 21.9863 1.45289 0.726447 0.687223i \(-0.241170\pi\)
0.726447 + 0.687223i \(0.241170\pi\)
\(230\) 8.67489 0.572005
\(231\) 0 0
\(232\) −6.64864 −0.436504
\(233\) −17.7722 −1.16429 −0.582147 0.813084i \(-0.697787\pi\)
−0.582147 + 0.813084i \(0.697787\pi\)
\(234\) 0 0
\(235\) −5.50555 −0.359143
\(236\) −7.89955 −0.514217
\(237\) 0 0
\(238\) −7.00247 −0.453902
\(239\) 12.0820 0.781517 0.390759 0.920493i \(-0.372213\pi\)
0.390759 + 0.920493i \(0.372213\pi\)
\(240\) 0 0
\(241\) 11.3215 0.729285 0.364642 0.931148i \(-0.381191\pi\)
0.364642 + 0.931148i \(0.381191\pi\)
\(242\) 10.7943 0.693885
\(243\) 0 0
\(244\) 0.950317 0.0608378
\(245\) −67.4387 −4.30850
\(246\) 0 0
\(247\) 0.235718 0.0149984
\(248\) −5.36736 −0.340827
\(249\) 0 0
\(250\) 18.3716 1.16192
\(251\) −8.60802 −0.543333 −0.271667 0.962391i \(-0.587575\pi\)
−0.271667 + 0.962391i \(0.587575\pi\)
\(252\) 0 0
\(253\) 1.02337 0.0643390
\(254\) −8.29619 −0.520550
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.3976 0.898096 0.449048 0.893508i \(-0.351763\pi\)
0.449048 + 0.893508i \(0.351763\pi\)
\(258\) 0 0
\(259\) −36.2197 −2.25058
\(260\) 0.363647 0.0225524
\(261\) 0 0
\(262\) −15.8736 −0.980673
\(263\) 22.3410 1.37761 0.688803 0.724949i \(-0.258137\pi\)
0.688803 + 0.724949i \(0.258137\pi\)
\(264\) 0 0
\(265\) 38.3240 2.35423
\(266\) −12.3450 −0.756922
\(267\) 0 0
\(268\) −8.06276 −0.492512
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) 16.7534 1.01770 0.508848 0.860856i \(-0.330071\pi\)
0.508848 + 0.860856i \(0.330071\pi\)
\(272\) −1.41349 −0.0857054
\(273\) 0 0
\(274\) −5.16032 −0.311747
\(275\) 4.43487 0.267432
\(276\) 0 0
\(277\) 14.7850 0.888345 0.444172 0.895941i \(-0.353498\pi\)
0.444172 + 0.895941i \(0.353498\pi\)
\(278\) −15.2369 −0.913846
\(279\) 0 0
\(280\) −19.0449 −1.13815
\(281\) −25.0439 −1.49400 −0.746998 0.664827i \(-0.768505\pi\)
−0.746998 + 0.664827i \(0.768505\pi\)
\(282\) 0 0
\(283\) 24.6030 1.46249 0.731247 0.682113i \(-0.238939\pi\)
0.731247 + 0.682113i \(0.238939\pi\)
\(284\) 3.06085 0.181628
\(285\) 0 0
\(286\) 0.0428993 0.00253669
\(287\) −52.8360 −3.11881
\(288\) 0 0
\(289\) −15.0020 −0.882473
\(290\) 25.5596 1.50091
\(291\) 0 0
\(292\) 12.8264 0.750607
\(293\) 11.4618 0.669607 0.334804 0.942288i \(-0.391330\pi\)
0.334804 + 0.942288i \(0.391330\pi\)
\(294\) 0 0
\(295\) 30.3685 1.76812
\(296\) −7.31117 −0.424953
\(297\) 0 0
\(298\) 16.0979 0.932528
\(299\) −0.213453 −0.0123443
\(300\) 0 0
\(301\) 60.8182 3.50550
\(302\) 7.57215 0.435728
\(303\) 0 0
\(304\) −2.49192 −0.142921
\(305\) −3.65333 −0.209189
\(306\) 0 0
\(307\) −17.7679 −1.01407 −0.507033 0.861927i \(-0.669258\pi\)
−0.507033 + 0.861927i \(0.669258\pi\)
\(308\) −2.24672 −0.128019
\(309\) 0 0
\(310\) 20.6339 1.17193
\(311\) −7.62146 −0.432173 −0.216087 0.976374i \(-0.569329\pi\)
−0.216087 + 0.976374i \(0.569329\pi\)
\(312\) 0 0
\(313\) 7.97031 0.450509 0.225254 0.974300i \(-0.427679\pi\)
0.225254 + 0.974300i \(0.427679\pi\)
\(314\) −21.8948 −1.23559
\(315\) 0 0
\(316\) 13.7673 0.774469
\(317\) −1.71640 −0.0964028 −0.0482014 0.998838i \(-0.515349\pi\)
−0.0482014 + 0.998838i \(0.515349\pi\)
\(318\) 0 0
\(319\) 3.01525 0.168822
\(320\) −3.84433 −0.214905
\(321\) 0 0
\(322\) 11.1790 0.622979
\(323\) 3.52230 0.195986
\(324\) 0 0
\(325\) −0.925014 −0.0513106
\(326\) 6.02116 0.333481
\(327\) 0 0
\(328\) −10.6653 −0.588891
\(329\) −7.09477 −0.391147
\(330\) 0 0
\(331\) −13.7537 −0.755970 −0.377985 0.925812i \(-0.623383\pi\)
−0.377985 + 0.925812i \(0.623383\pi\)
\(332\) −10.1171 −0.555246
\(333\) 0 0
\(334\) 19.6784 1.07676
\(335\) 30.9959 1.69349
\(336\) 0 0
\(337\) 18.7032 1.01883 0.509413 0.860522i \(-0.329863\pi\)
0.509413 + 0.860522i \(0.329863\pi\)
\(338\) 12.9911 0.706620
\(339\) 0 0
\(340\) 5.43392 0.294696
\(341\) 2.43417 0.131818
\(342\) 0 0
\(343\) −52.2272 −2.82000
\(344\) 12.2765 0.661906
\(345\) 0 0
\(346\) 12.4812 0.670996
\(347\) −12.9029 −0.692662 −0.346331 0.938112i \(-0.612573\pi\)
−0.346331 + 0.938112i \(0.612573\pi\)
\(348\) 0 0
\(349\) −4.29547 −0.229931 −0.114966 0.993369i \(-0.536676\pi\)
−0.114966 + 0.993369i \(0.536676\pi\)
\(350\) 48.4448 2.58949
\(351\) 0 0
\(352\) −0.453515 −0.0241724
\(353\) 22.3707 1.19067 0.595337 0.803476i \(-0.297018\pi\)
0.595337 + 0.803476i \(0.297018\pi\)
\(354\) 0 0
\(355\) −11.7669 −0.624523
\(356\) 1.77803 0.0942354
\(357\) 0 0
\(358\) 7.84995 0.414883
\(359\) −32.0628 −1.69221 −0.846105 0.533016i \(-0.821058\pi\)
−0.846105 + 0.533016i \(0.821058\pi\)
\(360\) 0 0
\(361\) −12.7903 −0.673176
\(362\) 17.9797 0.944991
\(363\) 0 0
\(364\) 0.468616 0.0245622
\(365\) −49.3088 −2.58094
\(366\) 0 0
\(367\) −4.79576 −0.250337 −0.125168 0.992136i \(-0.539947\pi\)
−0.125168 + 0.992136i \(0.539947\pi\)
\(368\) 2.25654 0.117630
\(369\) 0 0
\(370\) 28.1065 1.46119
\(371\) 49.3865 2.56402
\(372\) 0 0
\(373\) 32.9108 1.70406 0.852028 0.523497i \(-0.175373\pi\)
0.852028 + 0.523497i \(0.175373\pi\)
\(374\) 0.641038 0.0331473
\(375\) 0 0
\(376\) −1.43212 −0.0738561
\(377\) −0.628915 −0.0323908
\(378\) 0 0
\(379\) −8.98570 −0.461565 −0.230782 0.973005i \(-0.574129\pi\)
−0.230782 + 0.973005i \(0.574129\pi\)
\(380\) 9.57975 0.491431
\(381\) 0 0
\(382\) −12.3054 −0.629598
\(383\) −0.787688 −0.0402490 −0.0201245 0.999797i \(-0.506406\pi\)
−0.0201245 + 0.999797i \(0.506406\pi\)
\(384\) 0 0
\(385\) 8.63715 0.440190
\(386\) −5.82207 −0.296335
\(387\) 0 0
\(388\) −12.9137 −0.655593
\(389\) 4.15609 0.210722 0.105361 0.994434i \(-0.466400\pi\)
0.105361 + 0.994434i \(0.466400\pi\)
\(390\) 0 0
\(391\) −3.18960 −0.161305
\(392\) −17.5424 −0.886024
\(393\) 0 0
\(394\) −21.6619 −1.09131
\(395\) −52.9259 −2.66299
\(396\) 0 0
\(397\) 1.90587 0.0956527 0.0478263 0.998856i \(-0.484771\pi\)
0.0478263 + 0.998856i \(0.484771\pi\)
\(398\) −5.71843 −0.286639
\(399\) 0 0
\(400\) 9.77888 0.488944
\(401\) 11.0163 0.550128 0.275064 0.961426i \(-0.411301\pi\)
0.275064 + 0.961426i \(0.411301\pi\)
\(402\) 0 0
\(403\) −0.507715 −0.0252911
\(404\) 6.03448 0.300226
\(405\) 0 0
\(406\) 32.9375 1.63466
\(407\) 3.31572 0.164354
\(408\) 0 0
\(409\) −5.30078 −0.262107 −0.131053 0.991375i \(-0.541836\pi\)
−0.131053 + 0.991375i \(0.541836\pi\)
\(410\) 41.0008 2.02489
\(411\) 0 0
\(412\) −1.09297 −0.0538468
\(413\) 39.1346 1.92569
\(414\) 0 0
\(415\) 38.8934 1.90920
\(416\) 0.0945931 0.00463781
\(417\) 0 0
\(418\) 1.13012 0.0552760
\(419\) 25.5590 1.24864 0.624319 0.781169i \(-0.285376\pi\)
0.624319 + 0.781169i \(0.285376\pi\)
\(420\) 0 0
\(421\) −24.8795 −1.21255 −0.606276 0.795254i \(-0.707337\pi\)
−0.606276 + 0.795254i \(0.707337\pi\)
\(422\) 20.0839 0.977671
\(423\) 0 0
\(424\) 9.96897 0.484136
\(425\) −13.8224 −0.670483
\(426\) 0 0
\(427\) −4.70789 −0.227831
\(428\) −5.58489 −0.269956
\(429\) 0 0
\(430\) −47.1950 −2.27595
\(431\) −19.4524 −0.936988 −0.468494 0.883467i \(-0.655203\pi\)
−0.468494 + 0.883467i \(0.655203\pi\)
\(432\) 0 0
\(433\) −16.7217 −0.803593 −0.401797 0.915729i \(-0.631614\pi\)
−0.401797 + 0.915729i \(0.631614\pi\)
\(434\) 26.5900 1.27636
\(435\) 0 0
\(436\) −6.76759 −0.324109
\(437\) −5.62311 −0.268990
\(438\) 0 0
\(439\) −14.8215 −0.707390 −0.353695 0.935361i \(-0.615075\pi\)
−0.353695 + 0.935361i \(0.615075\pi\)
\(440\) 1.74346 0.0831162
\(441\) 0 0
\(442\) −0.133706 −0.00635976
\(443\) 24.8635 1.18130 0.590651 0.806927i \(-0.298871\pi\)
0.590651 + 0.806927i \(0.298871\pi\)
\(444\) 0 0
\(445\) −6.83533 −0.324026
\(446\) 5.45166 0.258144
\(447\) 0 0
\(448\) −4.95403 −0.234056
\(449\) −22.0294 −1.03963 −0.519817 0.854278i \(-0.674000\pi\)
−0.519817 + 0.854278i \(0.674000\pi\)
\(450\) 0 0
\(451\) 4.83685 0.227759
\(452\) 0.653864 0.0307552
\(453\) 0 0
\(454\) 14.8158 0.695340
\(455\) −1.80152 −0.0844564
\(456\) 0 0
\(457\) −27.1457 −1.26982 −0.634911 0.772585i \(-0.718963\pi\)
−0.634911 + 0.772585i \(0.718963\pi\)
\(458\) −21.9863 −1.02735
\(459\) 0 0
\(460\) −8.67489 −0.404469
\(461\) −27.6585 −1.28819 −0.644093 0.764947i \(-0.722765\pi\)
−0.644093 + 0.764947i \(0.722765\pi\)
\(462\) 0 0
\(463\) 31.2336 1.45155 0.725774 0.687933i \(-0.241482\pi\)
0.725774 + 0.687933i \(0.241482\pi\)
\(464\) 6.64864 0.308655
\(465\) 0 0
\(466\) 17.7722 0.823280
\(467\) 13.4254 0.621255 0.310628 0.950532i \(-0.399461\pi\)
0.310628 + 0.950532i \(0.399461\pi\)
\(468\) 0 0
\(469\) 39.9431 1.84440
\(470\) 5.50555 0.253952
\(471\) 0 0
\(472\) 7.89955 0.363606
\(473\) −5.56758 −0.255998
\(474\) 0 0
\(475\) −24.3682 −1.11809
\(476\) 7.00247 0.320958
\(477\) 0 0
\(478\) −12.0820 −0.552616
\(479\) −2.09566 −0.0957533 −0.0478767 0.998853i \(-0.515245\pi\)
−0.0478767 + 0.998853i \(0.515245\pi\)
\(480\) 0 0
\(481\) −0.691586 −0.0315336
\(482\) −11.3215 −0.515682
\(483\) 0 0
\(484\) −10.7943 −0.490651
\(485\) 49.6445 2.25424
\(486\) 0 0
\(487\) −38.1661 −1.72947 −0.864736 0.502226i \(-0.832515\pi\)
−0.864736 + 0.502226i \(0.832515\pi\)
\(488\) −0.950317 −0.0430188
\(489\) 0 0
\(490\) 67.4387 3.04657
\(491\) −6.36732 −0.287353 −0.143676 0.989625i \(-0.545892\pi\)
−0.143676 + 0.989625i \(0.545892\pi\)
\(492\) 0 0
\(493\) −9.39778 −0.423255
\(494\) −0.235718 −0.0106055
\(495\) 0 0
\(496\) 5.36736 0.241001
\(497\) −15.1635 −0.680176
\(498\) 0 0
\(499\) 33.6939 1.50835 0.754173 0.656676i \(-0.228038\pi\)
0.754173 + 0.656676i \(0.228038\pi\)
\(500\) −18.3716 −0.821603
\(501\) 0 0
\(502\) 8.60802 0.384195
\(503\) 29.6505 1.32205 0.661026 0.750363i \(-0.270121\pi\)
0.661026 + 0.750363i \(0.270121\pi\)
\(504\) 0 0
\(505\) −23.1985 −1.03232
\(506\) −1.02337 −0.0454945
\(507\) 0 0
\(508\) 8.29619 0.368084
\(509\) 3.41765 0.151485 0.0757423 0.997127i \(-0.475867\pi\)
0.0757423 + 0.997127i \(0.475867\pi\)
\(510\) 0 0
\(511\) −63.5422 −2.81094
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −14.3976 −0.635050
\(515\) 4.20174 0.185151
\(516\) 0 0
\(517\) 0.649488 0.0285645
\(518\) 36.2197 1.59140
\(519\) 0 0
\(520\) −0.363647 −0.0159470
\(521\) −28.2730 −1.23866 −0.619330 0.785130i \(-0.712596\pi\)
−0.619330 + 0.785130i \(0.712596\pi\)
\(522\) 0 0
\(523\) −17.2424 −0.753956 −0.376978 0.926222i \(-0.623037\pi\)
−0.376978 + 0.926222i \(0.623037\pi\)
\(524\) 15.8736 0.693440
\(525\) 0 0
\(526\) −22.3410 −0.974114
\(527\) −7.58670 −0.330482
\(528\) 0 0
\(529\) −17.9080 −0.778610
\(530\) −38.3240 −1.66469
\(531\) 0 0
\(532\) 12.3450 0.535225
\(533\) −1.00886 −0.0436986
\(534\) 0 0
\(535\) 21.4702 0.928236
\(536\) 8.06276 0.348258
\(537\) 0 0
\(538\) −1.00000 −0.0431131
\(539\) 7.95572 0.342677
\(540\) 0 0
\(541\) −2.32570 −0.0999896 −0.0499948 0.998749i \(-0.515920\pi\)
−0.0499948 + 0.998749i \(0.515920\pi\)
\(542\) −16.7534 −0.719620
\(543\) 0 0
\(544\) 1.41349 0.0606029
\(545\) 26.0169 1.11444
\(546\) 0 0
\(547\) 26.5955 1.13714 0.568570 0.822635i \(-0.307497\pi\)
0.568570 + 0.822635i \(0.307497\pi\)
\(548\) 5.16032 0.220438
\(549\) 0 0
\(550\) −4.43487 −0.189103
\(551\) −16.5679 −0.705814
\(552\) 0 0
\(553\) −68.2034 −2.90030
\(554\) −14.7850 −0.628155
\(555\) 0 0
\(556\) 15.2369 0.646187
\(557\) −19.7222 −0.835658 −0.417829 0.908526i \(-0.637209\pi\)
−0.417829 + 0.908526i \(0.637209\pi\)
\(558\) 0 0
\(559\) 1.16127 0.0491166
\(560\) 19.0449 0.804795
\(561\) 0 0
\(562\) 25.0439 1.05641
\(563\) 25.9388 1.09319 0.546595 0.837397i \(-0.315924\pi\)
0.546595 + 0.837397i \(0.315924\pi\)
\(564\) 0 0
\(565\) −2.51367 −0.105751
\(566\) −24.6030 −1.03414
\(567\) 0 0
\(568\) −3.06085 −0.128430
\(569\) 44.9748 1.88544 0.942720 0.333584i \(-0.108258\pi\)
0.942720 + 0.333584i \(0.108258\pi\)
\(570\) 0 0
\(571\) −44.4599 −1.86059 −0.930294 0.366814i \(-0.880448\pi\)
−0.930294 + 0.366814i \(0.880448\pi\)
\(572\) −0.0428993 −0.00179371
\(573\) 0 0
\(574\) 52.8360 2.20533
\(575\) 22.0664 0.920234
\(576\) 0 0
\(577\) −36.6191 −1.52447 −0.762236 0.647299i \(-0.775898\pi\)
−0.762236 + 0.647299i \(0.775898\pi\)
\(578\) 15.0020 0.624003
\(579\) 0 0
\(580\) −25.5596 −1.06130
\(581\) 50.1202 2.07934
\(582\) 0 0
\(583\) −4.52107 −0.187244
\(584\) −12.8264 −0.530759
\(585\) 0 0
\(586\) −11.4618 −0.473484
\(587\) −20.5256 −0.847184 −0.423592 0.905853i \(-0.639231\pi\)
−0.423592 + 0.905853i \(0.639231\pi\)
\(588\) 0 0
\(589\) −13.3750 −0.551108
\(590\) −30.3685 −1.25025
\(591\) 0 0
\(592\) 7.31117 0.300487
\(593\) 1.99866 0.0820753 0.0410377 0.999158i \(-0.486934\pi\)
0.0410377 + 0.999158i \(0.486934\pi\)
\(594\) 0 0
\(595\) −26.9198 −1.10360
\(596\) −16.0979 −0.659397
\(597\) 0 0
\(598\) 0.213453 0.00872874
\(599\) −21.2473 −0.868141 −0.434070 0.900879i \(-0.642923\pi\)
−0.434070 + 0.900879i \(0.642923\pi\)
\(600\) 0 0
\(601\) −22.2574 −0.907899 −0.453949 0.891028i \(-0.649985\pi\)
−0.453949 + 0.891028i \(0.649985\pi\)
\(602\) −60.8182 −2.47876
\(603\) 0 0
\(604\) −7.57215 −0.308106
\(605\) 41.4970 1.68709
\(606\) 0 0
\(607\) 7.20720 0.292531 0.146266 0.989245i \(-0.453275\pi\)
0.146266 + 0.989245i \(0.453275\pi\)
\(608\) 2.49192 0.101061
\(609\) 0 0
\(610\) 3.65333 0.147919
\(611\) −0.135469 −0.00548048
\(612\) 0 0
\(613\) 15.9436 0.643956 0.321978 0.946747i \(-0.395652\pi\)
0.321978 + 0.946747i \(0.395652\pi\)
\(614\) 17.7679 0.717052
\(615\) 0 0
\(616\) 2.24672 0.0905231
\(617\) −18.0019 −0.724729 −0.362364 0.932037i \(-0.618030\pi\)
−0.362364 + 0.932037i \(0.618030\pi\)
\(618\) 0 0
\(619\) −17.9006 −0.719487 −0.359744 0.933051i \(-0.617136\pi\)
−0.359744 + 0.933051i \(0.617136\pi\)
\(620\) −20.6339 −0.828677
\(621\) 0 0
\(622\) 7.62146 0.305593
\(623\) −8.80840 −0.352901
\(624\) 0 0
\(625\) 21.7321 0.869285
\(626\) −7.97031 −0.318558
\(627\) 0 0
\(628\) 21.8948 0.873696
\(629\) −10.3343 −0.412054
\(630\) 0 0
\(631\) 25.6888 1.02265 0.511327 0.859386i \(-0.329154\pi\)
0.511327 + 0.859386i \(0.329154\pi\)
\(632\) −13.7673 −0.547633
\(633\) 0 0
\(634\) 1.71640 0.0681671
\(635\) −31.8933 −1.26565
\(636\) 0 0
\(637\) −1.65939 −0.0657473
\(638\) −3.01525 −0.119375
\(639\) 0 0
\(640\) 3.84433 0.151961
\(641\) −25.4553 −1.00542 −0.502712 0.864454i \(-0.667664\pi\)
−0.502712 + 0.864454i \(0.667664\pi\)
\(642\) 0 0
\(643\) 22.7411 0.896823 0.448411 0.893827i \(-0.351990\pi\)
0.448411 + 0.893827i \(0.351990\pi\)
\(644\) −11.1790 −0.440513
\(645\) 0 0
\(646\) −3.52230 −0.138583
\(647\) −28.5975 −1.12428 −0.562142 0.827041i \(-0.690023\pi\)
−0.562142 + 0.827041i \(0.690023\pi\)
\(648\) 0 0
\(649\) −3.58256 −0.140628
\(650\) 0.925014 0.0362820
\(651\) 0 0
\(652\) −6.02116 −0.235807
\(653\) 5.54791 0.217107 0.108553 0.994091i \(-0.465378\pi\)
0.108553 + 0.994091i \(0.465378\pi\)
\(654\) 0 0
\(655\) −61.0233 −2.38438
\(656\) 10.6653 0.416409
\(657\) 0 0
\(658\) 7.09477 0.276583
\(659\) 27.7914 1.08260 0.541299 0.840830i \(-0.317933\pi\)
0.541299 + 0.840830i \(0.317933\pi\)
\(660\) 0 0
\(661\) 1.92881 0.0750221 0.0375111 0.999296i \(-0.488057\pi\)
0.0375111 + 0.999296i \(0.488057\pi\)
\(662\) 13.7537 0.534552
\(663\) 0 0
\(664\) 10.1171 0.392618
\(665\) −47.4584 −1.84036
\(666\) 0 0
\(667\) 15.0029 0.580915
\(668\) −19.6784 −0.761382
\(669\) 0 0
\(670\) −30.9959 −1.19748
\(671\) 0.430982 0.0166379
\(672\) 0 0
\(673\) 19.2283 0.741195 0.370597 0.928794i \(-0.379153\pi\)
0.370597 + 0.928794i \(0.379153\pi\)
\(674\) −18.7032 −0.720419
\(675\) 0 0
\(676\) −12.9911 −0.499656
\(677\) −3.56493 −0.137011 −0.0685057 0.997651i \(-0.521823\pi\)
−0.0685057 + 0.997651i \(0.521823\pi\)
\(678\) 0 0
\(679\) 63.9747 2.45512
\(680\) −5.43392 −0.208381
\(681\) 0 0
\(682\) −2.43417 −0.0932094
\(683\) −36.0055 −1.37771 −0.688856 0.724899i \(-0.741887\pi\)
−0.688856 + 0.724899i \(0.741887\pi\)
\(684\) 0 0
\(685\) −19.8380 −0.757971
\(686\) 52.2272 1.99404
\(687\) 0 0
\(688\) −12.2765 −0.468038
\(689\) 0.942995 0.0359253
\(690\) 0 0
\(691\) 6.11836 0.232754 0.116377 0.993205i \(-0.462872\pi\)
0.116377 + 0.993205i \(0.462872\pi\)
\(692\) −12.4812 −0.474466
\(693\) 0 0
\(694\) 12.9029 0.489786
\(695\) −58.5755 −2.22190
\(696\) 0 0
\(697\) −15.0752 −0.571016
\(698\) 4.29547 0.162586
\(699\) 0 0
\(700\) −48.4448 −1.83104
\(701\) 27.4930 1.03840 0.519198 0.854654i \(-0.326231\pi\)
0.519198 + 0.854654i \(0.326231\pi\)
\(702\) 0 0
\(703\) −18.2188 −0.687136
\(704\) 0.453515 0.0170925
\(705\) 0 0
\(706\) −22.3707 −0.841934
\(707\) −29.8949 −1.12432
\(708\) 0 0
\(709\) −41.8276 −1.57087 −0.785433 0.618946i \(-0.787560\pi\)
−0.785433 + 0.618946i \(0.787560\pi\)
\(710\) 11.7669 0.441604
\(711\) 0 0
\(712\) −1.77803 −0.0666345
\(713\) 12.1117 0.453585
\(714\) 0 0
\(715\) 0.164919 0.00616763
\(716\) −7.84995 −0.293366
\(717\) 0 0
\(718\) 32.0628 1.19657
\(719\) 36.4204 1.35825 0.679126 0.734022i \(-0.262359\pi\)
0.679126 + 0.734022i \(0.262359\pi\)
\(720\) 0 0
\(721\) 5.41461 0.201650
\(722\) 12.7903 0.476008
\(723\) 0 0
\(724\) −17.9797 −0.668209
\(725\) 65.0162 2.41464
\(726\) 0 0
\(727\) 1.23081 0.0456481 0.0228241 0.999739i \(-0.492734\pi\)
0.0228241 + 0.999739i \(0.492734\pi\)
\(728\) −0.468616 −0.0173681
\(729\) 0 0
\(730\) 49.3088 1.82500
\(731\) 17.3527 0.641814
\(732\) 0 0
\(733\) 27.5812 1.01873 0.509367 0.860550i \(-0.329880\pi\)
0.509367 + 0.860550i \(0.329880\pi\)
\(734\) 4.79576 0.177015
\(735\) 0 0
\(736\) −2.25654 −0.0831772
\(737\) −3.65658 −0.134692
\(738\) 0 0
\(739\) 19.3896 0.713257 0.356629 0.934246i \(-0.383926\pi\)
0.356629 + 0.934246i \(0.383926\pi\)
\(740\) −28.1065 −1.03322
\(741\) 0 0
\(742\) −49.3865 −1.81304
\(743\) 3.02696 0.111048 0.0555242 0.998457i \(-0.482317\pi\)
0.0555242 + 0.998457i \(0.482317\pi\)
\(744\) 0 0
\(745\) 61.8858 2.26732
\(746\) −32.9108 −1.20495
\(747\) 0 0
\(748\) −0.641038 −0.0234387
\(749\) 27.6677 1.01096
\(750\) 0 0
\(751\) 5.10910 0.186434 0.0932168 0.995646i \(-0.470285\pi\)
0.0932168 + 0.995646i \(0.470285\pi\)
\(752\) 1.43212 0.0522241
\(753\) 0 0
\(754\) 0.628915 0.0229037
\(755\) 29.1098 1.05942
\(756\) 0 0
\(757\) −27.3805 −0.995161 −0.497580 0.867418i \(-0.665778\pi\)
−0.497580 + 0.867418i \(0.665778\pi\)
\(758\) 8.98570 0.326375
\(759\) 0 0
\(760\) −9.57975 −0.347494
\(761\) 49.3210 1.78789 0.893943 0.448181i \(-0.147928\pi\)
0.893943 + 0.448181i \(0.147928\pi\)
\(762\) 0 0
\(763\) 33.5268 1.21375
\(764\) 12.3054 0.445193
\(765\) 0 0
\(766\) 0.787688 0.0284603
\(767\) 0.747243 0.0269814
\(768\) 0 0
\(769\) 11.8488 0.427277 0.213639 0.976913i \(-0.431468\pi\)
0.213639 + 0.976913i \(0.431468\pi\)
\(770\) −8.63715 −0.311261
\(771\) 0 0
\(772\) 5.82207 0.209541
\(773\) −14.0516 −0.505401 −0.252700 0.967545i \(-0.581319\pi\)
−0.252700 + 0.967545i \(0.581319\pi\)
\(774\) 0 0
\(775\) 52.4867 1.88538
\(776\) 12.9137 0.463574
\(777\) 0 0
\(778\) −4.15609 −0.149003
\(779\) −26.5770 −0.952218
\(780\) 0 0
\(781\) 1.38814 0.0496715
\(782\) 3.18960 0.114060
\(783\) 0 0
\(784\) 17.5424 0.626513
\(785\) −84.1707 −3.00418
\(786\) 0 0
\(787\) −22.7651 −0.811489 −0.405744 0.913987i \(-0.632988\pi\)
−0.405744 + 0.913987i \(0.632988\pi\)
\(788\) 21.6619 0.771671
\(789\) 0 0
\(790\) 52.9259 1.88302
\(791\) −3.23926 −0.115175
\(792\) 0 0
\(793\) −0.0898934 −0.00319221
\(794\) −1.90587 −0.0676367
\(795\) 0 0
\(796\) 5.71843 0.202684
\(797\) −32.9141 −1.16588 −0.582938 0.812517i \(-0.698097\pi\)
−0.582938 + 0.812517i \(0.698097\pi\)
\(798\) 0 0
\(799\) −2.02429 −0.0716143
\(800\) −9.77888 −0.345736
\(801\) 0 0
\(802\) −11.0163 −0.388999
\(803\) 5.81695 0.205276
\(804\) 0 0
\(805\) 42.9756 1.51469
\(806\) 0.507715 0.0178835
\(807\) 0 0
\(808\) −6.03448 −0.212292
\(809\) 35.8700 1.26112 0.630560 0.776140i \(-0.282825\pi\)
0.630560 + 0.776140i \(0.282825\pi\)
\(810\) 0 0
\(811\) −16.6343 −0.584109 −0.292055 0.956402i \(-0.594339\pi\)
−0.292055 + 0.956402i \(0.594339\pi\)
\(812\) −32.9375 −1.15588
\(813\) 0 0
\(814\) −3.31572 −0.116216
\(815\) 23.1473 0.810816
\(816\) 0 0
\(817\) 30.5921 1.07028
\(818\) 5.30078 0.185337
\(819\) 0 0
\(820\) −41.0008 −1.43181
\(821\) −32.4924 −1.13399 −0.566997 0.823720i \(-0.691895\pi\)
−0.566997 + 0.823720i \(0.691895\pi\)
\(822\) 0 0
\(823\) −29.9885 −1.04533 −0.522666 0.852537i \(-0.675063\pi\)
−0.522666 + 0.852537i \(0.675063\pi\)
\(824\) 1.09297 0.0380754
\(825\) 0 0
\(826\) −39.1346 −1.36167
\(827\) −31.1200 −1.08215 −0.541075 0.840975i \(-0.681982\pi\)
−0.541075 + 0.840975i \(0.681982\pi\)
\(828\) 0 0
\(829\) −15.8365 −0.550025 −0.275013 0.961441i \(-0.588682\pi\)
−0.275013 + 0.961441i \(0.588682\pi\)
\(830\) −38.8934 −1.35001
\(831\) 0 0
\(832\) −0.0945931 −0.00327942
\(833\) −24.7960 −0.859129
\(834\) 0 0
\(835\) 75.6504 2.61799
\(836\) −1.13012 −0.0390860
\(837\) 0 0
\(838\) −25.5590 −0.882921
\(839\) 12.2519 0.422981 0.211491 0.977380i \(-0.432168\pi\)
0.211491 + 0.977380i \(0.432168\pi\)
\(840\) 0 0
\(841\) 15.2044 0.524289
\(842\) 24.8795 0.857403
\(843\) 0 0
\(844\) −20.0839 −0.691318
\(845\) 49.9419 1.71805
\(846\) 0 0
\(847\) 53.4754 1.83744
\(848\) −9.96897 −0.342336
\(849\) 0 0
\(850\) 13.8224 0.474103
\(851\) 16.4979 0.565542
\(852\) 0 0
\(853\) −9.41699 −0.322431 −0.161216 0.986919i \(-0.551541\pi\)
−0.161216 + 0.986919i \(0.551541\pi\)
\(854\) 4.70789 0.161101
\(855\) 0 0
\(856\) 5.58489 0.190888
\(857\) −19.2781 −0.658529 −0.329264 0.944238i \(-0.606801\pi\)
−0.329264 + 0.944238i \(0.606801\pi\)
\(858\) 0 0
\(859\) −48.7953 −1.66487 −0.832437 0.554120i \(-0.813055\pi\)
−0.832437 + 0.554120i \(0.813055\pi\)
\(860\) 47.1950 1.60934
\(861\) 0 0
\(862\) 19.4524 0.662551
\(863\) −27.3052 −0.929481 −0.464741 0.885447i \(-0.653852\pi\)
−0.464741 + 0.885447i \(0.653852\pi\)
\(864\) 0 0
\(865\) 47.9820 1.63144
\(866\) 16.7217 0.568226
\(867\) 0 0
\(868\) −26.5900 −0.902524
\(869\) 6.24366 0.211802
\(870\) 0 0
\(871\) 0.762681 0.0258425
\(872\) 6.76759 0.229180
\(873\) 0 0
\(874\) 5.62311 0.190205
\(875\) 91.0134 3.07681
\(876\) 0 0
\(877\) −14.3551 −0.484737 −0.242368 0.970184i \(-0.577924\pi\)
−0.242368 + 0.970184i \(0.577924\pi\)
\(878\) 14.8215 0.500201
\(879\) 0 0
\(880\) −1.74346 −0.0587720
\(881\) 20.4566 0.689201 0.344600 0.938749i \(-0.388014\pi\)
0.344600 + 0.938749i \(0.388014\pi\)
\(882\) 0 0
\(883\) 13.2088 0.444510 0.222255 0.974989i \(-0.428658\pi\)
0.222255 + 0.974989i \(0.428658\pi\)
\(884\) 0.133706 0.00449703
\(885\) 0 0
\(886\) −24.8635 −0.835307
\(887\) 21.4469 0.720115 0.360058 0.932930i \(-0.382757\pi\)
0.360058 + 0.932930i \(0.382757\pi\)
\(888\) 0 0
\(889\) −41.0996 −1.37844
\(890\) 6.83533 0.229121
\(891\) 0 0
\(892\) −5.45166 −0.182535
\(893\) −3.56873 −0.119423
\(894\) 0 0
\(895\) 30.1778 1.00873
\(896\) 4.95403 0.165502
\(897\) 0 0
\(898\) 22.0294 0.735132
\(899\) 35.6856 1.19018
\(900\) 0 0
\(901\) 14.0910 0.469441
\(902\) −4.83685 −0.161050
\(903\) 0 0
\(904\) −0.653864 −0.0217472
\(905\) 69.1198 2.29762
\(906\) 0 0
\(907\) −53.7295 −1.78406 −0.892029 0.451977i \(-0.850719\pi\)
−0.892029 + 0.451977i \(0.850719\pi\)
\(908\) −14.8158 −0.491680
\(909\) 0 0
\(910\) 1.80152 0.0597197
\(911\) 17.7091 0.586728 0.293364 0.956001i \(-0.405225\pi\)
0.293364 + 0.956001i \(0.405225\pi\)
\(912\) 0 0
\(913\) −4.58824 −0.151848
\(914\) 27.1457 0.897900
\(915\) 0 0
\(916\) 21.9863 0.726447
\(917\) −78.6381 −2.59686
\(918\) 0 0
\(919\) 59.7641 1.97144 0.985718 0.168406i \(-0.0538619\pi\)
0.985718 + 0.168406i \(0.0538619\pi\)
\(920\) 8.67489 0.286003
\(921\) 0 0
\(922\) 27.6585 0.910885
\(923\) −0.289535 −0.00953015
\(924\) 0 0
\(925\) 71.4950 2.35074
\(926\) −31.2336 −1.02640
\(927\) 0 0
\(928\) −6.64864 −0.218252
\(929\) 53.9545 1.77019 0.885095 0.465410i \(-0.154093\pi\)
0.885095 + 0.465410i \(0.154093\pi\)
\(930\) 0 0
\(931\) −43.7141 −1.43267
\(932\) −17.7722 −0.582147
\(933\) 0 0
\(934\) −13.4254 −0.439294
\(935\) 2.46436 0.0805933
\(936\) 0 0
\(937\) −23.7929 −0.777280 −0.388640 0.921390i \(-0.627055\pi\)
−0.388640 + 0.921390i \(0.627055\pi\)
\(938\) −39.9431 −1.30419
\(939\) 0 0
\(940\) −5.50555 −0.179571
\(941\) 30.7434 1.00221 0.501103 0.865388i \(-0.332928\pi\)
0.501103 + 0.865388i \(0.332928\pi\)
\(942\) 0 0
\(943\) 24.0666 0.783716
\(944\) −7.89955 −0.257108
\(945\) 0 0
\(946\) 5.56758 0.181018
\(947\) −44.2821 −1.43897 −0.719487 0.694506i \(-0.755623\pi\)
−0.719487 + 0.694506i \(0.755623\pi\)
\(948\) 0 0
\(949\) −1.21329 −0.0393849
\(950\) 24.3682 0.790608
\(951\) 0 0
\(952\) −7.00247 −0.226951
\(953\) 9.40636 0.304702 0.152351 0.988326i \(-0.451316\pi\)
0.152351 + 0.988326i \(0.451316\pi\)
\(954\) 0 0
\(955\) −47.3059 −1.53078
\(956\) 12.0820 0.390759
\(957\) 0 0
\(958\) 2.09566 0.0677078
\(959\) −25.5644 −0.825517
\(960\) 0 0
\(961\) −2.19148 −0.0706930
\(962\) 0.691586 0.0222976
\(963\) 0 0
\(964\) 11.3215 0.364642
\(965\) −22.3819 −0.720500
\(966\) 0 0
\(967\) −56.8679 −1.82875 −0.914373 0.404872i \(-0.867316\pi\)
−0.914373 + 0.404872i \(0.867316\pi\)
\(968\) 10.7943 0.346943
\(969\) 0 0
\(970\) −49.6445 −1.59399
\(971\) 21.1723 0.679452 0.339726 0.940524i \(-0.389666\pi\)
0.339726 + 0.940524i \(0.389666\pi\)
\(972\) 0 0
\(973\) −75.4838 −2.41990
\(974\) 38.1661 1.22292
\(975\) 0 0
\(976\) 0.950317 0.0304189
\(977\) −6.11162 −0.195528 −0.0977641 0.995210i \(-0.531169\pi\)
−0.0977641 + 0.995210i \(0.531169\pi\)
\(978\) 0 0
\(979\) 0.806362 0.0257714
\(980\) −67.4387 −2.15425
\(981\) 0 0
\(982\) 6.36732 0.203189
\(983\) −42.4508 −1.35397 −0.676985 0.735997i \(-0.736714\pi\)
−0.676985 + 0.735997i \(0.736714\pi\)
\(984\) 0 0
\(985\) −83.2753 −2.65337
\(986\) 9.39778 0.299286
\(987\) 0 0
\(988\) 0.235718 0.00749919
\(989\) −27.7025 −0.880887
\(990\) 0 0
\(991\) −52.9269 −1.68128 −0.840640 0.541594i \(-0.817821\pi\)
−0.840640 + 0.541594i \(0.817821\pi\)
\(992\) −5.36736 −0.170414
\(993\) 0 0
\(994\) 15.1635 0.480957
\(995\) −21.9835 −0.696925
\(996\) 0 0
\(997\) −43.4208 −1.37515 −0.687575 0.726113i \(-0.741325\pi\)
−0.687575 + 0.726113i \(0.741325\pi\)
\(998\) −33.6939 −1.06656
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.n.1.2 7
3.2 odd 2 538.2.a.e.1.6 7
12.11 even 2 4304.2.a.h.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.6 7 3.2 odd 2
4304.2.a.h.1.2 7 12.11 even 2
4842.2.a.n.1.2 7 1.1 even 1 trivial