Properties

Label 4842.2.a.n.1.1
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 15x^{5} + 16x^{4} + 49x^{3} - 53x^{2} - 44x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.22542\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.15424 q^{5} +4.87818 q^{7} -1.00000 q^{8} +4.15424 q^{10} +1.62910 q^{11} -2.16682 q^{13} -4.87818 q^{14} +1.00000 q^{16} +6.78448 q^{17} -8.61766 q^{19} -4.15424 q^{20} -1.62910 q^{22} -2.76765 q^{23} +12.2577 q^{25} +2.16682 q^{26} +4.87818 q^{28} -2.10510 q^{29} -3.62414 q^{31} -1.00000 q^{32} -6.78448 q^{34} -20.2651 q^{35} +1.19760 q^{37} +8.61766 q^{38} +4.15424 q^{40} -5.43715 q^{41} -9.63402 q^{43} +1.62910 q^{44} +2.76765 q^{46} +7.07613 q^{47} +16.7967 q^{49} -12.2577 q^{50} -2.16682 q^{52} +3.03890 q^{53} -6.76765 q^{55} -4.87818 q^{56} +2.10510 q^{58} -4.21827 q^{59} +8.74744 q^{61} +3.62414 q^{62} +1.00000 q^{64} +9.00148 q^{65} -1.50761 q^{67} +6.78448 q^{68} +20.2651 q^{70} -11.0270 q^{71} +1.37039 q^{73} -1.19760 q^{74} -8.61766 q^{76} +7.94703 q^{77} -14.9749 q^{79} -4.15424 q^{80} +5.43715 q^{82} +8.08276 q^{83} -28.1843 q^{85} +9.63402 q^{86} -1.62910 q^{88} -3.31299 q^{89} -10.5701 q^{91} -2.76765 q^{92} -7.07613 q^{94} +35.7998 q^{95} +16.8474 q^{97} -16.7967 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{2} + 7 q^{4} - 7 q^{5} + 6 q^{7} - 7 q^{8} + 7 q^{10} + 3 q^{11} - 9 q^{13} - 6 q^{14} + 7 q^{16} - 8 q^{17} - 11 q^{19} - 7 q^{20} - 3 q^{22} - 12 q^{23} + 22 q^{25} + 9 q^{26} + 6 q^{28} + 5 q^{29}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −4.15424 −1.85783 −0.928916 0.370291i \(-0.879258\pi\)
−0.928916 + 0.370291i \(0.879258\pi\)
\(6\) 0 0
\(7\) 4.87818 1.84378 0.921890 0.387452i \(-0.126645\pi\)
0.921890 + 0.387452i \(0.126645\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 4.15424 1.31369
\(11\) 1.62910 0.491191 0.245596 0.969372i \(-0.421016\pi\)
0.245596 + 0.969372i \(0.421016\pi\)
\(12\) 0 0
\(13\) −2.16682 −0.600968 −0.300484 0.953787i \(-0.597148\pi\)
−0.300484 + 0.953787i \(0.597148\pi\)
\(14\) −4.87818 −1.30375
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.78448 1.64548 0.822739 0.568420i \(-0.192445\pi\)
0.822739 + 0.568420i \(0.192445\pi\)
\(18\) 0 0
\(19\) −8.61766 −1.97703 −0.988513 0.151136i \(-0.951707\pi\)
−0.988513 + 0.151136i \(0.951707\pi\)
\(20\) −4.15424 −0.928916
\(21\) 0 0
\(22\) −1.62910 −0.347325
\(23\) −2.76765 −0.577096 −0.288548 0.957465i \(-0.593172\pi\)
−0.288548 + 0.957465i \(0.593172\pi\)
\(24\) 0 0
\(25\) 12.2577 2.45154
\(26\) 2.16682 0.424948
\(27\) 0 0
\(28\) 4.87818 0.921890
\(29\) −2.10510 −0.390907 −0.195454 0.980713i \(-0.562618\pi\)
−0.195454 + 0.980713i \(0.562618\pi\)
\(30\) 0 0
\(31\) −3.62414 −0.650914 −0.325457 0.945557i \(-0.605518\pi\)
−0.325457 + 0.945557i \(0.605518\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −6.78448 −1.16353
\(35\) −20.2651 −3.42543
\(36\) 0 0
\(37\) 1.19760 0.196885 0.0984424 0.995143i \(-0.468614\pi\)
0.0984424 + 0.995143i \(0.468614\pi\)
\(38\) 8.61766 1.39797
\(39\) 0 0
\(40\) 4.15424 0.656843
\(41\) −5.43715 −0.849140 −0.424570 0.905395i \(-0.639575\pi\)
−0.424570 + 0.905395i \(0.639575\pi\)
\(42\) 0 0
\(43\) −9.63402 −1.46917 −0.734587 0.678514i \(-0.762624\pi\)
−0.734587 + 0.678514i \(0.762624\pi\)
\(44\) 1.62910 0.245596
\(45\) 0 0
\(46\) 2.76765 0.408068
\(47\) 7.07613 1.03216 0.516080 0.856541i \(-0.327391\pi\)
0.516080 + 0.856541i \(0.327391\pi\)
\(48\) 0 0
\(49\) 16.7967 2.39952
\(50\) −12.2577 −1.73350
\(51\) 0 0
\(52\) −2.16682 −0.300484
\(53\) 3.03890 0.417425 0.208712 0.977977i \(-0.433073\pi\)
0.208712 + 0.977977i \(0.433073\pi\)
\(54\) 0 0
\(55\) −6.76765 −0.912550
\(56\) −4.87818 −0.651875
\(57\) 0 0
\(58\) 2.10510 0.276413
\(59\) −4.21827 −0.549172 −0.274586 0.961563i \(-0.588541\pi\)
−0.274586 + 0.961563i \(0.588541\pi\)
\(60\) 0 0
\(61\) 8.74744 1.11999 0.559997 0.828494i \(-0.310802\pi\)
0.559997 + 0.828494i \(0.310802\pi\)
\(62\) 3.62414 0.460266
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 9.00148 1.11650
\(66\) 0 0
\(67\) −1.50761 −0.184184 −0.0920921 0.995750i \(-0.529355\pi\)
−0.0920921 + 0.995750i \(0.529355\pi\)
\(68\) 6.78448 0.822739
\(69\) 0 0
\(70\) 20.2651 2.42215
\(71\) −11.0270 −1.30866 −0.654331 0.756208i \(-0.727050\pi\)
−0.654331 + 0.756208i \(0.727050\pi\)
\(72\) 0 0
\(73\) 1.37039 0.160391 0.0801957 0.996779i \(-0.474445\pi\)
0.0801957 + 0.996779i \(0.474445\pi\)
\(74\) −1.19760 −0.139219
\(75\) 0 0
\(76\) −8.61766 −0.988513
\(77\) 7.94703 0.905648
\(78\) 0 0
\(79\) −14.9749 −1.68480 −0.842401 0.538850i \(-0.818859\pi\)
−0.842401 + 0.538850i \(0.818859\pi\)
\(80\) −4.15424 −0.464458
\(81\) 0 0
\(82\) 5.43715 0.600432
\(83\) 8.08276 0.887198 0.443599 0.896225i \(-0.353701\pi\)
0.443599 + 0.896225i \(0.353701\pi\)
\(84\) 0 0
\(85\) −28.1843 −3.05702
\(86\) 9.63402 1.03886
\(87\) 0 0
\(88\) −1.62910 −0.173662
\(89\) −3.31299 −0.351176 −0.175588 0.984464i \(-0.556183\pi\)
−0.175588 + 0.984464i \(0.556183\pi\)
\(90\) 0 0
\(91\) −10.5701 −1.10805
\(92\) −2.76765 −0.288548
\(93\) 0 0
\(94\) −7.07613 −0.729847
\(95\) 35.7998 3.67298
\(96\) 0 0
\(97\) 16.8474 1.71059 0.855296 0.518139i \(-0.173375\pi\)
0.855296 + 0.518139i \(0.173375\pi\)
\(98\) −16.7967 −1.69672
\(99\) 0 0
\(100\) 12.2577 1.22577
\(101\) −2.93034 −0.291580 −0.145790 0.989316i \(-0.546572\pi\)
−0.145790 + 0.989316i \(0.546572\pi\)
\(102\) 0 0
\(103\) 1.25819 0.123973 0.0619867 0.998077i \(-0.480256\pi\)
0.0619867 + 0.998077i \(0.480256\pi\)
\(104\) 2.16682 0.212474
\(105\) 0 0
\(106\) −3.03890 −0.295164
\(107\) −9.35946 −0.904813 −0.452407 0.891812i \(-0.649434\pi\)
−0.452407 + 0.891812i \(0.649434\pi\)
\(108\) 0 0
\(109\) 11.4192 1.09376 0.546882 0.837210i \(-0.315815\pi\)
0.546882 + 0.837210i \(0.315815\pi\)
\(110\) 6.76765 0.645270
\(111\) 0 0
\(112\) 4.87818 0.460945
\(113\) −0.316816 −0.0298036 −0.0149018 0.999889i \(-0.504744\pi\)
−0.0149018 + 0.999889i \(0.504744\pi\)
\(114\) 0 0
\(115\) 11.4975 1.07215
\(116\) −2.10510 −0.195454
\(117\) 0 0
\(118\) 4.21827 0.388323
\(119\) 33.0959 3.03390
\(120\) 0 0
\(121\) −8.34604 −0.758731
\(122\) −8.74744 −0.791956
\(123\) 0 0
\(124\) −3.62414 −0.325457
\(125\) −30.1501 −2.69671
\(126\) 0 0
\(127\) −2.08772 −0.185255 −0.0926276 0.995701i \(-0.529527\pi\)
−0.0926276 + 0.995701i \(0.529527\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −9.00148 −0.789482
\(131\) 5.17397 0.452052 0.226026 0.974121i \(-0.427427\pi\)
0.226026 + 0.974121i \(0.427427\pi\)
\(132\) 0 0
\(133\) −42.0385 −3.64520
\(134\) 1.50761 0.130238
\(135\) 0 0
\(136\) −6.78448 −0.581764
\(137\) −6.35949 −0.543328 −0.271664 0.962392i \(-0.587574\pi\)
−0.271664 + 0.962392i \(0.587574\pi\)
\(138\) 0 0
\(139\) −10.6786 −0.905746 −0.452873 0.891575i \(-0.649601\pi\)
−0.452873 + 0.891575i \(0.649601\pi\)
\(140\) −20.2651 −1.71272
\(141\) 0 0
\(142\) 11.0270 0.925364
\(143\) −3.52996 −0.295190
\(144\) 0 0
\(145\) 8.74508 0.726239
\(146\) −1.37039 −0.113414
\(147\) 0 0
\(148\) 1.19760 0.0984424
\(149\) 3.47426 0.284622 0.142311 0.989822i \(-0.454547\pi\)
0.142311 + 0.989822i \(0.454547\pi\)
\(150\) 0 0
\(151\) 11.2407 0.914752 0.457376 0.889273i \(-0.348789\pi\)
0.457376 + 0.889273i \(0.348789\pi\)
\(152\) 8.61766 0.698984
\(153\) 0 0
\(154\) −7.94703 −0.640390
\(155\) 15.0555 1.20929
\(156\) 0 0
\(157\) 8.59533 0.685982 0.342991 0.939339i \(-0.388560\pi\)
0.342991 + 0.939339i \(0.388560\pi\)
\(158\) 14.9749 1.19134
\(159\) 0 0
\(160\) 4.15424 0.328421
\(161\) −13.5011 −1.06404
\(162\) 0 0
\(163\) 10.1530 0.795241 0.397621 0.917550i \(-0.369836\pi\)
0.397621 + 0.917550i \(0.369836\pi\)
\(164\) −5.43715 −0.424570
\(165\) 0 0
\(166\) −8.08276 −0.627344
\(167\) −4.37572 −0.338604 −0.169302 0.985564i \(-0.554151\pi\)
−0.169302 + 0.985564i \(0.554151\pi\)
\(168\) 0 0
\(169\) −8.30489 −0.638838
\(170\) 28.1843 2.16164
\(171\) 0 0
\(172\) −9.63402 −0.734587
\(173\) 22.7651 1.73080 0.865398 0.501085i \(-0.167066\pi\)
0.865398 + 0.501085i \(0.167066\pi\)
\(174\) 0 0
\(175\) 59.7952 4.52009
\(176\) 1.62910 0.122798
\(177\) 0 0
\(178\) 3.31299 0.248319
\(179\) −12.1634 −0.909139 −0.454569 0.890711i \(-0.650207\pi\)
−0.454569 + 0.890711i \(0.650207\pi\)
\(180\) 0 0
\(181\) −4.61048 −0.342694 −0.171347 0.985211i \(-0.554812\pi\)
−0.171347 + 0.985211i \(0.554812\pi\)
\(182\) 10.5701 0.783511
\(183\) 0 0
\(184\) 2.76765 0.204034
\(185\) −4.97513 −0.365779
\(186\) 0 0
\(187\) 11.0526 0.808244
\(188\) 7.07613 0.516080
\(189\) 0 0
\(190\) −35.7998 −2.59719
\(191\) −3.30553 −0.239180 −0.119590 0.992823i \(-0.538158\pi\)
−0.119590 + 0.992823i \(0.538158\pi\)
\(192\) 0 0
\(193\) −18.5157 −1.33279 −0.666394 0.745600i \(-0.732163\pi\)
−0.666394 + 0.745600i \(0.732163\pi\)
\(194\) −16.8474 −1.20957
\(195\) 0 0
\(196\) 16.7967 1.19976
\(197\) −8.78109 −0.625627 −0.312814 0.949815i \(-0.601271\pi\)
−0.312814 + 0.949815i \(0.601271\pi\)
\(198\) 0 0
\(199\) −12.4370 −0.881634 −0.440817 0.897597i \(-0.645311\pi\)
−0.440817 + 0.897597i \(0.645311\pi\)
\(200\) −12.2577 −0.866749
\(201\) 0 0
\(202\) 2.93034 0.206178
\(203\) −10.2691 −0.720746
\(204\) 0 0
\(205\) 22.5872 1.57756
\(206\) −1.25819 −0.0876625
\(207\) 0 0
\(208\) −2.16682 −0.150242
\(209\) −14.0390 −0.971098
\(210\) 0 0
\(211\) −10.9290 −0.752381 −0.376191 0.926542i \(-0.622766\pi\)
−0.376191 + 0.926542i \(0.622766\pi\)
\(212\) 3.03890 0.208712
\(213\) 0 0
\(214\) 9.35946 0.639800
\(215\) 40.0220 2.72948
\(216\) 0 0
\(217\) −17.6792 −1.20014
\(218\) −11.4192 −0.773408
\(219\) 0 0
\(220\) −6.76765 −0.456275
\(221\) −14.7007 −0.988879
\(222\) 0 0
\(223\) 8.79372 0.588871 0.294436 0.955671i \(-0.404868\pi\)
0.294436 + 0.955671i \(0.404868\pi\)
\(224\) −4.87818 −0.325937
\(225\) 0 0
\(226\) 0.316816 0.0210743
\(227\) −6.74871 −0.447928 −0.223964 0.974597i \(-0.571900\pi\)
−0.223964 + 0.974597i \(0.571900\pi\)
\(228\) 0 0
\(229\) −23.2606 −1.53711 −0.768553 0.639787i \(-0.779023\pi\)
−0.768553 + 0.639787i \(0.779023\pi\)
\(230\) −11.4975 −0.758122
\(231\) 0 0
\(232\) 2.10510 0.138206
\(233\) −11.0721 −0.725357 −0.362679 0.931914i \(-0.618138\pi\)
−0.362679 + 0.931914i \(0.618138\pi\)
\(234\) 0 0
\(235\) −29.3959 −1.91758
\(236\) −4.21827 −0.274586
\(237\) 0 0
\(238\) −33.0959 −2.14529
\(239\) 3.99072 0.258138 0.129069 0.991636i \(-0.458801\pi\)
0.129069 + 0.991636i \(0.458801\pi\)
\(240\) 0 0
\(241\) −16.5408 −1.06549 −0.532745 0.846276i \(-0.678839\pi\)
−0.532745 + 0.846276i \(0.678839\pi\)
\(242\) 8.34604 0.536504
\(243\) 0 0
\(244\) 8.74744 0.559997
\(245\) −69.7773 −4.45791
\(246\) 0 0
\(247\) 18.6729 1.18813
\(248\) 3.62414 0.230133
\(249\) 0 0
\(250\) 30.1501 1.90686
\(251\) −24.0533 −1.51823 −0.759117 0.650955i \(-0.774369\pi\)
−0.759117 + 0.650955i \(0.774369\pi\)
\(252\) 0 0
\(253\) −4.50877 −0.283464
\(254\) 2.08772 0.130995
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 13.6822 0.853470 0.426735 0.904377i \(-0.359664\pi\)
0.426735 + 0.904377i \(0.359664\pi\)
\(258\) 0 0
\(259\) 5.84213 0.363012
\(260\) 9.00148 0.558248
\(261\) 0 0
\(262\) −5.17397 −0.319649
\(263\) −11.3942 −0.702596 −0.351298 0.936264i \(-0.614260\pi\)
−0.351298 + 0.936264i \(0.614260\pi\)
\(264\) 0 0
\(265\) −12.6243 −0.775505
\(266\) 42.0385 2.57755
\(267\) 0 0
\(268\) −1.50761 −0.0920921
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) −24.6167 −1.49536 −0.747679 0.664061i \(-0.768832\pi\)
−0.747679 + 0.664061i \(0.768832\pi\)
\(272\) 6.78448 0.411369
\(273\) 0 0
\(274\) 6.35949 0.384191
\(275\) 19.9690 1.20417
\(276\) 0 0
\(277\) 4.70762 0.282853 0.141427 0.989949i \(-0.454831\pi\)
0.141427 + 0.989949i \(0.454831\pi\)
\(278\) 10.6786 0.640459
\(279\) 0 0
\(280\) 20.2651 1.21107
\(281\) −6.51540 −0.388676 −0.194338 0.980935i \(-0.562256\pi\)
−0.194338 + 0.980935i \(0.562256\pi\)
\(282\) 0 0
\(283\) −8.67417 −0.515626 −0.257813 0.966195i \(-0.583002\pi\)
−0.257813 + 0.966195i \(0.583002\pi\)
\(284\) −11.0270 −0.654331
\(285\) 0 0
\(286\) 3.52996 0.208731
\(287\) −26.5234 −1.56563
\(288\) 0 0
\(289\) 29.0291 1.70760
\(290\) −8.74508 −0.513529
\(291\) 0 0
\(292\) 1.37039 0.0801957
\(293\) −20.3798 −1.19060 −0.595300 0.803504i \(-0.702967\pi\)
−0.595300 + 0.803504i \(0.702967\pi\)
\(294\) 0 0
\(295\) 17.5237 1.02027
\(296\) −1.19760 −0.0696093
\(297\) 0 0
\(298\) −3.47426 −0.201258
\(299\) 5.99701 0.346816
\(300\) 0 0
\(301\) −46.9965 −2.70883
\(302\) −11.2407 −0.646827
\(303\) 0 0
\(304\) −8.61766 −0.494256
\(305\) −36.3389 −2.08076
\(306\) 0 0
\(307\) −17.5028 −0.998939 −0.499470 0.866331i \(-0.666472\pi\)
−0.499470 + 0.866331i \(0.666472\pi\)
\(308\) 7.94703 0.452824
\(309\) 0 0
\(310\) −15.0555 −0.855096
\(311\) −22.4715 −1.27424 −0.637120 0.770764i \(-0.719875\pi\)
−0.637120 + 0.770764i \(0.719875\pi\)
\(312\) 0 0
\(313\) −32.6321 −1.84447 −0.922236 0.386626i \(-0.873640\pi\)
−0.922236 + 0.386626i \(0.873640\pi\)
\(314\) −8.59533 −0.485063
\(315\) 0 0
\(316\) −14.9749 −0.842401
\(317\) 19.5532 1.09822 0.549110 0.835750i \(-0.314967\pi\)
0.549110 + 0.835750i \(0.314967\pi\)
\(318\) 0 0
\(319\) −3.42941 −0.192010
\(320\) −4.15424 −0.232229
\(321\) 0 0
\(322\) 13.5011 0.752388
\(323\) −58.4663 −3.25315
\(324\) 0 0
\(325\) −26.5602 −1.47329
\(326\) −10.1530 −0.562321
\(327\) 0 0
\(328\) 5.43715 0.300216
\(329\) 34.5186 1.90307
\(330\) 0 0
\(331\) −20.1680 −1.10853 −0.554266 0.832340i \(-0.687001\pi\)
−0.554266 + 0.832340i \(0.687001\pi\)
\(332\) 8.08276 0.443599
\(333\) 0 0
\(334\) 4.37572 0.239429
\(335\) 6.26298 0.342183
\(336\) 0 0
\(337\) 29.1409 1.58741 0.793704 0.608305i \(-0.208150\pi\)
0.793704 + 0.608305i \(0.208150\pi\)
\(338\) 8.30489 0.451727
\(339\) 0 0
\(340\) −28.1843 −1.52851
\(341\) −5.90407 −0.319723
\(342\) 0 0
\(343\) 47.7899 2.58041
\(344\) 9.63402 0.519432
\(345\) 0 0
\(346\) −22.7651 −1.22386
\(347\) −12.2141 −0.655686 −0.327843 0.944732i \(-0.606322\pi\)
−0.327843 + 0.944732i \(0.606322\pi\)
\(348\) 0 0
\(349\) 15.3346 0.820843 0.410421 0.911896i \(-0.365382\pi\)
0.410421 + 0.911896i \(0.365382\pi\)
\(350\) −59.7952 −3.19619
\(351\) 0 0
\(352\) −1.62910 −0.0868311
\(353\) −30.6859 −1.63324 −0.816622 0.577173i \(-0.804156\pi\)
−0.816622 + 0.577173i \(0.804156\pi\)
\(354\) 0 0
\(355\) 45.8087 2.43127
\(356\) −3.31299 −0.175588
\(357\) 0 0
\(358\) 12.1634 0.642858
\(359\) −0.344824 −0.0181991 −0.00909956 0.999959i \(-0.502897\pi\)
−0.00909956 + 0.999959i \(0.502897\pi\)
\(360\) 0 0
\(361\) 55.2640 2.90863
\(362\) 4.61048 0.242322
\(363\) 0 0
\(364\) −10.5701 −0.554026
\(365\) −5.69291 −0.297980
\(366\) 0 0
\(367\) 22.3072 1.16443 0.582214 0.813035i \(-0.302186\pi\)
0.582214 + 0.813035i \(0.302186\pi\)
\(368\) −2.76765 −0.144274
\(369\) 0 0
\(370\) 4.97513 0.258645
\(371\) 14.8243 0.769640
\(372\) 0 0
\(373\) −5.92843 −0.306962 −0.153481 0.988152i \(-0.549048\pi\)
−0.153481 + 0.988152i \(0.549048\pi\)
\(374\) −11.0526 −0.571515
\(375\) 0 0
\(376\) −7.07613 −0.364923
\(377\) 4.56137 0.234922
\(378\) 0 0
\(379\) −2.01119 −0.103308 −0.0516540 0.998665i \(-0.516449\pi\)
−0.0516540 + 0.998665i \(0.516449\pi\)
\(380\) 35.7998 1.83649
\(381\) 0 0
\(382\) 3.30553 0.169126
\(383\) −4.21696 −0.215477 −0.107738 0.994179i \(-0.534361\pi\)
−0.107738 + 0.994179i \(0.534361\pi\)
\(384\) 0 0
\(385\) −33.0138 −1.68254
\(386\) 18.5157 0.942423
\(387\) 0 0
\(388\) 16.8474 0.855296
\(389\) −4.54939 −0.230663 −0.115332 0.993327i \(-0.536793\pi\)
−0.115332 + 0.993327i \(0.536793\pi\)
\(390\) 0 0
\(391\) −18.7771 −0.949598
\(392\) −16.7967 −0.848360
\(393\) 0 0
\(394\) 8.78109 0.442385
\(395\) 62.2091 3.13008
\(396\) 0 0
\(397\) −15.2162 −0.763677 −0.381839 0.924229i \(-0.624709\pi\)
−0.381839 + 0.924229i \(0.624709\pi\)
\(398\) 12.4370 0.623409
\(399\) 0 0
\(400\) 12.2577 0.612884
\(401\) −18.4280 −0.920250 −0.460125 0.887854i \(-0.652195\pi\)
−0.460125 + 0.887854i \(0.652195\pi\)
\(402\) 0 0
\(403\) 7.85285 0.391178
\(404\) −2.93034 −0.145790
\(405\) 0 0
\(406\) 10.2691 0.509645
\(407\) 1.95101 0.0967081
\(408\) 0 0
\(409\) 36.3293 1.79637 0.898184 0.439619i \(-0.144887\pi\)
0.898184 + 0.439619i \(0.144887\pi\)
\(410\) −22.5872 −1.11550
\(411\) 0 0
\(412\) 1.25819 0.0619867
\(413\) −20.5775 −1.01255
\(414\) 0 0
\(415\) −33.5777 −1.64826
\(416\) 2.16682 0.106237
\(417\) 0 0
\(418\) 14.0390 0.686670
\(419\) 6.63242 0.324015 0.162007 0.986790i \(-0.448203\pi\)
0.162007 + 0.986790i \(0.448203\pi\)
\(420\) 0 0
\(421\) −33.1090 −1.61363 −0.806817 0.590801i \(-0.798812\pi\)
−0.806817 + 0.590801i \(0.798812\pi\)
\(422\) 10.9290 0.532014
\(423\) 0 0
\(424\) −3.03890 −0.147582
\(425\) 83.1620 4.03395
\(426\) 0 0
\(427\) 42.6716 2.06502
\(428\) −9.35946 −0.452407
\(429\) 0 0
\(430\) −40.0220 −1.93003
\(431\) 16.6498 0.801995 0.400997 0.916079i \(-0.368664\pi\)
0.400997 + 0.916079i \(0.368664\pi\)
\(432\) 0 0
\(433\) 5.36131 0.257648 0.128824 0.991667i \(-0.458880\pi\)
0.128824 + 0.991667i \(0.458880\pi\)
\(434\) 17.6792 0.848629
\(435\) 0 0
\(436\) 11.4192 0.546882
\(437\) 23.8507 1.14093
\(438\) 0 0
\(439\) −5.42961 −0.259141 −0.129571 0.991570i \(-0.541360\pi\)
−0.129571 + 0.991570i \(0.541360\pi\)
\(440\) 6.76765 0.322635
\(441\) 0 0
\(442\) 14.7007 0.699243
\(443\) −3.66946 −0.174341 −0.0871706 0.996193i \(-0.527783\pi\)
−0.0871706 + 0.996193i \(0.527783\pi\)
\(444\) 0 0
\(445\) 13.7629 0.652426
\(446\) −8.79372 −0.416395
\(447\) 0 0
\(448\) 4.87818 0.230472
\(449\) −6.43513 −0.303693 −0.151846 0.988404i \(-0.548522\pi\)
−0.151846 + 0.988404i \(0.548522\pi\)
\(450\) 0 0
\(451\) −8.85764 −0.417090
\(452\) −0.316816 −0.0149018
\(453\) 0 0
\(454\) 6.74871 0.316733
\(455\) 43.9109 2.05857
\(456\) 0 0
\(457\) 2.97606 0.139214 0.0696071 0.997574i \(-0.477825\pi\)
0.0696071 + 0.997574i \(0.477825\pi\)
\(458\) 23.2606 1.08690
\(459\) 0 0
\(460\) 11.4975 0.536073
\(461\) −9.73958 −0.453617 −0.226809 0.973939i \(-0.572829\pi\)
−0.226809 + 0.973939i \(0.572829\pi\)
\(462\) 0 0
\(463\) −19.9810 −0.928598 −0.464299 0.885679i \(-0.653694\pi\)
−0.464299 + 0.885679i \(0.653694\pi\)
\(464\) −2.10510 −0.0977268
\(465\) 0 0
\(466\) 11.0721 0.512905
\(467\) 14.3949 0.666115 0.333057 0.942907i \(-0.391920\pi\)
0.333057 + 0.942907i \(0.391920\pi\)
\(468\) 0 0
\(469\) −7.35441 −0.339595
\(470\) 29.3959 1.35593
\(471\) 0 0
\(472\) 4.21827 0.194161
\(473\) −15.6947 −0.721645
\(474\) 0 0
\(475\) −105.633 −4.84675
\(476\) 33.0959 1.51695
\(477\) 0 0
\(478\) −3.99072 −0.182531
\(479\) 22.4679 1.02659 0.513293 0.858213i \(-0.328425\pi\)
0.513293 + 0.858213i \(0.328425\pi\)
\(480\) 0 0
\(481\) −2.59499 −0.118321
\(482\) 16.5408 0.753415
\(483\) 0 0
\(484\) −8.34604 −0.379366
\(485\) −69.9880 −3.17799
\(486\) 0 0
\(487\) −15.3289 −0.694618 −0.347309 0.937751i \(-0.612904\pi\)
−0.347309 + 0.937751i \(0.612904\pi\)
\(488\) −8.74744 −0.395978
\(489\) 0 0
\(490\) 69.7773 3.15222
\(491\) 23.8945 1.07834 0.539172 0.842196i \(-0.318737\pi\)
0.539172 + 0.842196i \(0.318737\pi\)
\(492\) 0 0
\(493\) −14.2820 −0.643229
\(494\) −18.6729 −0.840134
\(495\) 0 0
\(496\) −3.62414 −0.162729
\(497\) −53.7917 −2.41289
\(498\) 0 0
\(499\) −15.7627 −0.705635 −0.352818 0.935692i \(-0.614776\pi\)
−0.352818 + 0.935692i \(0.614776\pi\)
\(500\) −30.1501 −1.34836
\(501\) 0 0
\(502\) 24.0533 1.07355
\(503\) −0.635388 −0.0283305 −0.0141653 0.999900i \(-0.504509\pi\)
−0.0141653 + 0.999900i \(0.504509\pi\)
\(504\) 0 0
\(505\) 12.1733 0.541706
\(506\) 4.50877 0.200439
\(507\) 0 0
\(508\) −2.08772 −0.0926276
\(509\) −1.74035 −0.0771399 −0.0385699 0.999256i \(-0.512280\pi\)
−0.0385699 + 0.999256i \(0.512280\pi\)
\(510\) 0 0
\(511\) 6.68499 0.295727
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −13.6822 −0.603495
\(515\) −5.22683 −0.230322
\(516\) 0 0
\(517\) 11.5277 0.506987
\(518\) −5.84213 −0.256688
\(519\) 0 0
\(520\) −9.00148 −0.394741
\(521\) −10.5683 −0.463004 −0.231502 0.972834i \(-0.574364\pi\)
−0.231502 + 0.972834i \(0.574364\pi\)
\(522\) 0 0
\(523\) 10.5329 0.460572 0.230286 0.973123i \(-0.426034\pi\)
0.230286 + 0.973123i \(0.426034\pi\)
\(524\) 5.17397 0.226026
\(525\) 0 0
\(526\) 11.3942 0.496810
\(527\) −24.5879 −1.07106
\(528\) 0 0
\(529\) −15.3401 −0.666961
\(530\) 12.6243 0.548365
\(531\) 0 0
\(532\) −42.0385 −1.82260
\(533\) 11.7813 0.510305
\(534\) 0 0
\(535\) 38.8814 1.68099
\(536\) 1.50761 0.0651189
\(537\) 0 0
\(538\) −1.00000 −0.0431131
\(539\) 27.3634 1.17862
\(540\) 0 0
\(541\) −0.0839881 −0.00361093 −0.00180546 0.999998i \(-0.500575\pi\)
−0.00180546 + 0.999998i \(0.500575\pi\)
\(542\) 24.6167 1.05738
\(543\) 0 0
\(544\) −6.78448 −0.290882
\(545\) −47.4382 −2.03203
\(546\) 0 0
\(547\) 1.38614 0.0592669 0.0296334 0.999561i \(-0.490566\pi\)
0.0296334 + 0.999561i \(0.490566\pi\)
\(548\) −6.35949 −0.271664
\(549\) 0 0
\(550\) −19.9690 −0.851479
\(551\) 18.1410 0.772833
\(552\) 0 0
\(553\) −73.0501 −3.10641
\(554\) −4.70762 −0.200008
\(555\) 0 0
\(556\) −10.6786 −0.452873
\(557\) −17.1840 −0.728111 −0.364056 0.931377i \(-0.618608\pi\)
−0.364056 + 0.931377i \(0.618608\pi\)
\(558\) 0 0
\(559\) 20.8752 0.882926
\(560\) −20.2651 −0.856358
\(561\) 0 0
\(562\) 6.51540 0.274836
\(563\) 12.1968 0.514033 0.257017 0.966407i \(-0.417260\pi\)
0.257017 + 0.966407i \(0.417260\pi\)
\(564\) 0 0
\(565\) 1.31613 0.0553700
\(566\) 8.67417 0.364602
\(567\) 0 0
\(568\) 11.0270 0.462682
\(569\) −23.4816 −0.984401 −0.492201 0.870482i \(-0.663807\pi\)
−0.492201 + 0.870482i \(0.663807\pi\)
\(570\) 0 0
\(571\) −2.61940 −0.109619 −0.0548093 0.998497i \(-0.517455\pi\)
−0.0548093 + 0.998497i \(0.517455\pi\)
\(572\) −3.52996 −0.147595
\(573\) 0 0
\(574\) 26.5234 1.10707
\(575\) −33.9250 −1.41477
\(576\) 0 0
\(577\) 12.1035 0.503874 0.251937 0.967744i \(-0.418932\pi\)
0.251937 + 0.967744i \(0.418932\pi\)
\(578\) −29.0291 −1.20745
\(579\) 0 0
\(580\) 8.74508 0.363120
\(581\) 39.4292 1.63580
\(582\) 0 0
\(583\) 4.95066 0.205035
\(584\) −1.37039 −0.0567070
\(585\) 0 0
\(586\) 20.3798 0.841881
\(587\) 3.09578 0.127776 0.0638882 0.997957i \(-0.479650\pi\)
0.0638882 + 0.997957i \(0.479650\pi\)
\(588\) 0 0
\(589\) 31.2316 1.28687
\(590\) −17.5237 −0.721439
\(591\) 0 0
\(592\) 1.19760 0.0492212
\(593\) 24.1730 0.992666 0.496333 0.868132i \(-0.334679\pi\)
0.496333 + 0.868132i \(0.334679\pi\)
\(594\) 0 0
\(595\) −137.488 −5.63647
\(596\) 3.47426 0.142311
\(597\) 0 0
\(598\) −5.99701 −0.245236
\(599\) −39.0984 −1.59752 −0.798759 0.601651i \(-0.794510\pi\)
−0.798759 + 0.601651i \(0.794510\pi\)
\(600\) 0 0
\(601\) −29.5069 −1.20361 −0.601807 0.798642i \(-0.705552\pi\)
−0.601807 + 0.798642i \(0.705552\pi\)
\(602\) 46.9965 1.91543
\(603\) 0 0
\(604\) 11.2407 0.457376
\(605\) 34.6714 1.40959
\(606\) 0 0
\(607\) 17.2674 0.700861 0.350431 0.936589i \(-0.386035\pi\)
0.350431 + 0.936589i \(0.386035\pi\)
\(608\) 8.61766 0.349492
\(609\) 0 0
\(610\) 36.3389 1.47132
\(611\) −15.3327 −0.620294
\(612\) 0 0
\(613\) −7.94254 −0.320796 −0.160398 0.987052i \(-0.551278\pi\)
−0.160398 + 0.987052i \(0.551278\pi\)
\(614\) 17.5028 0.706357
\(615\) 0 0
\(616\) −7.94703 −0.320195
\(617\) −18.0886 −0.728218 −0.364109 0.931356i \(-0.618626\pi\)
−0.364109 + 0.931356i \(0.618626\pi\)
\(618\) 0 0
\(619\) −33.4949 −1.34627 −0.673136 0.739518i \(-0.735053\pi\)
−0.673136 + 0.739518i \(0.735053\pi\)
\(620\) 15.0555 0.604644
\(621\) 0 0
\(622\) 22.4715 0.901024
\(623\) −16.1614 −0.647491
\(624\) 0 0
\(625\) 63.9624 2.55850
\(626\) 32.6321 1.30424
\(627\) 0 0
\(628\) 8.59533 0.342991
\(629\) 8.12512 0.323970
\(630\) 0 0
\(631\) 37.3162 1.48554 0.742768 0.669549i \(-0.233512\pi\)
0.742768 + 0.669549i \(0.233512\pi\)
\(632\) 14.9749 0.595668
\(633\) 0 0
\(634\) −19.5532 −0.776559
\(635\) 8.67288 0.344173
\(636\) 0 0
\(637\) −36.3954 −1.44204
\(638\) 3.42941 0.135772
\(639\) 0 0
\(640\) 4.15424 0.164211
\(641\) 18.0393 0.712509 0.356254 0.934389i \(-0.384054\pi\)
0.356254 + 0.934389i \(0.384054\pi\)
\(642\) 0 0
\(643\) −33.0496 −1.30335 −0.651675 0.758498i \(-0.725933\pi\)
−0.651675 + 0.758498i \(0.725933\pi\)
\(644\) −13.5011 −0.532019
\(645\) 0 0
\(646\) 58.4663 2.30033
\(647\) 40.3067 1.58462 0.792310 0.610118i \(-0.208878\pi\)
0.792310 + 0.610118i \(0.208878\pi\)
\(648\) 0 0
\(649\) −6.87196 −0.269748
\(650\) 26.5602 1.04178
\(651\) 0 0
\(652\) 10.1530 0.397621
\(653\) 21.3784 0.836601 0.418300 0.908309i \(-0.362626\pi\)
0.418300 + 0.908309i \(0.362626\pi\)
\(654\) 0 0
\(655\) −21.4939 −0.839836
\(656\) −5.43715 −0.212285
\(657\) 0 0
\(658\) −34.5186 −1.34568
\(659\) −23.1777 −0.902875 −0.451438 0.892303i \(-0.649089\pi\)
−0.451438 + 0.892303i \(0.649089\pi\)
\(660\) 0 0
\(661\) −3.96791 −0.154334 −0.0771669 0.997018i \(-0.524587\pi\)
−0.0771669 + 0.997018i \(0.524587\pi\)
\(662\) 20.1680 0.783850
\(663\) 0 0
\(664\) −8.08276 −0.313672
\(665\) 174.638 6.77217
\(666\) 0 0
\(667\) 5.82618 0.225591
\(668\) −4.37572 −0.169302
\(669\) 0 0
\(670\) −6.26298 −0.241960
\(671\) 14.2504 0.550131
\(672\) 0 0
\(673\) 32.9589 1.27047 0.635235 0.772319i \(-0.280903\pi\)
0.635235 + 0.772319i \(0.280903\pi\)
\(674\) −29.1409 −1.12247
\(675\) 0 0
\(676\) −8.30489 −0.319419
\(677\) −17.1159 −0.657816 −0.328908 0.944362i \(-0.606681\pi\)
−0.328908 + 0.944362i \(0.606681\pi\)
\(678\) 0 0
\(679\) 82.1846 3.15396
\(680\) 28.1843 1.08082
\(681\) 0 0
\(682\) 5.90407 0.226078
\(683\) −33.2813 −1.27347 −0.636736 0.771082i \(-0.719716\pi\)
−0.636736 + 0.771082i \(0.719716\pi\)
\(684\) 0 0
\(685\) 26.4188 1.00941
\(686\) −47.7899 −1.82463
\(687\) 0 0
\(688\) −9.63402 −0.367294
\(689\) −6.58475 −0.250859
\(690\) 0 0
\(691\) −21.3236 −0.811189 −0.405594 0.914053i \(-0.632935\pi\)
−0.405594 + 0.914053i \(0.632935\pi\)
\(692\) 22.7651 0.865398
\(693\) 0 0
\(694\) 12.2141 0.463640
\(695\) 44.3614 1.68272
\(696\) 0 0
\(697\) −36.8882 −1.39724
\(698\) −15.3346 −0.580423
\(699\) 0 0
\(700\) 59.7952 2.26005
\(701\) 28.5333 1.07769 0.538844 0.842406i \(-0.318861\pi\)
0.538844 + 0.842406i \(0.318861\pi\)
\(702\) 0 0
\(703\) −10.3205 −0.389246
\(704\) 1.62910 0.0613989
\(705\) 0 0
\(706\) 30.6859 1.15488
\(707\) −14.2947 −0.537609
\(708\) 0 0
\(709\) 4.38294 0.164605 0.0823024 0.996607i \(-0.473773\pi\)
0.0823024 + 0.996607i \(0.473773\pi\)
\(710\) −45.8087 −1.71917
\(711\) 0 0
\(712\) 3.31299 0.124159
\(713\) 10.0304 0.375640
\(714\) 0 0
\(715\) 14.6643 0.548413
\(716\) −12.1634 −0.454569
\(717\) 0 0
\(718\) 0.344824 0.0128687
\(719\) 36.1805 1.34930 0.674652 0.738136i \(-0.264294\pi\)
0.674652 + 0.738136i \(0.264294\pi\)
\(720\) 0 0
\(721\) 6.13770 0.228580
\(722\) −55.2640 −2.05671
\(723\) 0 0
\(724\) −4.61048 −0.171347
\(725\) −25.8036 −0.958323
\(726\) 0 0
\(727\) −23.0348 −0.854312 −0.427156 0.904178i \(-0.640485\pi\)
−0.427156 + 0.904178i \(0.640485\pi\)
\(728\) 10.5701 0.391756
\(729\) 0 0
\(730\) 5.69291 0.210704
\(731\) −65.3618 −2.41749
\(732\) 0 0
\(733\) −41.3032 −1.52557 −0.762785 0.646652i \(-0.776169\pi\)
−0.762785 + 0.646652i \(0.776169\pi\)
\(734\) −22.3072 −0.823375
\(735\) 0 0
\(736\) 2.76765 0.102017
\(737\) −2.45605 −0.0904696
\(738\) 0 0
\(739\) −15.2014 −0.559191 −0.279596 0.960118i \(-0.590200\pi\)
−0.279596 + 0.960118i \(0.590200\pi\)
\(740\) −4.97513 −0.182889
\(741\) 0 0
\(742\) −14.8243 −0.544218
\(743\) −51.4130 −1.88616 −0.943079 0.332568i \(-0.892085\pi\)
−0.943079 + 0.332568i \(0.892085\pi\)
\(744\) 0 0
\(745\) −14.4329 −0.528780
\(746\) 5.92843 0.217055
\(747\) 0 0
\(748\) 11.0526 0.404122
\(749\) −45.6572 −1.66828
\(750\) 0 0
\(751\) 37.2197 1.35816 0.679082 0.734062i \(-0.262378\pi\)
0.679082 + 0.734062i \(0.262378\pi\)
\(752\) 7.07613 0.258040
\(753\) 0 0
\(754\) −4.56137 −0.166115
\(755\) −46.6964 −1.69945
\(756\) 0 0
\(757\) 51.7191 1.87976 0.939882 0.341499i \(-0.110935\pi\)
0.939882 + 0.341499i \(0.110935\pi\)
\(758\) 2.01119 0.0730499
\(759\) 0 0
\(760\) −35.7998 −1.29859
\(761\) −16.8448 −0.610623 −0.305312 0.952253i \(-0.598761\pi\)
−0.305312 + 0.952253i \(0.598761\pi\)
\(762\) 0 0
\(763\) 55.7051 2.01666
\(764\) −3.30553 −0.119590
\(765\) 0 0
\(766\) 4.21696 0.152365
\(767\) 9.14022 0.330034
\(768\) 0 0
\(769\) 10.2220 0.368614 0.184307 0.982869i \(-0.440996\pi\)
0.184307 + 0.982869i \(0.440996\pi\)
\(770\) 33.0138 1.18974
\(771\) 0 0
\(772\) −18.5157 −0.666394
\(773\) 31.6879 1.13973 0.569867 0.821737i \(-0.306995\pi\)
0.569867 + 0.821737i \(0.306995\pi\)
\(774\) 0 0
\(775\) −44.4235 −1.59574
\(776\) −16.8474 −0.604786
\(777\) 0 0
\(778\) 4.54939 0.163103
\(779\) 46.8555 1.67877
\(780\) 0 0
\(781\) −17.9640 −0.642803
\(782\) 18.7771 0.671467
\(783\) 0 0
\(784\) 16.7967 0.599881
\(785\) −35.7070 −1.27444
\(786\) 0 0
\(787\) 21.1252 0.753033 0.376516 0.926410i \(-0.377122\pi\)
0.376516 + 0.926410i \(0.377122\pi\)
\(788\) −8.78109 −0.312814
\(789\) 0 0
\(790\) −62.2091 −2.21330
\(791\) −1.54549 −0.0549512
\(792\) 0 0
\(793\) −18.9541 −0.673080
\(794\) 15.2162 0.540001
\(795\) 0 0
\(796\) −12.4370 −0.440817
\(797\) 4.27630 0.151474 0.0757371 0.997128i \(-0.475869\pi\)
0.0757371 + 0.997128i \(0.475869\pi\)
\(798\) 0 0
\(799\) 48.0078 1.69839
\(800\) −12.2577 −0.433375
\(801\) 0 0
\(802\) 18.4280 0.650715
\(803\) 2.23249 0.0787829
\(804\) 0 0
\(805\) 56.0868 1.97680
\(806\) −7.85285 −0.276605
\(807\) 0 0
\(808\) 2.93034 0.103089
\(809\) −4.78386 −0.168192 −0.0840958 0.996458i \(-0.526800\pi\)
−0.0840958 + 0.996458i \(0.526800\pi\)
\(810\) 0 0
\(811\) −34.4127 −1.20839 −0.604197 0.796835i \(-0.706506\pi\)
−0.604197 + 0.796835i \(0.706506\pi\)
\(812\) −10.2691 −0.360373
\(813\) 0 0
\(814\) −1.95101 −0.0683829
\(815\) −42.1778 −1.47742
\(816\) 0 0
\(817\) 83.0227 2.90460
\(818\) −36.3293 −1.27022
\(819\) 0 0
\(820\) 22.5872 0.788779
\(821\) 38.7973 1.35404 0.677018 0.735967i \(-0.263272\pi\)
0.677018 + 0.735967i \(0.263272\pi\)
\(822\) 0 0
\(823\) −8.52567 −0.297186 −0.148593 0.988898i \(-0.547474\pi\)
−0.148593 + 0.988898i \(0.547474\pi\)
\(824\) −1.25819 −0.0438312
\(825\) 0 0
\(826\) 20.5775 0.715982
\(827\) −3.84932 −0.133854 −0.0669271 0.997758i \(-0.521319\pi\)
−0.0669271 + 0.997758i \(0.521319\pi\)
\(828\) 0 0
\(829\) 1.76719 0.0613771 0.0306886 0.999529i \(-0.490230\pi\)
0.0306886 + 0.999529i \(0.490230\pi\)
\(830\) 33.5777 1.16550
\(831\) 0 0
\(832\) −2.16682 −0.0751210
\(833\) 113.957 3.94836
\(834\) 0 0
\(835\) 18.1778 0.629068
\(836\) −14.0390 −0.485549
\(837\) 0 0
\(838\) −6.63242 −0.229113
\(839\) −48.4527 −1.67277 −0.836386 0.548141i \(-0.815336\pi\)
−0.836386 + 0.548141i \(0.815336\pi\)
\(840\) 0 0
\(841\) −24.5686 −0.847192
\(842\) 33.1090 1.14101
\(843\) 0 0
\(844\) −10.9290 −0.376191
\(845\) 34.5005 1.18685
\(846\) 0 0
\(847\) −40.7135 −1.39893
\(848\) 3.03890 0.104356
\(849\) 0 0
\(850\) −83.1620 −2.85243
\(851\) −3.31455 −0.113621
\(852\) 0 0
\(853\) 35.2024 1.20531 0.602654 0.798002i \(-0.294110\pi\)
0.602654 + 0.798002i \(0.294110\pi\)
\(854\) −42.6716 −1.46019
\(855\) 0 0
\(856\) 9.35946 0.319900
\(857\) −8.30685 −0.283757 −0.141878 0.989884i \(-0.545314\pi\)
−0.141878 + 0.989884i \(0.545314\pi\)
\(858\) 0 0
\(859\) 48.5886 1.65782 0.828911 0.559381i \(-0.188961\pi\)
0.828911 + 0.559381i \(0.188961\pi\)
\(860\) 40.0220 1.36474
\(861\) 0 0
\(862\) −16.6498 −0.567096
\(863\) −50.0516 −1.70378 −0.851888 0.523723i \(-0.824543\pi\)
−0.851888 + 0.523723i \(0.824543\pi\)
\(864\) 0 0
\(865\) −94.5715 −3.21553
\(866\) −5.36131 −0.182185
\(867\) 0 0
\(868\) −17.6792 −0.600071
\(869\) −24.3955 −0.827560
\(870\) 0 0
\(871\) 3.26672 0.110689
\(872\) −11.4192 −0.386704
\(873\) 0 0
\(874\) −23.8507 −0.806761
\(875\) −147.078 −4.97214
\(876\) 0 0
\(877\) −35.1921 −1.18835 −0.594177 0.804334i \(-0.702522\pi\)
−0.594177 + 0.804334i \(0.702522\pi\)
\(878\) 5.42961 0.183240
\(879\) 0 0
\(880\) −6.76765 −0.228138
\(881\) 29.4895 0.993527 0.496764 0.867886i \(-0.334522\pi\)
0.496764 + 0.867886i \(0.334522\pi\)
\(882\) 0 0
\(883\) −28.1353 −0.946829 −0.473415 0.880840i \(-0.656979\pi\)
−0.473415 + 0.880840i \(0.656979\pi\)
\(884\) −14.7007 −0.494439
\(885\) 0 0
\(886\) 3.66946 0.123278
\(887\) 12.3917 0.416072 0.208036 0.978121i \(-0.433293\pi\)
0.208036 + 0.978121i \(0.433293\pi\)
\(888\) 0 0
\(889\) −10.1843 −0.341570
\(890\) −13.7629 −0.461335
\(891\) 0 0
\(892\) 8.79372 0.294436
\(893\) −60.9796 −2.04061
\(894\) 0 0
\(895\) 50.5298 1.68903
\(896\) −4.87818 −0.162969
\(897\) 0 0
\(898\) 6.43513 0.214743
\(899\) 7.62916 0.254447
\(900\) 0 0
\(901\) 20.6173 0.686863
\(902\) 8.85764 0.294927
\(903\) 0 0
\(904\) 0.316816 0.0105372
\(905\) 19.1530 0.636669
\(906\) 0 0
\(907\) −14.9432 −0.496181 −0.248090 0.968737i \(-0.579803\pi\)
−0.248090 + 0.968737i \(0.579803\pi\)
\(908\) −6.74871 −0.223964
\(909\) 0 0
\(910\) −43.9109 −1.45563
\(911\) −29.3458 −0.972269 −0.486134 0.873884i \(-0.661593\pi\)
−0.486134 + 0.873884i \(0.661593\pi\)
\(912\) 0 0
\(913\) 13.1676 0.435784
\(914\) −2.97606 −0.0984393
\(915\) 0 0
\(916\) −23.2606 −0.768553
\(917\) 25.2396 0.833485
\(918\) 0 0
\(919\) 24.7551 0.816595 0.408297 0.912849i \(-0.366123\pi\)
0.408297 + 0.912849i \(0.366123\pi\)
\(920\) −11.4975 −0.379061
\(921\) 0 0
\(922\) 9.73958 0.320756
\(923\) 23.8935 0.786464
\(924\) 0 0
\(925\) 14.6799 0.482671
\(926\) 19.9810 0.656618
\(927\) 0 0
\(928\) 2.10510 0.0691032
\(929\) 27.1303 0.890117 0.445059 0.895501i \(-0.353183\pi\)
0.445059 + 0.895501i \(0.353183\pi\)
\(930\) 0 0
\(931\) −144.748 −4.74392
\(932\) −11.0721 −0.362679
\(933\) 0 0
\(934\) −14.3949 −0.471014
\(935\) −45.9150 −1.50158
\(936\) 0 0
\(937\) 44.2931 1.44699 0.723496 0.690328i \(-0.242534\pi\)
0.723496 + 0.690328i \(0.242534\pi\)
\(938\) 7.35441 0.240130
\(939\) 0 0
\(940\) −29.3959 −0.958789
\(941\) 27.0894 0.883090 0.441545 0.897239i \(-0.354431\pi\)
0.441545 + 0.897239i \(0.354431\pi\)
\(942\) 0 0
\(943\) 15.0481 0.490035
\(944\) −4.21827 −0.137293
\(945\) 0 0
\(946\) 15.6947 0.510280
\(947\) −44.9196 −1.45969 −0.729845 0.683613i \(-0.760408\pi\)
−0.729845 + 0.683613i \(0.760408\pi\)
\(948\) 0 0
\(949\) −2.96938 −0.0963901
\(950\) 105.633 3.42717
\(951\) 0 0
\(952\) −33.0959 −1.07264
\(953\) 21.0858 0.683036 0.341518 0.939875i \(-0.389059\pi\)
0.341518 + 0.939875i \(0.389059\pi\)
\(954\) 0 0
\(955\) 13.7320 0.444356
\(956\) 3.99072 0.129069
\(957\) 0 0
\(958\) −22.4679 −0.725906
\(959\) −31.0227 −1.00178
\(960\) 0 0
\(961\) −17.8656 −0.576311
\(962\) 2.59499 0.0836659
\(963\) 0 0
\(964\) −16.5408 −0.532745
\(965\) 76.9185 2.47609
\(966\) 0 0
\(967\) 25.2415 0.811711 0.405855 0.913937i \(-0.366974\pi\)
0.405855 + 0.913937i \(0.366974\pi\)
\(968\) 8.34604 0.268252
\(969\) 0 0
\(970\) 69.9880 2.24718
\(971\) 34.5382 1.10838 0.554192 0.832389i \(-0.313027\pi\)
0.554192 + 0.832389i \(0.313027\pi\)
\(972\) 0 0
\(973\) −52.0921 −1.67000
\(974\) 15.3289 0.491169
\(975\) 0 0
\(976\) 8.74744 0.279999
\(977\) −61.0213 −1.95224 −0.976122 0.217225i \(-0.930300\pi\)
−0.976122 + 0.217225i \(0.930300\pi\)
\(978\) 0 0
\(979\) −5.39718 −0.172495
\(980\) −69.7773 −2.22896
\(981\) 0 0
\(982\) −23.8945 −0.762504
\(983\) 47.5260 1.51585 0.757923 0.652345i \(-0.226214\pi\)
0.757923 + 0.652345i \(0.226214\pi\)
\(984\) 0 0
\(985\) 36.4787 1.16231
\(986\) 14.2820 0.454831
\(987\) 0 0
\(988\) 18.6729 0.594064
\(989\) 26.6636 0.847854
\(990\) 0 0
\(991\) −35.6855 −1.13359 −0.566794 0.823860i \(-0.691816\pi\)
−0.566794 + 0.823860i \(0.691816\pi\)
\(992\) 3.62414 0.115066
\(993\) 0 0
\(994\) 53.7917 1.70617
\(995\) 51.6662 1.63793
\(996\) 0 0
\(997\) 12.2019 0.386438 0.193219 0.981156i \(-0.438107\pi\)
0.193219 + 0.981156i \(0.438107\pi\)
\(998\) 15.7627 0.498960
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.n.1.1 7
3.2 odd 2 538.2.a.e.1.3 7
12.11 even 2 4304.2.a.h.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.e.1.3 7 3.2 odd 2
4304.2.a.h.1.5 7 12.11 even 2
4842.2.a.n.1.1 7 1.1 even 1 trivial