Properties

Label 4842.2.a.j.1.2
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4913.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.487928\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.48793 q^{5} +0.344151 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.48793 q^{5} +0.344151 q^{7} +1.00000 q^{8} -1.48793 q^{10} +0.905704 q^{11} -2.24985 q^{13} +0.344151 q^{14} +1.00000 q^{16} -2.58570 q^{17} -0.688301 q^{19} -1.48793 q^{20} +0.905704 q^{22} -1.46259 q^{23} -2.78607 q^{25} -2.24985 q^{26} +0.344151 q^{28} +4.24274 q^{29} +1.92985 q^{31} +1.00000 q^{32} -2.58570 q^{34} -0.512072 q^{35} -1.84911 q^{37} -0.688301 q^{38} -1.48793 q^{40} -1.21740 q^{41} -6.59036 q^{43} +0.905704 q^{44} -1.46259 q^{46} +6.42244 q^{47} -6.88156 q^{49} -2.78607 q^{50} -2.24985 q^{52} -2.87689 q^{53} -1.34762 q^{55} +0.344151 q^{56} +4.24274 q^{58} -11.0118 q^{59} -1.75015 q^{61} +1.92985 q^{62} +1.00000 q^{64} +3.34762 q^{65} +4.34415 q^{67} -2.58570 q^{68} -0.512072 q^{70} -5.29586 q^{71} +5.90206 q^{73} -1.84911 q^{74} -0.688301 q^{76} +0.311699 q^{77} -15.1107 q^{79} -1.48793 q^{80} -1.21740 q^{82} -15.7701 q^{83} +3.84733 q^{85} -6.59036 q^{86} +0.905704 q^{88} +1.61934 q^{89} -0.774289 q^{91} -1.46259 q^{92} +6.42244 q^{94} +1.02414 q^{95} +14.3436 q^{97} -6.88156 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} - 5 q^{5} - q^{7} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 4 q^{4} - 5 q^{5} - q^{7} + 4 q^{8} - 5 q^{10} - 7 q^{11} + 4 q^{13} - q^{14} + 4 q^{16} - 4 q^{17} + 2 q^{19} - 5 q^{20} - 7 q^{22} - 16 q^{23} - q^{25} + 4 q^{26} - q^{28} - q^{31} + 4 q^{32} - 4 q^{34} - 3 q^{35} - 2 q^{37} + 2 q^{38} - 5 q^{40} + q^{41} + 9 q^{43} - 7 q^{44} - 16 q^{46} - 13 q^{47} - 15 q^{49} - q^{50} + 4 q^{52} - 28 q^{53} + 13 q^{55} - q^{56} - 19 q^{59} - 20 q^{61} - q^{62} + 4 q^{64} - 5 q^{65} + 15 q^{67} - 4 q^{68} - 3 q^{70} - 15 q^{71} - 7 q^{73} - 2 q^{74} + 2 q^{76} + 6 q^{77} - 17 q^{79} - 5 q^{80} + q^{82} - 6 q^{83} - 29 q^{85} + 9 q^{86} - 7 q^{88} - 20 q^{89} - 18 q^{91} - 16 q^{92} - 13 q^{94} + 6 q^{95} + 3 q^{97} - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.48793 −0.665422 −0.332711 0.943029i \(-0.607963\pi\)
−0.332711 + 0.943029i \(0.607963\pi\)
\(6\) 0 0
\(7\) 0.344151 0.130077 0.0650384 0.997883i \(-0.479283\pi\)
0.0650384 + 0.997883i \(0.479283\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.48793 −0.470524
\(11\) 0.905704 0.273080 0.136540 0.990635i \(-0.456402\pi\)
0.136540 + 0.990635i \(0.456402\pi\)
\(12\) 0 0
\(13\) −2.24985 −0.623997 −0.311999 0.950083i \(-0.600998\pi\)
−0.311999 + 0.950083i \(0.600998\pi\)
\(14\) 0.344151 0.0919782
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.58570 −0.627123 −0.313562 0.949568i \(-0.601522\pi\)
−0.313562 + 0.949568i \(0.601522\pi\)
\(18\) 0 0
\(19\) −0.688301 −0.157907 −0.0789536 0.996878i \(-0.525158\pi\)
−0.0789536 + 0.996878i \(0.525158\pi\)
\(20\) −1.48793 −0.332711
\(21\) 0 0
\(22\) 0.905704 0.193097
\(23\) −1.46259 −0.304971 −0.152486 0.988306i \(-0.548728\pi\)
−0.152486 + 0.988306i \(0.548728\pi\)
\(24\) 0 0
\(25\) −2.78607 −0.557214
\(26\) −2.24985 −0.441233
\(27\) 0 0
\(28\) 0.344151 0.0650384
\(29\) 4.24274 0.787857 0.393929 0.919141i \(-0.371116\pi\)
0.393929 + 0.919141i \(0.371116\pi\)
\(30\) 0 0
\(31\) 1.92985 0.346611 0.173305 0.984868i \(-0.444555\pi\)
0.173305 + 0.984868i \(0.444555\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.58570 −0.443443
\(35\) −0.512072 −0.0865559
\(36\) 0 0
\(37\) −1.84911 −0.303991 −0.151996 0.988381i \(-0.548570\pi\)
−0.151996 + 0.988381i \(0.548570\pi\)
\(38\) −0.688301 −0.111657
\(39\) 0 0
\(40\) −1.48793 −0.235262
\(41\) −1.21740 −0.190126 −0.0950631 0.995471i \(-0.530305\pi\)
−0.0950631 + 0.995471i \(0.530305\pi\)
\(42\) 0 0
\(43\) −6.59036 −1.00502 −0.502510 0.864571i \(-0.667590\pi\)
−0.502510 + 0.864571i \(0.667590\pi\)
\(44\) 0.905704 0.136540
\(45\) 0 0
\(46\) −1.46259 −0.215647
\(47\) 6.42244 0.936809 0.468405 0.883514i \(-0.344829\pi\)
0.468405 + 0.883514i \(0.344829\pi\)
\(48\) 0 0
\(49\) −6.88156 −0.983080
\(50\) −2.78607 −0.394010
\(51\) 0 0
\(52\) −2.24985 −0.311999
\(53\) −2.87689 −0.395172 −0.197586 0.980286i \(-0.563310\pi\)
−0.197586 + 0.980286i \(0.563310\pi\)
\(54\) 0 0
\(55\) −1.34762 −0.181713
\(56\) 0.344151 0.0459891
\(57\) 0 0
\(58\) 4.24274 0.557099
\(59\) −11.0118 −1.43361 −0.716806 0.697273i \(-0.754397\pi\)
−0.716806 + 0.697273i \(0.754397\pi\)
\(60\) 0 0
\(61\) −1.75015 −0.224083 −0.112042 0.993704i \(-0.535739\pi\)
−0.112042 + 0.993704i \(0.535739\pi\)
\(62\) 1.92985 0.245091
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.34762 0.415221
\(66\) 0 0
\(67\) 4.34415 0.530722 0.265361 0.964149i \(-0.414509\pi\)
0.265361 + 0.964149i \(0.414509\pi\)
\(68\) −2.58570 −0.313562
\(69\) 0 0
\(70\) −0.512072 −0.0612043
\(71\) −5.29586 −0.628503 −0.314252 0.949340i \(-0.601754\pi\)
−0.314252 + 0.949340i \(0.601754\pi\)
\(72\) 0 0
\(73\) 5.90206 0.690784 0.345392 0.938459i \(-0.387746\pi\)
0.345392 + 0.938459i \(0.387746\pi\)
\(74\) −1.84911 −0.214954
\(75\) 0 0
\(76\) −0.688301 −0.0789536
\(77\) 0.311699 0.0355213
\(78\) 0 0
\(79\) −15.1107 −1.70009 −0.850046 0.526709i \(-0.823426\pi\)
−0.850046 + 0.526709i \(0.823426\pi\)
\(80\) −1.48793 −0.166355
\(81\) 0 0
\(82\) −1.21740 −0.134440
\(83\) −15.7701 −1.73099 −0.865495 0.500918i \(-0.832996\pi\)
−0.865495 + 0.500918i \(0.832996\pi\)
\(84\) 0 0
\(85\) 3.84733 0.417302
\(86\) −6.59036 −0.710657
\(87\) 0 0
\(88\) 0.905704 0.0965483
\(89\) 1.61934 0.171650 0.0858250 0.996310i \(-0.472647\pi\)
0.0858250 + 0.996310i \(0.472647\pi\)
\(90\) 0 0
\(91\) −0.774289 −0.0811675
\(92\) −1.46259 −0.152486
\(93\) 0 0
\(94\) 6.42244 0.662424
\(95\) 1.02414 0.105075
\(96\) 0 0
\(97\) 14.3436 1.45637 0.728184 0.685381i \(-0.240364\pi\)
0.728184 + 0.685381i \(0.240364\pi\)
\(98\) −6.88156 −0.695143
\(99\) 0 0
\(100\) −2.78607 −0.278607
\(101\) −2.90690 −0.289247 −0.144624 0.989487i \(-0.546197\pi\)
−0.144624 + 0.989487i \(0.546197\pi\)
\(102\) 0 0
\(103\) −12.0866 −1.19093 −0.595464 0.803382i \(-0.703032\pi\)
−0.595464 + 0.803382i \(0.703032\pi\)
\(104\) −2.24985 −0.220616
\(105\) 0 0
\(106\) −2.87689 −0.279429
\(107\) 7.03712 0.680304 0.340152 0.940370i \(-0.389521\pi\)
0.340152 + 0.940370i \(0.389521\pi\)
\(108\) 0 0
\(109\) −4.91926 −0.471180 −0.235590 0.971853i \(-0.575702\pi\)
−0.235590 + 0.971853i \(0.575702\pi\)
\(110\) −1.34762 −0.128491
\(111\) 0 0
\(112\) 0.344151 0.0325192
\(113\) −10.5108 −0.988775 −0.494387 0.869242i \(-0.664608\pi\)
−0.494387 + 0.869242i \(0.664608\pi\)
\(114\) 0 0
\(115\) 2.17623 0.202934
\(116\) 4.24274 0.393929
\(117\) 0 0
\(118\) −11.0118 −1.01372
\(119\) −0.889869 −0.0815742
\(120\) 0 0
\(121\) −10.1797 −0.925427
\(122\) −1.75015 −0.158451
\(123\) 0 0
\(124\) 1.92985 0.173305
\(125\) 11.5851 1.03620
\(126\) 0 0
\(127\) −20.0830 −1.78207 −0.891037 0.453930i \(-0.850021\pi\)
−0.891037 + 0.453930i \(0.850021\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 3.34762 0.293606
\(131\) 8.54572 0.746643 0.373321 0.927702i \(-0.378219\pi\)
0.373321 + 0.927702i \(0.378219\pi\)
\(132\) 0 0
\(133\) −0.236879 −0.0205401
\(134\) 4.34415 0.375277
\(135\) 0 0
\(136\) −2.58570 −0.221722
\(137\) 15.0625 1.28687 0.643436 0.765500i \(-0.277508\pi\)
0.643436 + 0.765500i \(0.277508\pi\)
\(138\) 0 0
\(139\) −2.85030 −0.241760 −0.120880 0.992667i \(-0.538572\pi\)
−0.120880 + 0.992667i \(0.538572\pi\)
\(140\) −0.512072 −0.0432780
\(141\) 0 0
\(142\) −5.29586 −0.444419
\(143\) −2.03770 −0.170401
\(144\) 0 0
\(145\) −6.31289 −0.524257
\(146\) 5.90206 0.488458
\(147\) 0 0
\(148\) −1.84911 −0.151996
\(149\) 5.24502 0.429689 0.214844 0.976648i \(-0.431076\pi\)
0.214844 + 0.976648i \(0.431076\pi\)
\(150\) 0 0
\(151\) 12.0613 0.981532 0.490766 0.871292i \(-0.336717\pi\)
0.490766 + 0.871292i \(0.336717\pi\)
\(152\) −0.688301 −0.0558286
\(153\) 0 0
\(154\) 0.311699 0.0251174
\(155\) −2.87147 −0.230642
\(156\) 0 0
\(157\) −14.4190 −1.15076 −0.575380 0.817887i \(-0.695146\pi\)
−0.575380 + 0.817887i \(0.695146\pi\)
\(158\) −15.1107 −1.20215
\(159\) 0 0
\(160\) −1.48793 −0.117631
\(161\) −0.503352 −0.0396697
\(162\) 0 0
\(163\) 20.9562 1.64142 0.820708 0.571347i \(-0.193579\pi\)
0.820708 + 0.571347i \(0.193579\pi\)
\(164\) −1.21740 −0.0950631
\(165\) 0 0
\(166\) −15.7701 −1.22399
\(167\) 2.59520 0.200823 0.100411 0.994946i \(-0.467984\pi\)
0.100411 + 0.994946i \(0.467984\pi\)
\(168\) 0 0
\(169\) −7.93816 −0.610627
\(170\) 3.84733 0.295077
\(171\) 0 0
\(172\) −6.59036 −0.502510
\(173\) 15.6629 1.19083 0.595414 0.803419i \(-0.296988\pi\)
0.595414 + 0.803419i \(0.296988\pi\)
\(174\) 0 0
\(175\) −0.958828 −0.0724806
\(176\) 0.905704 0.0682700
\(177\) 0 0
\(178\) 1.61934 0.121375
\(179\) −25.1868 −1.88255 −0.941273 0.337646i \(-0.890369\pi\)
−0.941273 + 0.337646i \(0.890369\pi\)
\(180\) 0 0
\(181\) 6.06957 0.451148 0.225574 0.974226i \(-0.427574\pi\)
0.225574 + 0.974226i \(0.427574\pi\)
\(182\) −0.774289 −0.0573941
\(183\) 0 0
\(184\) −1.46259 −0.107824
\(185\) 2.75134 0.202283
\(186\) 0 0
\(187\) −2.34187 −0.171255
\(188\) 6.42244 0.468405
\(189\) 0 0
\(190\) 1.02414 0.0742992
\(191\) −8.11319 −0.587050 −0.293525 0.955951i \(-0.594828\pi\)
−0.293525 + 0.955951i \(0.594828\pi\)
\(192\) 0 0
\(193\) −12.8968 −0.928333 −0.464166 0.885748i \(-0.653646\pi\)
−0.464166 + 0.885748i \(0.653646\pi\)
\(194\) 14.3436 1.02981
\(195\) 0 0
\(196\) −6.88156 −0.491540
\(197\) −14.4920 −1.03251 −0.516257 0.856434i \(-0.672675\pi\)
−0.516257 + 0.856434i \(0.672675\pi\)
\(198\) 0 0
\(199\) 20.5344 1.45564 0.727822 0.685766i \(-0.240533\pi\)
0.727822 + 0.685766i \(0.240533\pi\)
\(200\) −2.78607 −0.197005
\(201\) 0 0
\(202\) −2.90690 −0.204529
\(203\) 1.46014 0.102482
\(204\) 0 0
\(205\) 1.81141 0.126514
\(206\) −12.0866 −0.842113
\(207\) 0 0
\(208\) −2.24985 −0.155999
\(209\) −0.623397 −0.0431213
\(210\) 0 0
\(211\) −6.99356 −0.481456 −0.240728 0.970593i \(-0.577386\pi\)
−0.240728 + 0.970593i \(0.577386\pi\)
\(212\) −2.87689 −0.197586
\(213\) 0 0
\(214\) 7.03712 0.481047
\(215\) 9.80599 0.668763
\(216\) 0 0
\(217\) 0.664158 0.0450860
\(218\) −4.91926 −0.333174
\(219\) 0 0
\(220\) −1.34762 −0.0908567
\(221\) 5.81744 0.391323
\(222\) 0 0
\(223\) −8.26630 −0.553552 −0.276776 0.960934i \(-0.589266\pi\)
−0.276776 + 0.960934i \(0.589266\pi\)
\(224\) 0.344151 0.0229945
\(225\) 0 0
\(226\) −10.5108 −0.699169
\(227\) 3.27586 0.217427 0.108713 0.994073i \(-0.465327\pi\)
0.108713 + 0.994073i \(0.465327\pi\)
\(228\) 0 0
\(229\) −3.04601 −0.201286 −0.100643 0.994923i \(-0.532090\pi\)
−0.100643 + 0.994923i \(0.532090\pi\)
\(230\) 2.17623 0.143496
\(231\) 0 0
\(232\) 4.24274 0.278550
\(233\) −12.9540 −0.848644 −0.424322 0.905511i \(-0.639488\pi\)
−0.424322 + 0.905511i \(0.639488\pi\)
\(234\) 0 0
\(235\) −9.55613 −0.623373
\(236\) −11.0118 −0.716806
\(237\) 0 0
\(238\) −0.889869 −0.0576817
\(239\) −8.68652 −0.561885 −0.280942 0.959725i \(-0.590647\pi\)
−0.280942 + 0.959725i \(0.590647\pi\)
\(240\) 0 0
\(241\) −15.8491 −1.02093 −0.510465 0.859898i \(-0.670527\pi\)
−0.510465 + 0.859898i \(0.670527\pi\)
\(242\) −10.1797 −0.654376
\(243\) 0 0
\(244\) −1.75015 −0.112042
\(245\) 10.2393 0.654163
\(246\) 0 0
\(247\) 1.54858 0.0985337
\(248\) 1.92985 0.122545
\(249\) 0 0
\(250\) 11.5851 0.732707
\(251\) −4.61103 −0.291046 −0.145523 0.989355i \(-0.546486\pi\)
−0.145523 + 0.989355i \(0.546486\pi\)
\(252\) 0 0
\(253\) −1.32467 −0.0832815
\(254\) −20.0830 −1.26012
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −20.2182 −1.26118 −0.630588 0.776118i \(-0.717186\pi\)
−0.630588 + 0.776118i \(0.717186\pi\)
\(258\) 0 0
\(259\) −0.636372 −0.0395422
\(260\) 3.34762 0.207611
\(261\) 0 0
\(262\) 8.54572 0.527956
\(263\) −15.7471 −0.971009 −0.485504 0.874234i \(-0.661364\pi\)
−0.485504 + 0.874234i \(0.661364\pi\)
\(264\) 0 0
\(265\) 4.28061 0.262956
\(266\) −0.236879 −0.0145240
\(267\) 0 0
\(268\) 4.34415 0.265361
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) 17.3316 1.05282 0.526410 0.850231i \(-0.323538\pi\)
0.526410 + 0.850231i \(0.323538\pi\)
\(272\) −2.58570 −0.156781
\(273\) 0 0
\(274\) 15.0625 0.909956
\(275\) −2.52335 −0.152164
\(276\) 0 0
\(277\) −23.1578 −1.39142 −0.695708 0.718325i \(-0.744909\pi\)
−0.695708 + 0.718325i \(0.744909\pi\)
\(278\) −2.85030 −0.170950
\(279\) 0 0
\(280\) −0.512072 −0.0306021
\(281\) 14.0106 0.835801 0.417901 0.908493i \(-0.362766\pi\)
0.417901 + 0.908493i \(0.362766\pi\)
\(282\) 0 0
\(283\) 26.1135 1.55229 0.776145 0.630555i \(-0.217173\pi\)
0.776145 + 0.630555i \(0.217173\pi\)
\(284\) −5.29586 −0.314252
\(285\) 0 0
\(286\) −2.03770 −0.120492
\(287\) −0.418970 −0.0247310
\(288\) 0 0
\(289\) −10.3142 −0.606716
\(290\) −6.31289 −0.370706
\(291\) 0 0
\(292\) 5.90206 0.345392
\(293\) 8.14964 0.476107 0.238053 0.971252i \(-0.423491\pi\)
0.238053 + 0.971252i \(0.423491\pi\)
\(294\) 0 0
\(295\) 16.3847 0.953956
\(296\) −1.84911 −0.107477
\(297\) 0 0
\(298\) 5.24502 0.303836
\(299\) 3.29062 0.190301
\(300\) 0 0
\(301\) −2.26808 −0.130730
\(302\) 12.0613 0.694048
\(303\) 0 0
\(304\) −0.688301 −0.0394768
\(305\) 2.60409 0.149110
\(306\) 0 0
\(307\) 0.809130 0.0461795 0.0230898 0.999733i \(-0.492650\pi\)
0.0230898 + 0.999733i \(0.492650\pi\)
\(308\) 0.311699 0.0177607
\(309\) 0 0
\(310\) −2.87147 −0.163089
\(311\) 0.444367 0.0251977 0.0125989 0.999921i \(-0.495990\pi\)
0.0125989 + 0.999921i \(0.495990\pi\)
\(312\) 0 0
\(313\) 1.05085 0.0593974 0.0296987 0.999559i \(-0.490545\pi\)
0.0296987 + 0.999559i \(0.490545\pi\)
\(314\) −14.4190 −0.813710
\(315\) 0 0
\(316\) −15.1107 −0.850046
\(317\) −6.46784 −0.363270 −0.181635 0.983366i \(-0.558139\pi\)
−0.181635 + 0.983366i \(0.558139\pi\)
\(318\) 0 0
\(319\) 3.84266 0.215148
\(320\) −1.48793 −0.0831777
\(321\) 0 0
\(322\) −0.503352 −0.0280507
\(323\) 1.77974 0.0990273
\(324\) 0 0
\(325\) 6.26825 0.347700
\(326\) 20.9562 1.16066
\(327\) 0 0
\(328\) −1.21740 −0.0672198
\(329\) 2.21029 0.121857
\(330\) 0 0
\(331\) 22.0153 1.21007 0.605034 0.796200i \(-0.293160\pi\)
0.605034 + 0.796200i \(0.293160\pi\)
\(332\) −15.7701 −0.865495
\(333\) 0 0
\(334\) 2.59520 0.142003
\(335\) −6.46379 −0.353154
\(336\) 0 0
\(337\) 14.2647 0.777047 0.388524 0.921439i \(-0.372985\pi\)
0.388524 + 0.921439i \(0.372985\pi\)
\(338\) −7.93816 −0.431779
\(339\) 0 0
\(340\) 3.84733 0.208651
\(341\) 1.74787 0.0946524
\(342\) 0 0
\(343\) −4.77735 −0.257953
\(344\) −6.59036 −0.355329
\(345\) 0 0
\(346\) 15.6629 0.842043
\(347\) −26.0825 −1.40018 −0.700092 0.714052i \(-0.746858\pi\)
−0.700092 + 0.714052i \(0.746858\pi\)
\(348\) 0 0
\(349\) 24.5684 1.31512 0.657559 0.753403i \(-0.271589\pi\)
0.657559 + 0.753403i \(0.271589\pi\)
\(350\) −0.958828 −0.0512515
\(351\) 0 0
\(352\) 0.905704 0.0482742
\(353\) −8.36823 −0.445396 −0.222698 0.974887i \(-0.571486\pi\)
−0.222698 + 0.974887i \(0.571486\pi\)
\(354\) 0 0
\(355\) 7.87987 0.418220
\(356\) 1.61934 0.0858250
\(357\) 0 0
\(358\) −25.1868 −1.33116
\(359\) 2.12835 0.112330 0.0561651 0.998421i \(-0.482113\pi\)
0.0561651 + 0.998421i \(0.482113\pi\)
\(360\) 0 0
\(361\) −18.5262 −0.975065
\(362\) 6.06957 0.319010
\(363\) 0 0
\(364\) −0.774289 −0.0405838
\(365\) −8.78184 −0.459663
\(366\) 0 0
\(367\) 9.53496 0.497721 0.248860 0.968539i \(-0.419944\pi\)
0.248860 + 0.968539i \(0.419944\pi\)
\(368\) −1.46259 −0.0762428
\(369\) 0 0
\(370\) 2.75134 0.143035
\(371\) −0.990085 −0.0514027
\(372\) 0 0
\(373\) 16.7808 0.868875 0.434437 0.900702i \(-0.356947\pi\)
0.434437 + 0.900702i \(0.356947\pi\)
\(374\) −2.34187 −0.121095
\(375\) 0 0
\(376\) 6.42244 0.331212
\(377\) −9.54555 −0.491621
\(378\) 0 0
\(379\) −29.0341 −1.49138 −0.745690 0.666293i \(-0.767880\pi\)
−0.745690 + 0.666293i \(0.767880\pi\)
\(380\) 1.02414 0.0525374
\(381\) 0 0
\(382\) −8.11319 −0.415107
\(383\) −35.5798 −1.81804 −0.909022 0.416749i \(-0.863169\pi\)
−0.909022 + 0.416749i \(0.863169\pi\)
\(384\) 0 0
\(385\) −0.463785 −0.0236367
\(386\) −12.8968 −0.656430
\(387\) 0 0
\(388\) 14.3436 0.728184
\(389\) 37.5839 1.90558 0.952789 0.303634i \(-0.0982001\pi\)
0.952789 + 0.303634i \(0.0982001\pi\)
\(390\) 0 0
\(391\) 3.78181 0.191255
\(392\) −6.88156 −0.347571
\(393\) 0 0
\(394\) −14.4920 −0.730097
\(395\) 22.4837 1.13128
\(396\) 0 0
\(397\) −16.8913 −0.847750 −0.423875 0.905721i \(-0.639330\pi\)
−0.423875 + 0.905721i \(0.639330\pi\)
\(398\) 20.5344 1.02930
\(399\) 0 0
\(400\) −2.78607 −0.139303
\(401\) −3.68585 −0.184063 −0.0920314 0.995756i \(-0.529336\pi\)
−0.0920314 + 0.995756i \(0.529336\pi\)
\(402\) 0 0
\(403\) −4.34187 −0.216284
\(404\) −2.90690 −0.144624
\(405\) 0 0
\(406\) 1.46014 0.0724656
\(407\) −1.67474 −0.0830140
\(408\) 0 0
\(409\) 18.5784 0.918643 0.459322 0.888270i \(-0.348093\pi\)
0.459322 + 0.888270i \(0.348093\pi\)
\(410\) 1.81141 0.0894590
\(411\) 0 0
\(412\) −12.0866 −0.595464
\(413\) −3.78971 −0.186480
\(414\) 0 0
\(415\) 23.4647 1.15184
\(416\) −2.24985 −0.110308
\(417\) 0 0
\(418\) −0.623397 −0.0304913
\(419\) −3.30890 −0.161650 −0.0808251 0.996728i \(-0.525756\pi\)
−0.0808251 + 0.996728i \(0.525756\pi\)
\(420\) 0 0
\(421\) 7.23994 0.352853 0.176427 0.984314i \(-0.443546\pi\)
0.176427 + 0.984314i \(0.443546\pi\)
\(422\) −6.99356 −0.340441
\(423\) 0 0
\(424\) −2.87689 −0.139714
\(425\) 7.20393 0.349442
\(426\) 0 0
\(427\) −0.602314 −0.0291480
\(428\) 7.03712 0.340152
\(429\) 0 0
\(430\) 9.80599 0.472887
\(431\) 11.1645 0.537777 0.268888 0.963171i \(-0.413344\pi\)
0.268888 + 0.963171i \(0.413344\pi\)
\(432\) 0 0
\(433\) 28.8143 1.38473 0.692363 0.721549i \(-0.256570\pi\)
0.692363 + 0.721549i \(0.256570\pi\)
\(434\) 0.664158 0.0318806
\(435\) 0 0
\(436\) −4.91926 −0.235590
\(437\) 1.00670 0.0481571
\(438\) 0 0
\(439\) 20.4897 0.977922 0.488961 0.872306i \(-0.337376\pi\)
0.488961 + 0.872306i \(0.337376\pi\)
\(440\) −1.34762 −0.0642454
\(441\) 0 0
\(442\) 5.81744 0.276707
\(443\) −9.58503 −0.455398 −0.227699 0.973732i \(-0.573120\pi\)
−0.227699 + 0.973732i \(0.573120\pi\)
\(444\) 0 0
\(445\) −2.40947 −0.114220
\(446\) −8.26630 −0.391421
\(447\) 0 0
\(448\) 0.344151 0.0162596
\(449\) 21.4476 1.01218 0.506088 0.862482i \(-0.331091\pi\)
0.506088 + 0.862482i \(0.331091\pi\)
\(450\) 0 0
\(451\) −1.10261 −0.0519197
\(452\) −10.5108 −0.494387
\(453\) 0 0
\(454\) 3.27586 0.153744
\(455\) 1.15209 0.0540107
\(456\) 0 0
\(457\) 10.7176 0.501350 0.250675 0.968071i \(-0.419347\pi\)
0.250675 + 0.968071i \(0.419347\pi\)
\(458\) −3.04601 −0.142331
\(459\) 0 0
\(460\) 2.17623 0.101467
\(461\) 19.6658 0.915926 0.457963 0.888971i \(-0.348579\pi\)
0.457963 + 0.888971i \(0.348579\pi\)
\(462\) 0 0
\(463\) 22.6226 1.05136 0.525682 0.850681i \(-0.323810\pi\)
0.525682 + 0.850681i \(0.323810\pi\)
\(464\) 4.24274 0.196964
\(465\) 0 0
\(466\) −12.9540 −0.600082
\(467\) −30.0503 −1.39056 −0.695282 0.718737i \(-0.744720\pi\)
−0.695282 + 0.718737i \(0.744720\pi\)
\(468\) 0 0
\(469\) 1.49504 0.0690347
\(470\) −9.55613 −0.440792
\(471\) 0 0
\(472\) −11.0118 −0.506858
\(473\) −5.96891 −0.274451
\(474\) 0 0
\(475\) 1.91766 0.0879881
\(476\) −0.889869 −0.0407871
\(477\) 0 0
\(478\) −8.68652 −0.397312
\(479\) 32.6251 1.49068 0.745339 0.666685i \(-0.232288\pi\)
0.745339 + 0.666685i \(0.232288\pi\)
\(480\) 0 0
\(481\) 4.16022 0.189690
\(482\) −15.8491 −0.721907
\(483\) 0 0
\(484\) −10.1797 −0.462714
\(485\) −21.3422 −0.969099
\(486\) 0 0
\(487\) −4.12981 −0.187139 −0.0935697 0.995613i \(-0.529828\pi\)
−0.0935697 + 0.995613i \(0.529828\pi\)
\(488\) −1.75015 −0.0792254
\(489\) 0 0
\(490\) 10.2393 0.462563
\(491\) 35.2225 1.58957 0.794785 0.606891i \(-0.207584\pi\)
0.794785 + 0.606891i \(0.207584\pi\)
\(492\) 0 0
\(493\) −10.9704 −0.494084
\(494\) 1.54858 0.0696738
\(495\) 0 0
\(496\) 1.92985 0.0866527
\(497\) −1.82258 −0.0817537
\(498\) 0 0
\(499\) 16.3253 0.730819 0.365409 0.930847i \(-0.380929\pi\)
0.365409 + 0.930847i \(0.380929\pi\)
\(500\) 11.5851 0.518102
\(501\) 0 0
\(502\) −4.61103 −0.205801
\(503\) −39.0571 −1.74147 −0.870736 0.491751i \(-0.836357\pi\)
−0.870736 + 0.491751i \(0.836357\pi\)
\(504\) 0 0
\(505\) 4.32526 0.192471
\(506\) −1.32467 −0.0588889
\(507\) 0 0
\(508\) −20.0830 −0.891037
\(509\) −8.19139 −0.363077 −0.181539 0.983384i \(-0.558108\pi\)
−0.181539 + 0.983384i \(0.558108\pi\)
\(510\) 0 0
\(511\) 2.03120 0.0898549
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −20.2182 −0.891786
\(515\) 17.9840 0.792469
\(516\) 0 0
\(517\) 5.81683 0.255824
\(518\) −0.636372 −0.0279606
\(519\) 0 0
\(520\) 3.34762 0.146803
\(521\) 9.81960 0.430205 0.215102 0.976592i \(-0.430991\pi\)
0.215102 + 0.976592i \(0.430991\pi\)
\(522\) 0 0
\(523\) 4.42973 0.193698 0.0968492 0.995299i \(-0.469124\pi\)
0.0968492 + 0.995299i \(0.469124\pi\)
\(524\) 8.54572 0.373321
\(525\) 0 0
\(526\) −15.7471 −0.686607
\(527\) −4.99000 −0.217368
\(528\) 0 0
\(529\) −20.8608 −0.906993
\(530\) 4.28061 0.185938
\(531\) 0 0
\(532\) −0.236879 −0.0102700
\(533\) 2.73898 0.118638
\(534\) 0 0
\(535\) −10.4707 −0.452689
\(536\) 4.34415 0.187639
\(537\) 0 0
\(538\) −1.00000 −0.0431131
\(539\) −6.23265 −0.268459
\(540\) 0 0
\(541\) 3.01458 0.129607 0.0648035 0.997898i \(-0.479358\pi\)
0.0648035 + 0.997898i \(0.479358\pi\)
\(542\) 17.3316 0.744457
\(543\) 0 0
\(544\) −2.58570 −0.110861
\(545\) 7.31951 0.313533
\(546\) 0 0
\(547\) 35.5411 1.51963 0.759813 0.650141i \(-0.225290\pi\)
0.759813 + 0.650141i \(0.225290\pi\)
\(548\) 15.0625 0.643436
\(549\) 0 0
\(550\) −2.52335 −0.107596
\(551\) −2.92028 −0.124408
\(552\) 0 0
\(553\) −5.20037 −0.221142
\(554\) −23.1578 −0.983880
\(555\) 0 0
\(556\) −2.85030 −0.120880
\(557\) −21.5510 −0.913144 −0.456572 0.889687i \(-0.650923\pi\)
−0.456572 + 0.889687i \(0.650923\pi\)
\(558\) 0 0
\(559\) 14.8274 0.627130
\(560\) −0.512072 −0.0216390
\(561\) 0 0
\(562\) 14.0106 0.591001
\(563\) −30.3310 −1.27830 −0.639150 0.769082i \(-0.720714\pi\)
−0.639150 + 0.769082i \(0.720714\pi\)
\(564\) 0 0
\(565\) 15.6393 0.657952
\(566\) 26.1135 1.09763
\(567\) 0 0
\(568\) −5.29586 −0.222210
\(569\) −3.78038 −0.158482 −0.0792409 0.996855i \(-0.525250\pi\)
−0.0792409 + 0.996855i \(0.525250\pi\)
\(570\) 0 0
\(571\) 18.4336 0.771424 0.385712 0.922619i \(-0.373956\pi\)
0.385712 + 0.922619i \(0.373956\pi\)
\(572\) −2.03770 −0.0852006
\(573\) 0 0
\(574\) −0.418970 −0.0174875
\(575\) 4.07488 0.169934
\(576\) 0 0
\(577\) 30.3922 1.26524 0.632622 0.774461i \(-0.281979\pi\)
0.632622 + 0.774461i \(0.281979\pi\)
\(578\) −10.3142 −0.429013
\(579\) 0 0
\(580\) −6.31289 −0.262129
\(581\) −5.42728 −0.225161
\(582\) 0 0
\(583\) −2.60561 −0.107913
\(584\) 5.90206 0.244229
\(585\) 0 0
\(586\) 8.14964 0.336658
\(587\) 38.4248 1.58596 0.792981 0.609246i \(-0.208528\pi\)
0.792981 + 0.609246i \(0.208528\pi\)
\(588\) 0 0
\(589\) −1.32832 −0.0547323
\(590\) 16.3847 0.674549
\(591\) 0 0
\(592\) −1.84911 −0.0759979
\(593\) −15.0010 −0.616018 −0.308009 0.951383i \(-0.599663\pi\)
−0.308009 + 0.951383i \(0.599663\pi\)
\(594\) 0 0
\(595\) 1.32406 0.0542812
\(596\) 5.24502 0.214844
\(597\) 0 0
\(598\) 3.29062 0.134563
\(599\) 8.67407 0.354413 0.177207 0.984174i \(-0.443294\pi\)
0.177207 + 0.984174i \(0.443294\pi\)
\(600\) 0 0
\(601\) −20.1244 −0.820891 −0.410445 0.911885i \(-0.634627\pi\)
−0.410445 + 0.911885i \(0.634627\pi\)
\(602\) −2.26808 −0.0924400
\(603\) 0 0
\(604\) 12.0613 0.490766
\(605\) 15.1467 0.615800
\(606\) 0 0
\(607\) 5.35730 0.217446 0.108723 0.994072i \(-0.465324\pi\)
0.108723 + 0.994072i \(0.465324\pi\)
\(608\) −0.688301 −0.0279143
\(609\) 0 0
\(610\) 2.60409 0.105437
\(611\) −14.4496 −0.584566
\(612\) 0 0
\(613\) 21.6009 0.872454 0.436227 0.899837i \(-0.356314\pi\)
0.436227 + 0.899837i \(0.356314\pi\)
\(614\) 0.809130 0.0326538
\(615\) 0 0
\(616\) 0.311699 0.0125587
\(617\) 36.2231 1.45829 0.729144 0.684360i \(-0.239918\pi\)
0.729144 + 0.684360i \(0.239918\pi\)
\(618\) 0 0
\(619\) 31.9927 1.28590 0.642948 0.765910i \(-0.277711\pi\)
0.642948 + 0.765910i \(0.277711\pi\)
\(620\) −2.87147 −0.115321
\(621\) 0 0
\(622\) 0.444367 0.0178175
\(623\) 0.557298 0.0223277
\(624\) 0 0
\(625\) −3.30747 −0.132299
\(626\) 1.05085 0.0420003
\(627\) 0 0
\(628\) −14.4190 −0.575380
\(629\) 4.78123 0.190640
\(630\) 0 0
\(631\) −22.3539 −0.889894 −0.444947 0.895557i \(-0.646778\pi\)
−0.444947 + 0.895557i \(0.646778\pi\)
\(632\) −15.1107 −0.601073
\(633\) 0 0
\(634\) −6.46784 −0.256871
\(635\) 29.8820 1.18583
\(636\) 0 0
\(637\) 15.4825 0.613439
\(638\) 3.84266 0.152133
\(639\) 0 0
\(640\) −1.48793 −0.0588155
\(641\) 8.18573 0.323317 0.161659 0.986847i \(-0.448316\pi\)
0.161659 + 0.986847i \(0.448316\pi\)
\(642\) 0 0
\(643\) 17.4703 0.688961 0.344480 0.938793i \(-0.388055\pi\)
0.344480 + 0.938793i \(0.388055\pi\)
\(644\) −0.503352 −0.0198348
\(645\) 0 0
\(646\) 1.77974 0.0700229
\(647\) 44.5260 1.75050 0.875249 0.483673i \(-0.160697\pi\)
0.875249 + 0.483673i \(0.160697\pi\)
\(648\) 0 0
\(649\) −9.97341 −0.391491
\(650\) 6.26825 0.245861
\(651\) 0 0
\(652\) 20.9562 0.820708
\(653\) −37.0875 −1.45134 −0.725672 0.688041i \(-0.758471\pi\)
−0.725672 + 0.688041i \(0.758471\pi\)
\(654\) 0 0
\(655\) −12.7154 −0.496832
\(656\) −1.21740 −0.0475316
\(657\) 0 0
\(658\) 2.21029 0.0861660
\(659\) −15.6928 −0.611305 −0.305652 0.952143i \(-0.598874\pi\)
−0.305652 + 0.952143i \(0.598874\pi\)
\(660\) 0 0
\(661\) 4.10083 0.159504 0.0797519 0.996815i \(-0.474587\pi\)
0.0797519 + 0.996815i \(0.474587\pi\)
\(662\) 22.0153 0.855647
\(663\) 0 0
\(664\) −15.7701 −0.611997
\(665\) 0.352460 0.0136678
\(666\) 0 0
\(667\) −6.20539 −0.240274
\(668\) 2.59520 0.100411
\(669\) 0 0
\(670\) −6.46379 −0.249718
\(671\) −1.58511 −0.0611926
\(672\) 0 0
\(673\) 8.56587 0.330190 0.165095 0.986278i \(-0.447207\pi\)
0.165095 + 0.986278i \(0.447207\pi\)
\(674\) 14.2647 0.549456
\(675\) 0 0
\(676\) −7.93816 −0.305314
\(677\) −15.2255 −0.585165 −0.292583 0.956240i \(-0.594515\pi\)
−0.292583 + 0.956240i \(0.594515\pi\)
\(678\) 0 0
\(679\) 4.93635 0.189440
\(680\) 3.84733 0.147538
\(681\) 0 0
\(682\) 1.74787 0.0669294
\(683\) 34.5265 1.32112 0.660560 0.750774i \(-0.270319\pi\)
0.660560 + 0.750774i \(0.270319\pi\)
\(684\) 0 0
\(685\) −22.4119 −0.856313
\(686\) −4.77735 −0.182400
\(687\) 0 0
\(688\) −6.59036 −0.251255
\(689\) 6.47259 0.246586
\(690\) 0 0
\(691\) 32.7649 1.24644 0.623218 0.782048i \(-0.285825\pi\)
0.623218 + 0.782048i \(0.285825\pi\)
\(692\) 15.6629 0.595414
\(693\) 0 0
\(694\) −26.0825 −0.990080
\(695\) 4.24105 0.160872
\(696\) 0 0
\(697\) 3.14783 0.119233
\(698\) 24.5684 0.929929
\(699\) 0 0
\(700\) −0.958828 −0.0362403
\(701\) 4.80166 0.181356 0.0906782 0.995880i \(-0.471097\pi\)
0.0906782 + 0.995880i \(0.471097\pi\)
\(702\) 0 0
\(703\) 1.27274 0.0480024
\(704\) 0.905704 0.0341350
\(705\) 0 0
\(706\) −8.36823 −0.314943
\(707\) −1.00041 −0.0376243
\(708\) 0 0
\(709\) −34.4618 −1.29424 −0.647120 0.762389i \(-0.724027\pi\)
−0.647120 + 0.762389i \(0.724027\pi\)
\(710\) 7.87987 0.295726
\(711\) 0 0
\(712\) 1.61934 0.0606874
\(713\) −2.82258 −0.105706
\(714\) 0 0
\(715\) 3.03195 0.113389
\(716\) −25.1868 −0.941273
\(717\) 0 0
\(718\) 2.12835 0.0794295
\(719\) 41.1653 1.53521 0.767604 0.640925i \(-0.221449\pi\)
0.767604 + 0.640925i \(0.221449\pi\)
\(720\) 0 0
\(721\) −4.15961 −0.154912
\(722\) −18.5262 −0.689475
\(723\) 0 0
\(724\) 6.06957 0.225574
\(725\) −11.8206 −0.439005
\(726\) 0 0
\(727\) −50.5549 −1.87498 −0.937489 0.348015i \(-0.886856\pi\)
−0.937489 + 0.348015i \(0.886856\pi\)
\(728\) −0.774289 −0.0286971
\(729\) 0 0
\(730\) −8.78184 −0.325031
\(731\) 17.0407 0.630272
\(732\) 0 0
\(733\) −29.3797 −1.08516 −0.542581 0.840003i \(-0.682553\pi\)
−0.542581 + 0.840003i \(0.682553\pi\)
\(734\) 9.53496 0.351942
\(735\) 0 0
\(736\) −1.46259 −0.0539118
\(737\) 3.93451 0.144930
\(738\) 0 0
\(739\) −22.4975 −0.827584 −0.413792 0.910371i \(-0.635796\pi\)
−0.413792 + 0.910371i \(0.635796\pi\)
\(740\) 2.75134 0.101141
\(741\) 0 0
\(742\) −0.990085 −0.0363472
\(743\) 7.49123 0.274826 0.137413 0.990514i \(-0.456121\pi\)
0.137413 + 0.990514i \(0.456121\pi\)
\(744\) 0 0
\(745\) −7.80421 −0.285924
\(746\) 16.7808 0.614387
\(747\) 0 0
\(748\) −2.34187 −0.0856274
\(749\) 2.42183 0.0884917
\(750\) 0 0
\(751\) 31.3441 1.14376 0.571881 0.820337i \(-0.306214\pi\)
0.571881 + 0.820337i \(0.306214\pi\)
\(752\) 6.42244 0.234202
\(753\) 0 0
\(754\) −9.54555 −0.347628
\(755\) −17.9463 −0.653132
\(756\) 0 0
\(757\) −44.8626 −1.63056 −0.815280 0.579067i \(-0.803417\pi\)
−0.815280 + 0.579067i \(0.803417\pi\)
\(758\) −29.0341 −1.05457
\(759\) 0 0
\(760\) 1.02414 0.0371496
\(761\) 18.5983 0.674189 0.337094 0.941471i \(-0.390556\pi\)
0.337094 + 0.941471i \(0.390556\pi\)
\(762\) 0 0
\(763\) −1.69297 −0.0612895
\(764\) −8.11319 −0.293525
\(765\) 0 0
\(766\) −35.5798 −1.28555
\(767\) 24.7749 0.894570
\(768\) 0 0
\(769\) 52.1929 1.88213 0.941063 0.338232i \(-0.109829\pi\)
0.941063 + 0.338232i \(0.109829\pi\)
\(770\) −0.463785 −0.0167137
\(771\) 0 0
\(772\) −12.8968 −0.464166
\(773\) −41.7206 −1.50059 −0.750293 0.661105i \(-0.770088\pi\)
−0.750293 + 0.661105i \(0.770088\pi\)
\(774\) 0 0
\(775\) −5.37669 −0.193136
\(776\) 14.3436 0.514904
\(777\) 0 0
\(778\) 37.5839 1.34745
\(779\) 0.837940 0.0300223
\(780\) 0 0
\(781\) −4.79648 −0.171632
\(782\) 3.78181 0.135237
\(783\) 0 0
\(784\) −6.88156 −0.245770
\(785\) 21.4544 0.765740
\(786\) 0 0
\(787\) 20.8879 0.744574 0.372287 0.928118i \(-0.378574\pi\)
0.372287 + 0.928118i \(0.378574\pi\)
\(788\) −14.4920 −0.516257
\(789\) 0 0
\(790\) 22.4837 0.799934
\(791\) −3.61731 −0.128617
\(792\) 0 0
\(793\) 3.93757 0.139827
\(794\) −16.8913 −0.599450
\(795\) 0 0
\(796\) 20.5344 0.727822
\(797\) −20.6075 −0.729955 −0.364978 0.931016i \(-0.618923\pi\)
−0.364978 + 0.931016i \(0.618923\pi\)
\(798\) 0 0
\(799\) −16.6065 −0.587495
\(800\) −2.78607 −0.0985024
\(801\) 0 0
\(802\) −3.68585 −0.130152
\(803\) 5.34552 0.188639
\(804\) 0 0
\(805\) 0.748951 0.0263971
\(806\) −4.34187 −0.152936
\(807\) 0 0
\(808\) −2.90690 −0.102264
\(809\) −8.27012 −0.290762 −0.145381 0.989376i \(-0.546441\pi\)
−0.145381 + 0.989376i \(0.546441\pi\)
\(810\) 0 0
\(811\) 26.6200 0.934753 0.467377 0.884058i \(-0.345199\pi\)
0.467377 + 0.884058i \(0.345199\pi\)
\(812\) 1.46014 0.0512409
\(813\) 0 0
\(814\) −1.67474 −0.0586997
\(815\) −31.1813 −1.09223
\(816\) 0 0
\(817\) 4.53616 0.158700
\(818\) 18.5784 0.649579
\(819\) 0 0
\(820\) 1.81141 0.0632571
\(821\) −29.4026 −1.02616 −0.513078 0.858342i \(-0.671495\pi\)
−0.513078 + 0.858342i \(0.671495\pi\)
\(822\) 0 0
\(823\) 15.4716 0.539305 0.269653 0.962958i \(-0.413091\pi\)
0.269653 + 0.962958i \(0.413091\pi\)
\(824\) −12.0866 −0.421057
\(825\) 0 0
\(826\) −3.78971 −0.131861
\(827\) 24.5579 0.853963 0.426982 0.904260i \(-0.359577\pi\)
0.426982 + 0.904260i \(0.359577\pi\)
\(828\) 0 0
\(829\) 20.1760 0.700741 0.350371 0.936611i \(-0.386056\pi\)
0.350371 + 0.936611i \(0.386056\pi\)
\(830\) 23.4647 0.814472
\(831\) 0 0
\(832\) −2.24985 −0.0779997
\(833\) 17.7936 0.616513
\(834\) 0 0
\(835\) −3.86147 −0.133632
\(836\) −0.623397 −0.0215606
\(837\) 0 0
\(838\) −3.30890 −0.114304
\(839\) 39.9874 1.38052 0.690259 0.723562i \(-0.257496\pi\)
0.690259 + 0.723562i \(0.257496\pi\)
\(840\) 0 0
\(841\) −10.9992 −0.379281
\(842\) 7.23994 0.249505
\(843\) 0 0
\(844\) −6.99356 −0.240728
\(845\) 11.8114 0.406325
\(846\) 0 0
\(847\) −3.50335 −0.120377
\(848\) −2.87689 −0.0987930
\(849\) 0 0
\(850\) 7.20393 0.247093
\(851\) 2.70449 0.0927086
\(852\) 0 0
\(853\) −38.2866 −1.31091 −0.655453 0.755236i \(-0.727522\pi\)
−0.655453 + 0.755236i \(0.727522\pi\)
\(854\) −0.602314 −0.0206108
\(855\) 0 0
\(856\) 7.03712 0.240524
\(857\) −10.4287 −0.356239 −0.178120 0.984009i \(-0.557001\pi\)
−0.178120 + 0.984009i \(0.557001\pi\)
\(858\) 0 0
\(859\) −31.3752 −1.07051 −0.535254 0.844691i \(-0.679784\pi\)
−0.535254 + 0.844691i \(0.679784\pi\)
\(860\) 9.80599 0.334381
\(861\) 0 0
\(862\) 11.1645 0.380266
\(863\) −22.9420 −0.780954 −0.390477 0.920613i \(-0.627690\pi\)
−0.390477 + 0.920613i \(0.627690\pi\)
\(864\) 0 0
\(865\) −23.3053 −0.792403
\(866\) 28.8143 0.979150
\(867\) 0 0
\(868\) 0.664158 0.0225430
\(869\) −13.6859 −0.464261
\(870\) 0 0
\(871\) −9.77371 −0.331169
\(872\) −4.91926 −0.166587
\(873\) 0 0
\(874\) 1.00670 0.0340522
\(875\) 3.98703 0.134786
\(876\) 0 0
\(877\) 13.8521 0.467754 0.233877 0.972266i \(-0.424859\pi\)
0.233877 + 0.972266i \(0.424859\pi\)
\(878\) 20.4897 0.691495
\(879\) 0 0
\(880\) −1.34762 −0.0454283
\(881\) −20.0782 −0.676451 −0.338225 0.941065i \(-0.609827\pi\)
−0.338225 + 0.941065i \(0.609827\pi\)
\(882\) 0 0
\(883\) 55.3481 1.86261 0.931306 0.364237i \(-0.118670\pi\)
0.931306 + 0.364237i \(0.118670\pi\)
\(884\) 5.81744 0.195662
\(885\) 0 0
\(886\) −9.58503 −0.322015
\(887\) −1.28823 −0.0432544 −0.0216272 0.999766i \(-0.506885\pi\)
−0.0216272 + 0.999766i \(0.506885\pi\)
\(888\) 0 0
\(889\) −6.91156 −0.231806
\(890\) −2.40947 −0.0807655
\(891\) 0 0
\(892\) −8.26630 −0.276776
\(893\) −4.42058 −0.147929
\(894\) 0 0
\(895\) 37.4761 1.25269
\(896\) 0.344151 0.0114973
\(897\) 0 0
\(898\) 21.4476 0.715716
\(899\) 8.18784 0.273080
\(900\) 0 0
\(901\) 7.43877 0.247822
\(902\) −1.10261 −0.0367127
\(903\) 0 0
\(904\) −10.5108 −0.349585
\(905\) −9.03109 −0.300203
\(906\) 0 0
\(907\) 11.6760 0.387695 0.193848 0.981032i \(-0.437903\pi\)
0.193848 + 0.981032i \(0.437903\pi\)
\(908\) 3.27586 0.108713
\(909\) 0 0
\(910\) 1.15209 0.0381913
\(911\) −31.6479 −1.04854 −0.524271 0.851551i \(-0.675662\pi\)
−0.524271 + 0.851551i \(0.675662\pi\)
\(912\) 0 0
\(913\) −14.2830 −0.472698
\(914\) 10.7176 0.354508
\(915\) 0 0
\(916\) −3.04601 −0.100643
\(917\) 2.94102 0.0971209
\(918\) 0 0
\(919\) −49.3145 −1.62674 −0.813368 0.581749i \(-0.802368\pi\)
−0.813368 + 0.581749i \(0.802368\pi\)
\(920\) 2.17623 0.0717482
\(921\) 0 0
\(922\) 19.6658 0.647657
\(923\) 11.9149 0.392184
\(924\) 0 0
\(925\) 5.15174 0.169388
\(926\) 22.6226 0.743426
\(927\) 0 0
\(928\) 4.24274 0.139275
\(929\) 25.7689 0.845450 0.422725 0.906258i \(-0.361074\pi\)
0.422725 + 0.906258i \(0.361074\pi\)
\(930\) 0 0
\(931\) 4.73659 0.155235
\(932\) −12.9540 −0.424322
\(933\) 0 0
\(934\) −30.0503 −0.983277
\(935\) 3.48454 0.113957
\(936\) 0 0
\(937\) −6.22816 −0.203465 −0.101733 0.994812i \(-0.532439\pi\)
−0.101733 + 0.994812i \(0.532439\pi\)
\(938\) 1.49504 0.0488149
\(939\) 0 0
\(940\) −9.55613 −0.311687
\(941\) −15.3930 −0.501799 −0.250900 0.968013i \(-0.580726\pi\)
−0.250900 + 0.968013i \(0.580726\pi\)
\(942\) 0 0
\(943\) 1.78056 0.0579830
\(944\) −11.0118 −0.358403
\(945\) 0 0
\(946\) −5.96891 −0.194066
\(947\) 19.0683 0.619635 0.309818 0.950796i \(-0.399732\pi\)
0.309818 + 0.950796i \(0.399732\pi\)
\(948\) 0 0
\(949\) −13.2788 −0.431047
\(950\) 1.91766 0.0622170
\(951\) 0 0
\(952\) −0.889869 −0.0288408
\(953\) 39.7141 1.28647 0.643234 0.765670i \(-0.277592\pi\)
0.643234 + 0.765670i \(0.277592\pi\)
\(954\) 0 0
\(955\) 12.0718 0.390636
\(956\) −8.68652 −0.280942
\(957\) 0 0
\(958\) 32.6251 1.05407
\(959\) 5.18376 0.167392
\(960\) 0 0
\(961\) −27.2757 −0.879861
\(962\) 4.16022 0.134131
\(963\) 0 0
\(964\) −15.8491 −0.510465
\(965\) 19.1895 0.617733
\(966\) 0 0
\(967\) −54.5429 −1.75398 −0.876991 0.480507i \(-0.840453\pi\)
−0.876991 + 0.480507i \(0.840453\pi\)
\(968\) −10.1797 −0.327188
\(969\) 0 0
\(970\) −21.3422 −0.685257
\(971\) 20.6894 0.663955 0.331977 0.943287i \(-0.392284\pi\)
0.331977 + 0.943287i \(0.392284\pi\)
\(972\) 0 0
\(973\) −0.980934 −0.0314473
\(974\) −4.12981 −0.132328
\(975\) 0 0
\(976\) −1.75015 −0.0560208
\(977\) −3.49749 −0.111895 −0.0559473 0.998434i \(-0.517818\pi\)
−0.0559473 + 0.998434i \(0.517818\pi\)
\(978\) 0 0
\(979\) 1.46664 0.0468742
\(980\) 10.2393 0.327081
\(981\) 0 0
\(982\) 35.2225 1.12400
\(983\) −16.5884 −0.529086 −0.264543 0.964374i \(-0.585221\pi\)
−0.264543 + 0.964374i \(0.585221\pi\)
\(984\) 0 0
\(985\) 21.5631 0.687057
\(986\) −10.9704 −0.349370
\(987\) 0 0
\(988\) 1.54858 0.0492668
\(989\) 9.63900 0.306502
\(990\) 0 0
\(991\) −27.1297 −0.861805 −0.430902 0.902399i \(-0.641805\pi\)
−0.430902 + 0.902399i \(0.641805\pi\)
\(992\) 1.92985 0.0612727
\(993\) 0 0
\(994\) −1.82258 −0.0578086
\(995\) −30.5537 −0.968617
\(996\) 0 0
\(997\) 56.5029 1.78946 0.894732 0.446603i \(-0.147366\pi\)
0.894732 + 0.446603i \(0.147366\pi\)
\(998\) 16.3253 0.516767
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.j.1.2 4
3.2 odd 2 538.2.a.c.1.4 4
12.11 even 2 4304.2.a.e.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.c.1.4 4 3.2 odd 2
4304.2.a.e.1.1 4 12.11 even 2
4842.2.a.j.1.2 4 1.1 even 1 trivial