Properties

Label 4842.2.a.j.1.1
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4913.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.90570\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.90570 q^{5} -0.487928 q^{7} +1.00000 q^{8} -3.90570 q^{10} -4.04948 q^{11} +3.53741 q^{13} -0.487928 q^{14} +1.00000 q^{16} +6.37296 q^{17} +0.975857 q^{19} -3.90570 q^{20} -4.04948 q^{22} -0.750146 q^{23} +10.2545 q^{25} +3.53741 q^{26} -0.487928 q^{28} +4.08193 q^{29} -7.86089 q^{31} +1.00000 q^{32} +6.37296 q^{34} +1.90570 q^{35} -4.22571 q^{37} +0.975857 q^{38} -3.90570 q^{40} +2.07362 q^{41} +10.7341 q^{43} -4.04948 q^{44} -0.750146 q^{46} -9.31636 q^{47} -6.76193 q^{49} +10.2545 q^{50} +3.53741 q^{52} -11.1231 q^{53} +15.8161 q^{55} -0.487928 q^{56} +4.08193 q^{58} +2.98052 q^{59} -7.53741 q^{61} -7.86089 q^{62} +1.00000 q^{64} -13.8161 q^{65} +3.51207 q^{67} +6.37296 q^{68} +1.90570 q^{70} -14.1349 q^{71} -9.75828 q^{73} -4.22571 q^{74} +0.975857 q^{76} +1.97586 q^{77} +2.29222 q^{79} -3.90570 q^{80} +2.07362 q^{82} +17.1324 q^{83} -24.8909 q^{85} +10.7341 q^{86} -4.04948 q^{88} -1.86978 q^{89} -1.72600 q^{91} -0.750146 q^{92} -9.31636 q^{94} -3.81141 q^{95} -9.63757 q^{97} -6.76193 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} - 5 q^{5} - q^{7} + 4 q^{8} - 5 q^{10} - 7 q^{11} + 4 q^{13} - q^{14} + 4 q^{16} - 4 q^{17} + 2 q^{19} - 5 q^{20} - 7 q^{22} - 16 q^{23} - q^{25} + 4 q^{26} - q^{28} - q^{31}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.90570 −1.74668 −0.873342 0.487108i \(-0.838052\pi\)
−0.873342 + 0.487108i \(0.838052\pi\)
\(6\) 0 0
\(7\) −0.487928 −0.184420 −0.0922098 0.995740i \(-0.529393\pi\)
−0.0922098 + 0.995740i \(0.529393\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.90570 −1.23509
\(11\) −4.04948 −1.22096 −0.610482 0.792030i \(-0.709024\pi\)
−0.610482 + 0.792030i \(0.709024\pi\)
\(12\) 0 0
\(13\) 3.53741 0.981101 0.490550 0.871413i \(-0.336796\pi\)
0.490550 + 0.871413i \(0.336796\pi\)
\(14\) −0.487928 −0.130404
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.37296 1.54567 0.772835 0.634607i \(-0.218838\pi\)
0.772835 + 0.634607i \(0.218838\pi\)
\(18\) 0 0
\(19\) 0.975857 0.223877 0.111938 0.993715i \(-0.464294\pi\)
0.111938 + 0.993715i \(0.464294\pi\)
\(20\) −3.90570 −0.873342
\(21\) 0 0
\(22\) −4.04948 −0.863352
\(23\) −0.750146 −0.156416 −0.0782081 0.996937i \(-0.524920\pi\)
−0.0782081 + 0.996937i \(0.524920\pi\)
\(24\) 0 0
\(25\) 10.2545 2.05090
\(26\) 3.53741 0.693743
\(27\) 0 0
\(28\) −0.487928 −0.0922098
\(29\) 4.08193 0.757996 0.378998 0.925397i \(-0.376269\pi\)
0.378998 + 0.925397i \(0.376269\pi\)
\(30\) 0 0
\(31\) −7.86089 −1.41186 −0.705929 0.708283i \(-0.749470\pi\)
−0.705929 + 0.708283i \(0.749470\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.37296 1.09295
\(35\) 1.90570 0.322123
\(36\) 0 0
\(37\) −4.22571 −0.694703 −0.347351 0.937735i \(-0.612919\pi\)
−0.347351 + 0.937735i \(0.612919\pi\)
\(38\) 0.975857 0.158305
\(39\) 0 0
\(40\) −3.90570 −0.617546
\(41\) 2.07362 0.323846 0.161923 0.986803i \(-0.448230\pi\)
0.161923 + 0.986803i \(0.448230\pi\)
\(42\) 0 0
\(43\) 10.7341 1.63694 0.818470 0.574549i \(-0.194822\pi\)
0.818470 + 0.574549i \(0.194822\pi\)
\(44\) −4.04948 −0.610482
\(45\) 0 0
\(46\) −0.750146 −0.110603
\(47\) −9.31636 −1.35893 −0.679466 0.733707i \(-0.737788\pi\)
−0.679466 + 0.733707i \(0.737788\pi\)
\(48\) 0 0
\(49\) −6.76193 −0.965989
\(50\) 10.2545 1.45021
\(51\) 0 0
\(52\) 3.53741 0.490550
\(53\) −11.1231 −1.52788 −0.763938 0.645290i \(-0.776737\pi\)
−0.763938 + 0.645290i \(0.776737\pi\)
\(54\) 0 0
\(55\) 15.8161 2.13264
\(56\) −0.487928 −0.0652022
\(57\) 0 0
\(58\) 4.08193 0.535984
\(59\) 2.98052 0.388031 0.194015 0.980998i \(-0.437849\pi\)
0.194015 + 0.980998i \(0.437849\pi\)
\(60\) 0 0
\(61\) −7.53741 −0.965066 −0.482533 0.875878i \(-0.660283\pi\)
−0.482533 + 0.875878i \(0.660283\pi\)
\(62\) −7.86089 −0.998334
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −13.8161 −1.71367
\(66\) 0 0
\(67\) 3.51207 0.429068 0.214534 0.976717i \(-0.431177\pi\)
0.214534 + 0.976717i \(0.431177\pi\)
\(68\) 6.37296 0.772835
\(69\) 0 0
\(70\) 1.90570 0.227775
\(71\) −14.1349 −1.67750 −0.838751 0.544515i \(-0.816714\pi\)
−0.838751 + 0.544515i \(0.816714\pi\)
\(72\) 0 0
\(73\) −9.75828 −1.14212 −0.571060 0.820908i \(-0.693468\pi\)
−0.571060 + 0.820908i \(0.693468\pi\)
\(74\) −4.22571 −0.491229
\(75\) 0 0
\(76\) 0.975857 0.111938
\(77\) 1.97586 0.225170
\(78\) 0 0
\(79\) 2.29222 0.257895 0.128948 0.991651i \(-0.458840\pi\)
0.128948 + 0.991651i \(0.458840\pi\)
\(80\) −3.90570 −0.436671
\(81\) 0 0
\(82\) 2.07362 0.228994
\(83\) 17.1324 1.88053 0.940265 0.340444i \(-0.110578\pi\)
0.940265 + 0.340444i \(0.110578\pi\)
\(84\) 0 0
\(85\) −24.8909 −2.69980
\(86\) 10.7341 1.15749
\(87\) 0 0
\(88\) −4.04948 −0.431676
\(89\) −1.86978 −0.198196 −0.0990981 0.995078i \(-0.531596\pi\)
−0.0990981 + 0.995078i \(0.531596\pi\)
\(90\) 0 0
\(91\) −1.72600 −0.180934
\(92\) −0.750146 −0.0782081
\(93\) 0 0
\(94\) −9.31636 −0.960910
\(95\) −3.81141 −0.391042
\(96\) 0 0
\(97\) −9.63757 −0.978547 −0.489273 0.872131i \(-0.662738\pi\)
−0.489273 + 0.872131i \(0.662738\pi\)
\(98\) −6.76193 −0.683058
\(99\) 0 0
\(100\) 10.2545 1.02545
\(101\) −5.91748 −0.588812 −0.294406 0.955680i \(-0.595122\pi\)
−0.294406 + 0.955680i \(0.595122\pi\)
\(102\) 0 0
\(103\) 0.480814 0.0473760 0.0236880 0.999719i \(-0.492459\pi\)
0.0236880 + 0.999719i \(0.492459\pi\)
\(104\) 3.53741 0.346872
\(105\) 0 0
\(106\) −11.1231 −1.08037
\(107\) −3.82496 −0.369773 −0.184887 0.982760i \(-0.559192\pi\)
−0.184887 + 0.982760i \(0.559192\pi\)
\(108\) 0 0
\(109\) −17.0866 −1.63660 −0.818300 0.574792i \(-0.805083\pi\)
−0.818300 + 0.574792i \(0.805083\pi\)
\(110\) 15.8161 1.50800
\(111\) 0 0
\(112\) −0.487928 −0.0461049
\(113\) −13.3194 −1.25299 −0.626493 0.779427i \(-0.715510\pi\)
−0.626493 + 0.779427i \(0.715510\pi\)
\(114\) 0 0
\(115\) 2.92985 0.273210
\(116\) 4.08193 0.378998
\(117\) 0 0
\(118\) 2.98052 0.274379
\(119\) −3.10955 −0.285052
\(120\) 0 0
\(121\) 5.39830 0.490754
\(122\) −7.53741 −0.682405
\(123\) 0 0
\(124\) −7.86089 −0.705929
\(125\) −20.5226 −1.83560
\(126\) 0 0
\(127\) 3.18962 0.283033 0.141516 0.989936i \(-0.454802\pi\)
0.141516 + 0.989936i \(0.454802\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −13.8161 −1.21175
\(131\) 11.5975 1.01328 0.506638 0.862159i \(-0.330888\pi\)
0.506638 + 0.862159i \(0.330888\pi\)
\(132\) 0 0
\(133\) −0.476148 −0.0412873
\(134\) 3.51207 0.303397
\(135\) 0 0
\(136\) 6.37296 0.546477
\(137\) 7.33059 0.626295 0.313147 0.949705i \(-0.398617\pi\)
0.313147 + 0.949705i \(0.398617\pi\)
\(138\) 0 0
\(139\) −13.1927 −1.11899 −0.559494 0.828834i \(-0.689005\pi\)
−0.559494 + 0.828834i \(0.689005\pi\)
\(140\) 1.90570 0.161061
\(141\) 0 0
\(142\) −14.1349 −1.18617
\(143\) −14.3247 −1.19789
\(144\) 0 0
\(145\) −15.9428 −1.32398
\(146\) −9.75828 −0.807601
\(147\) 0 0
\(148\) −4.22571 −0.347351
\(149\) −19.2132 −1.57400 −0.787002 0.616950i \(-0.788368\pi\)
−0.787002 + 0.616950i \(0.788368\pi\)
\(150\) 0 0
\(151\) −3.63637 −0.295924 −0.147962 0.988993i \(-0.547271\pi\)
−0.147962 + 0.988993i \(0.547271\pi\)
\(152\) 0.975857 0.0791524
\(153\) 0 0
\(154\) 1.97586 0.159219
\(155\) 30.7023 2.46607
\(156\) 0 0
\(157\) −15.0118 −1.19807 −0.599035 0.800723i \(-0.704449\pi\)
−0.599035 + 0.800723i \(0.704449\pi\)
\(158\) 2.29222 0.182359
\(159\) 0 0
\(160\) −3.90570 −0.308773
\(161\) 0.366017 0.0288462
\(162\) 0 0
\(163\) −4.77531 −0.374031 −0.187016 0.982357i \(-0.559882\pi\)
−0.187016 + 0.982357i \(0.559882\pi\)
\(164\) 2.07362 0.161923
\(165\) 0 0
\(166\) 17.1324 1.32974
\(167\) 3.94163 0.305012 0.152506 0.988303i \(-0.451266\pi\)
0.152506 + 0.988303i \(0.451266\pi\)
\(168\) 0 0
\(169\) −0.486734 −0.0374411
\(170\) −24.8909 −1.90904
\(171\) 0 0
\(172\) 10.7341 0.818470
\(173\) 24.0607 1.82930 0.914650 0.404247i \(-0.132466\pi\)
0.914650 + 0.404247i \(0.132466\pi\)
\(174\) 0 0
\(175\) −5.00347 −0.378227
\(176\) −4.04948 −0.305241
\(177\) 0 0
\(178\) −1.86978 −0.140146
\(179\) −17.1745 −1.28368 −0.641839 0.766839i \(-0.721828\pi\)
−0.641839 + 0.766839i \(0.721828\pi\)
\(180\) 0 0
\(181\) −7.28875 −0.541769 −0.270884 0.962612i \(-0.587316\pi\)
−0.270884 + 0.962612i \(0.587316\pi\)
\(182\) −1.72600 −0.127940
\(183\) 0 0
\(184\) −0.750146 −0.0553015
\(185\) 16.5044 1.21343
\(186\) 0 0
\(187\) −25.8072 −1.88721
\(188\) −9.31636 −0.679466
\(189\) 0 0
\(190\) −3.81141 −0.276509
\(191\) 6.55038 0.473969 0.236985 0.971513i \(-0.423841\pi\)
0.236985 + 0.971513i \(0.423841\pi\)
\(192\) 0 0
\(193\) 17.5467 1.26304 0.631521 0.775359i \(-0.282431\pi\)
0.631521 + 0.775359i \(0.282431\pi\)
\(194\) −9.63757 −0.691937
\(195\) 0 0
\(196\) −6.76193 −0.482995
\(197\) 14.6051 1.04057 0.520286 0.853992i \(-0.325825\pi\)
0.520286 + 0.853992i \(0.325825\pi\)
\(198\) 0 0
\(199\) −4.64162 −0.329036 −0.164518 0.986374i \(-0.552607\pi\)
−0.164518 + 0.986374i \(0.552607\pi\)
\(200\) 10.2545 0.725104
\(201\) 0 0
\(202\) −5.91748 −0.416353
\(203\) −1.99169 −0.139789
\(204\) 0 0
\(205\) −8.09896 −0.565656
\(206\) 0.480814 0.0334999
\(207\) 0 0
\(208\) 3.53741 0.245275
\(209\) −3.95171 −0.273346
\(210\) 0 0
\(211\) 15.7554 1.08465 0.542324 0.840169i \(-0.317545\pi\)
0.542324 + 0.840169i \(0.317545\pi\)
\(212\) −11.1231 −0.763938
\(213\) 0 0
\(214\) −3.82496 −0.261469
\(215\) −41.9244 −2.85922
\(216\) 0 0
\(217\) 3.83555 0.260374
\(218\) −17.0866 −1.15725
\(219\) 0 0
\(220\) 15.8161 1.06632
\(221\) 22.5438 1.51646
\(222\) 0 0
\(223\) 19.8791 1.33120 0.665602 0.746307i \(-0.268175\pi\)
0.665602 + 0.746307i \(0.268175\pi\)
\(224\) −0.487928 −0.0326011
\(225\) 0 0
\(226\) −13.3194 −0.885995
\(227\) −27.7566 −1.84227 −0.921136 0.389242i \(-0.872737\pi\)
−0.921136 + 0.389242i \(0.872737\pi\)
\(228\) 0 0
\(229\) −17.6723 −1.16782 −0.583909 0.811819i \(-0.698478\pi\)
−0.583909 + 0.811819i \(0.698478\pi\)
\(230\) 2.92985 0.193188
\(231\) 0 0
\(232\) 4.08193 0.267992
\(233\) 1.67230 0.109556 0.0547779 0.998499i \(-0.482555\pi\)
0.0547779 + 0.998499i \(0.482555\pi\)
\(234\) 0 0
\(235\) 36.3870 2.37362
\(236\) 2.98052 0.194015
\(237\) 0 0
\(238\) −3.10955 −0.201562
\(239\) 24.0925 1.55841 0.779206 0.626768i \(-0.215623\pi\)
0.779206 + 0.626768i \(0.215623\pi\)
\(240\) 0 0
\(241\) −18.2257 −1.17402 −0.587011 0.809579i \(-0.699695\pi\)
−0.587011 + 0.809579i \(0.699695\pi\)
\(242\) 5.39830 0.347016
\(243\) 0 0
\(244\) −7.53741 −0.482533
\(245\) 26.4101 1.68728
\(246\) 0 0
\(247\) 3.45200 0.219646
\(248\) −7.86089 −0.499167
\(249\) 0 0
\(250\) −20.5226 −1.29796
\(251\) 1.21740 0.0768417 0.0384209 0.999262i \(-0.487767\pi\)
0.0384209 + 0.999262i \(0.487767\pi\)
\(252\) 0 0
\(253\) 3.03770 0.190979
\(254\) 3.18962 0.200134
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −28.7806 −1.79529 −0.897644 0.440722i \(-0.854723\pi\)
−0.897644 + 0.440722i \(0.854723\pi\)
\(258\) 0 0
\(259\) 2.06184 0.128117
\(260\) −13.8161 −0.856836
\(261\) 0 0
\(262\) 11.5975 0.716494
\(263\) 4.35407 0.268483 0.134242 0.990949i \(-0.457140\pi\)
0.134242 + 0.990949i \(0.457140\pi\)
\(264\) 0 0
\(265\) 43.4436 2.66872
\(266\) −0.476148 −0.0291945
\(267\) 0 0
\(268\) 3.51207 0.214534
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) −19.6940 −1.19632 −0.598162 0.801375i \(-0.704102\pi\)
−0.598162 + 0.801375i \(0.704102\pi\)
\(272\) 6.37296 0.386417
\(273\) 0 0
\(274\) 7.33059 0.442857
\(275\) −41.5255 −2.50408
\(276\) 0 0
\(277\) −1.31009 −0.0787158 −0.0393579 0.999225i \(-0.512531\pi\)
−0.0393579 + 0.999225i \(0.512531\pi\)
\(278\) −13.1927 −0.791244
\(279\) 0 0
\(280\) 1.90570 0.113888
\(281\) −7.94749 −0.474107 −0.237054 0.971497i \(-0.576182\pi\)
−0.237054 + 0.971497i \(0.576182\pi\)
\(282\) 0 0
\(283\) 20.7544 1.23372 0.616861 0.787072i \(-0.288404\pi\)
0.616861 + 0.787072i \(0.288404\pi\)
\(284\) −14.1349 −0.838751
\(285\) 0 0
\(286\) −14.3247 −0.847036
\(287\) −1.01178 −0.0597235
\(288\) 0 0
\(289\) 23.6146 1.38910
\(290\) −15.9428 −0.936195
\(291\) 0 0
\(292\) −9.75828 −0.571060
\(293\) 10.9994 0.642593 0.321296 0.946979i \(-0.395881\pi\)
0.321296 + 0.946979i \(0.395881\pi\)
\(294\) 0 0
\(295\) −11.6410 −0.677767
\(296\) −4.22571 −0.245614
\(297\) 0 0
\(298\) −19.2132 −1.11299
\(299\) −2.65357 −0.153460
\(300\) 0 0
\(301\) −5.23749 −0.301884
\(302\) −3.63637 −0.209250
\(303\) 0 0
\(304\) 0.975857 0.0559692
\(305\) 29.4389 1.68567
\(306\) 0 0
\(307\) 15.1961 0.867290 0.433645 0.901084i \(-0.357227\pi\)
0.433645 + 0.901084i \(0.357227\pi\)
\(308\) 1.97586 0.112585
\(309\) 0 0
\(310\) 30.7023 1.74377
\(311\) −9.02476 −0.511747 −0.255873 0.966710i \(-0.582363\pi\)
−0.255873 + 0.966710i \(0.582363\pi\)
\(312\) 0 0
\(313\) 34.3481 1.94147 0.970734 0.240159i \(-0.0771995\pi\)
0.970734 + 0.240159i \(0.0771995\pi\)
\(314\) −15.0118 −0.847164
\(315\) 0 0
\(316\) 2.29222 0.128948
\(317\) −20.5386 −1.15356 −0.576781 0.816898i \(-0.695692\pi\)
−0.576781 + 0.816898i \(0.695692\pi\)
\(318\) 0 0
\(319\) −16.5297 −0.925486
\(320\) −3.90570 −0.218335
\(321\) 0 0
\(322\) 0.366017 0.0203974
\(323\) 6.21910 0.346040
\(324\) 0 0
\(325\) 36.2744 2.01214
\(326\) −4.77531 −0.264480
\(327\) 0 0
\(328\) 2.07362 0.114497
\(329\) 4.54572 0.250614
\(330\) 0 0
\(331\) −8.30867 −0.456686 −0.228343 0.973581i \(-0.573331\pi\)
−0.228343 + 0.973581i \(0.573331\pi\)
\(332\) 17.1324 0.940265
\(333\) 0 0
\(334\) 3.94163 0.215676
\(335\) −13.7171 −0.749446
\(336\) 0 0
\(337\) −17.9588 −0.978276 −0.489138 0.872206i \(-0.662689\pi\)
−0.489138 + 0.872206i \(0.662689\pi\)
\(338\) −0.486734 −0.0264748
\(339\) 0 0
\(340\) −24.8909 −1.34990
\(341\) 31.8325 1.72383
\(342\) 0 0
\(343\) 6.71483 0.362567
\(344\) 10.7341 0.578746
\(345\) 0 0
\(346\) 24.0607 1.29351
\(347\) −6.69769 −0.359551 −0.179775 0.983708i \(-0.557537\pi\)
−0.179775 + 0.983708i \(0.557537\pi\)
\(348\) 0 0
\(349\) 0.974251 0.0521505 0.0260752 0.999660i \(-0.491699\pi\)
0.0260752 + 0.999660i \(0.491699\pi\)
\(350\) −5.00347 −0.267447
\(351\) 0 0
\(352\) −4.04948 −0.215838
\(353\) −15.8928 −0.845886 −0.422943 0.906156i \(-0.639003\pi\)
−0.422943 + 0.906156i \(0.639003\pi\)
\(354\) 0 0
\(355\) 55.2067 2.93007
\(356\) −1.86978 −0.0990981
\(357\) 0 0
\(358\) −17.1745 −0.907698
\(359\) 8.66535 0.457340 0.228670 0.973504i \(-0.426562\pi\)
0.228670 + 0.973504i \(0.426562\pi\)
\(360\) 0 0
\(361\) −18.0477 −0.949879
\(362\) −7.28875 −0.383088
\(363\) 0 0
\(364\) −1.72600 −0.0904671
\(365\) 38.1130 1.99492
\(366\) 0 0
\(367\) 7.50802 0.391915 0.195958 0.980612i \(-0.437218\pi\)
0.195958 + 0.980612i \(0.437218\pi\)
\(368\) −0.750146 −0.0391040
\(369\) 0 0
\(370\) 16.5044 0.858022
\(371\) 5.42728 0.281770
\(372\) 0 0
\(373\) 2.14911 0.111277 0.0556385 0.998451i \(-0.482281\pi\)
0.0556385 + 0.998451i \(0.482281\pi\)
\(374\) −25.8072 −1.33446
\(375\) 0 0
\(376\) −9.31636 −0.480455
\(377\) 14.4395 0.743671
\(378\) 0 0
\(379\) 7.71644 0.396367 0.198183 0.980165i \(-0.436496\pi\)
0.198183 + 0.980165i \(0.436496\pi\)
\(380\) −3.81141 −0.195521
\(381\) 0 0
\(382\) 6.55038 0.335147
\(383\) −1.88104 −0.0961165 −0.0480582 0.998845i \(-0.515303\pi\)
−0.0480582 + 0.998845i \(0.515303\pi\)
\(384\) 0 0
\(385\) −7.71711 −0.393300
\(386\) 17.5467 0.893106
\(387\) 0 0
\(388\) −9.63757 −0.489273
\(389\) 10.7025 0.542640 0.271320 0.962489i \(-0.412540\pi\)
0.271320 + 0.962489i \(0.412540\pi\)
\(390\) 0 0
\(391\) −4.78065 −0.241768
\(392\) −6.76193 −0.341529
\(393\) 0 0
\(394\) 14.6051 0.735795
\(395\) −8.95274 −0.450461
\(396\) 0 0
\(397\) 3.84774 0.193113 0.0965563 0.995328i \(-0.469217\pi\)
0.0965563 + 0.995328i \(0.469217\pi\)
\(398\) −4.64162 −0.232663
\(399\) 0 0
\(400\) 10.2545 0.512726
\(401\) 0.717694 0.0358399 0.0179200 0.999839i \(-0.494296\pi\)
0.0179200 + 0.999839i \(0.494296\pi\)
\(402\) 0 0
\(403\) −27.8072 −1.38517
\(404\) −5.91748 −0.294406
\(405\) 0 0
\(406\) −1.99169 −0.0988460
\(407\) 17.1119 0.848207
\(408\) 0 0
\(409\) −11.7906 −0.583006 −0.291503 0.956570i \(-0.594155\pi\)
−0.291503 + 0.956570i \(0.594155\pi\)
\(410\) −8.09896 −0.399979
\(411\) 0 0
\(412\) 0.480814 0.0236880
\(413\) −1.45428 −0.0715605
\(414\) 0 0
\(415\) −66.9142 −3.28469
\(416\) 3.53741 0.173436
\(417\) 0 0
\(418\) −3.95171 −0.193285
\(419\) 7.07076 0.345429 0.172715 0.984972i \(-0.444746\pi\)
0.172715 + 0.984972i \(0.444746\pi\)
\(420\) 0 0
\(421\) −4.96469 −0.241964 −0.120982 0.992655i \(-0.538604\pi\)
−0.120982 + 0.992655i \(0.538604\pi\)
\(422\) 15.7554 0.766962
\(423\) 0 0
\(424\) −11.1231 −0.540186
\(425\) 65.3516 3.17002
\(426\) 0 0
\(427\) 3.67772 0.177977
\(428\) −3.82496 −0.184887
\(429\) 0 0
\(430\) −41.9244 −2.02177
\(431\) −25.6140 −1.23378 −0.616892 0.787048i \(-0.711609\pi\)
−0.616892 + 0.787048i \(0.711609\pi\)
\(432\) 0 0
\(433\) −20.5767 −0.988855 −0.494428 0.869219i \(-0.664622\pi\)
−0.494428 + 0.869219i \(0.664622\pi\)
\(434\) 3.83555 0.184112
\(435\) 0 0
\(436\) −17.0866 −0.818300
\(437\) −0.732035 −0.0350180
\(438\) 0 0
\(439\) 15.6900 0.748843 0.374421 0.927259i \(-0.377841\pi\)
0.374421 + 0.927259i \(0.377841\pi\)
\(440\) 15.8161 0.754002
\(441\) 0 0
\(442\) 22.5438 1.07230
\(443\) −29.0018 −1.37792 −0.688959 0.724801i \(-0.741932\pi\)
−0.688959 + 0.724801i \(0.741932\pi\)
\(444\) 0 0
\(445\) 7.30281 0.346186
\(446\) 19.8791 0.941303
\(447\) 0 0
\(448\) −0.487928 −0.0230524
\(449\) −18.1978 −0.858805 −0.429403 0.903113i \(-0.641276\pi\)
−0.429403 + 0.903113i \(0.641276\pi\)
\(450\) 0 0
\(451\) −8.39710 −0.395404
\(452\) −13.3194 −0.626493
\(453\) 0 0
\(454\) −27.7566 −1.30268
\(455\) 6.74125 0.316035
\(456\) 0 0
\(457\) 32.1933 1.50594 0.752969 0.658056i \(-0.228621\pi\)
0.752969 + 0.658056i \(0.228621\pi\)
\(458\) −17.6723 −0.825772
\(459\) 0 0
\(460\) 2.92985 0.136605
\(461\) 26.9152 1.25357 0.626783 0.779194i \(-0.284371\pi\)
0.626783 + 0.779194i \(0.284371\pi\)
\(462\) 0 0
\(463\) −24.2349 −1.12629 −0.563145 0.826358i \(-0.690409\pi\)
−0.563145 + 0.826358i \(0.690409\pi\)
\(464\) 4.08193 0.189499
\(465\) 0 0
\(466\) 1.67230 0.0774676
\(467\) 17.7628 0.821963 0.410982 0.911644i \(-0.365186\pi\)
0.410982 + 0.911644i \(0.365186\pi\)
\(468\) 0 0
\(469\) −1.71364 −0.0791285
\(470\) 36.3870 1.67841
\(471\) 0 0
\(472\) 2.98052 0.137190
\(473\) −43.4677 −1.99865
\(474\) 0 0
\(475\) 10.0069 0.459150
\(476\) −3.10955 −0.142526
\(477\) 0 0
\(478\) 24.0925 1.10196
\(479\) −11.4930 −0.525130 −0.262565 0.964914i \(-0.584568\pi\)
−0.262565 + 0.964914i \(0.584568\pi\)
\(480\) 0 0
\(481\) −14.9481 −0.681573
\(482\) −18.2257 −0.830158
\(483\) 0 0
\(484\) 5.39830 0.245377
\(485\) 37.6415 1.70921
\(486\) 0 0
\(487\) 5.85514 0.265322 0.132661 0.991161i \(-0.457648\pi\)
0.132661 + 0.991161i \(0.457648\pi\)
\(488\) −7.53741 −0.341202
\(489\) 0 0
\(490\) 26.4101 1.19309
\(491\) −18.6544 −0.841862 −0.420931 0.907093i \(-0.638297\pi\)
−0.420931 + 0.907093i \(0.638297\pi\)
\(492\) 0 0
\(493\) 26.0140 1.17161
\(494\) 3.45200 0.155313
\(495\) 0 0
\(496\) −7.86089 −0.352964
\(497\) 6.89681 0.309364
\(498\) 0 0
\(499\) 35.1119 1.57183 0.785913 0.618337i \(-0.212193\pi\)
0.785913 + 0.618337i \(0.212193\pi\)
\(500\) −20.5226 −0.917798
\(501\) 0 0
\(502\) 1.21740 0.0543353
\(503\) −29.7342 −1.32578 −0.662892 0.748715i \(-0.730671\pi\)
−0.662892 + 0.748715i \(0.730671\pi\)
\(504\) 0 0
\(505\) 23.1119 1.02847
\(506\) 3.03770 0.135042
\(507\) 0 0
\(508\) 3.18962 0.141516
\(509\) −30.1456 −1.33618 −0.668090 0.744081i \(-0.732888\pi\)
−0.668090 + 0.744081i \(0.732888\pi\)
\(510\) 0 0
\(511\) 4.76134 0.210629
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −28.7806 −1.26946
\(515\) −1.87792 −0.0827509
\(516\) 0 0
\(517\) 37.7264 1.65921
\(518\) 2.06184 0.0905922
\(519\) 0 0
\(520\) −13.8161 −0.605875
\(521\) −37.9804 −1.66395 −0.831975 0.554813i \(-0.812790\pi\)
−0.831975 + 0.554813i \(0.812790\pi\)
\(522\) 0 0
\(523\) 10.1012 0.441696 0.220848 0.975308i \(-0.429117\pi\)
0.220848 + 0.975308i \(0.429117\pi\)
\(524\) 11.5975 0.506638
\(525\) 0 0
\(526\) 4.35407 0.189846
\(527\) −50.0971 −2.18227
\(528\) 0 0
\(529\) −22.4373 −0.975534
\(530\) 43.4436 1.88707
\(531\) 0 0
\(532\) −0.476148 −0.0206436
\(533\) 7.33526 0.317725
\(534\) 0 0
\(535\) 14.9392 0.645877
\(536\) 3.51207 0.151698
\(537\) 0 0
\(538\) −1.00000 −0.0431131
\(539\) 27.3823 1.17944
\(540\) 0 0
\(541\) 1.06610 0.0458352 0.0229176 0.999737i \(-0.492704\pi\)
0.0229176 + 0.999737i \(0.492704\pi\)
\(542\) −19.6940 −0.845929
\(543\) 0 0
\(544\) 6.37296 0.273238
\(545\) 66.7352 2.85862
\(546\) 0 0
\(547\) 8.62634 0.368836 0.184418 0.982848i \(-0.440960\pi\)
0.184418 + 0.982848i \(0.440960\pi\)
\(548\) 7.33059 0.313147
\(549\) 0 0
\(550\) −41.5255 −1.77065
\(551\) 3.98338 0.169698
\(552\) 0 0
\(553\) −1.11844 −0.0475609
\(554\) −1.31009 −0.0556605
\(555\) 0 0
\(556\) −13.1927 −0.559494
\(557\) −39.3859 −1.66884 −0.834418 0.551132i \(-0.814196\pi\)
−0.834418 + 0.551132i \(0.814196\pi\)
\(558\) 0 0
\(559\) 37.9710 1.60600
\(560\) 1.90570 0.0805307
\(561\) 0 0
\(562\) −7.94749 −0.335245
\(563\) 29.8436 1.25776 0.628879 0.777503i \(-0.283514\pi\)
0.628879 + 0.777503i \(0.283514\pi\)
\(564\) 0 0
\(565\) 52.0217 2.18857
\(566\) 20.7544 0.872373
\(567\) 0 0
\(568\) −14.1349 −0.593087
\(569\) −18.1766 −0.762004 −0.381002 0.924574i \(-0.624421\pi\)
−0.381002 + 0.924574i \(0.624421\pi\)
\(570\) 0 0
\(571\) −34.4465 −1.44154 −0.720771 0.693173i \(-0.756212\pi\)
−0.720771 + 0.693173i \(0.756212\pi\)
\(572\) −14.3247 −0.598945
\(573\) 0 0
\(574\) −1.01178 −0.0422309
\(575\) −7.69238 −0.320795
\(576\) 0 0
\(577\) 6.04440 0.251632 0.125816 0.992054i \(-0.459845\pi\)
0.125816 + 0.992054i \(0.459845\pi\)
\(578\) 23.6146 0.982239
\(579\) 0 0
\(580\) −15.9428 −0.661990
\(581\) −8.35940 −0.346806
\(582\) 0 0
\(583\) 45.0428 1.86548
\(584\) −9.75828 −0.403801
\(585\) 0 0
\(586\) 10.9994 0.454382
\(587\) 38.6176 1.59392 0.796959 0.604034i \(-0.206441\pi\)
0.796959 + 0.604034i \(0.206441\pi\)
\(588\) 0 0
\(589\) −7.67110 −0.316082
\(590\) −11.6410 −0.479254
\(591\) 0 0
\(592\) −4.22571 −0.173676
\(593\) 4.06998 0.167134 0.0835671 0.996502i \(-0.473369\pi\)
0.0835671 + 0.996502i \(0.473369\pi\)
\(594\) 0 0
\(595\) 12.1450 0.497895
\(596\) −19.2132 −0.787002
\(597\) 0 0
\(598\) −2.65357 −0.108513
\(599\) 18.2628 0.746199 0.373099 0.927791i \(-0.378295\pi\)
0.373099 + 0.927791i \(0.378295\pi\)
\(600\) 0 0
\(601\) 31.6805 1.29228 0.646138 0.763220i \(-0.276383\pi\)
0.646138 + 0.763220i \(0.276383\pi\)
\(602\) −5.23749 −0.213464
\(603\) 0 0
\(604\) −3.63637 −0.147962
\(605\) −21.0842 −0.857193
\(606\) 0 0
\(607\) 25.5355 1.03645 0.518226 0.855244i \(-0.326593\pi\)
0.518226 + 0.855244i \(0.326593\pi\)
\(608\) 0.975857 0.0395762
\(609\) 0 0
\(610\) 29.4389 1.19195
\(611\) −32.9558 −1.33325
\(612\) 0 0
\(613\) −17.6816 −0.714154 −0.357077 0.934075i \(-0.616227\pi\)
−0.357077 + 0.934075i \(0.616227\pi\)
\(614\) 15.1961 0.613267
\(615\) 0 0
\(616\) 1.97586 0.0796095
\(617\) −32.8371 −1.32197 −0.660986 0.750398i \(-0.729862\pi\)
−0.660986 + 0.750398i \(0.729862\pi\)
\(618\) 0 0
\(619\) 10.5824 0.425342 0.212671 0.977124i \(-0.431784\pi\)
0.212671 + 0.977124i \(0.431784\pi\)
\(620\) 30.7023 1.23303
\(621\) 0 0
\(622\) −9.02476 −0.361860
\(623\) 0.912319 0.0365513
\(624\) 0 0
\(625\) 28.8826 1.15530
\(626\) 34.3481 1.37282
\(627\) 0 0
\(628\) −15.0118 −0.599035
\(629\) −26.9303 −1.07378
\(630\) 0 0
\(631\) −0.902404 −0.0359241 −0.0179621 0.999839i \(-0.505718\pi\)
−0.0179621 + 0.999839i \(0.505718\pi\)
\(632\) 2.29222 0.0911797
\(633\) 0 0
\(634\) −20.5386 −0.815692
\(635\) −12.4577 −0.494368
\(636\) 0 0
\(637\) −23.9197 −0.947733
\(638\) −16.5297 −0.654418
\(639\) 0 0
\(640\) −3.90570 −0.154386
\(641\) 19.2444 0.760109 0.380055 0.924964i \(-0.375905\pi\)
0.380055 + 0.924964i \(0.375905\pi\)
\(642\) 0 0
\(643\) 34.2804 1.35189 0.675944 0.736953i \(-0.263736\pi\)
0.675944 + 0.736953i \(0.263736\pi\)
\(644\) 0.366017 0.0144231
\(645\) 0 0
\(646\) 6.21910 0.244687
\(647\) 30.2029 1.18740 0.593698 0.804688i \(-0.297667\pi\)
0.593698 + 0.804688i \(0.297667\pi\)
\(648\) 0 0
\(649\) −12.0696 −0.473772
\(650\) 36.2744 1.42280
\(651\) 0 0
\(652\) −4.77531 −0.187016
\(653\) 21.5877 0.844794 0.422397 0.906411i \(-0.361189\pi\)
0.422397 + 0.906411i \(0.361189\pi\)
\(654\) 0 0
\(655\) −45.2963 −1.76987
\(656\) 2.07362 0.0809614
\(657\) 0 0
\(658\) 4.54572 0.177211
\(659\) 21.3740 0.832612 0.416306 0.909225i \(-0.363324\pi\)
0.416306 + 0.909225i \(0.363324\pi\)
\(660\) 0 0
\(661\) −19.7195 −0.767000 −0.383500 0.923541i \(-0.625281\pi\)
−0.383500 + 0.923541i \(0.625281\pi\)
\(662\) −8.30867 −0.322926
\(663\) 0 0
\(664\) 17.1324 0.664868
\(665\) 1.85969 0.0721158
\(666\) 0 0
\(667\) −3.06204 −0.118563
\(668\) 3.94163 0.152506
\(669\) 0 0
\(670\) −13.7171 −0.529938
\(671\) 30.5226 1.17831
\(672\) 0 0
\(673\) −13.2275 −0.509883 −0.254942 0.966956i \(-0.582056\pi\)
−0.254942 + 0.966956i \(0.582056\pi\)
\(674\) −17.9588 −0.691746
\(675\) 0 0
\(676\) −0.486734 −0.0187205
\(677\) 12.7629 0.490520 0.245260 0.969457i \(-0.421127\pi\)
0.245260 + 0.969457i \(0.421127\pi\)
\(678\) 0 0
\(679\) 4.70244 0.180463
\(680\) −24.8909 −0.954522
\(681\) 0 0
\(682\) 31.8325 1.21893
\(683\) 3.12345 0.119515 0.0597577 0.998213i \(-0.480967\pi\)
0.0597577 + 0.998213i \(0.480967\pi\)
\(684\) 0 0
\(685\) −28.6311 −1.09394
\(686\) 6.71483 0.256374
\(687\) 0 0
\(688\) 10.7341 0.409235
\(689\) −39.3470 −1.49900
\(690\) 0 0
\(691\) 25.3081 0.962767 0.481384 0.876510i \(-0.340134\pi\)
0.481384 + 0.876510i \(0.340134\pi\)
\(692\) 24.0607 0.914650
\(693\) 0 0
\(694\) −6.69769 −0.254241
\(695\) 51.5267 1.95452
\(696\) 0 0
\(697\) 13.2151 0.500559
\(698\) 0.974251 0.0368759
\(699\) 0 0
\(700\) −5.00347 −0.189113
\(701\) 15.5107 0.585831 0.292916 0.956138i \(-0.405374\pi\)
0.292916 + 0.956138i \(0.405374\pi\)
\(702\) 0 0
\(703\) −4.12369 −0.155528
\(704\) −4.04948 −0.152621
\(705\) 0 0
\(706\) −15.8928 −0.598132
\(707\) 2.88731 0.108588
\(708\) 0 0
\(709\) 3.24435 0.121844 0.0609220 0.998143i \(-0.480596\pi\)
0.0609220 + 0.998143i \(0.480596\pi\)
\(710\) 55.2067 2.07187
\(711\) 0 0
\(712\) −1.86978 −0.0700730
\(713\) 5.89681 0.220837
\(714\) 0 0
\(715\) 55.9479 2.09233
\(716\) −17.1745 −0.641839
\(717\) 0 0
\(718\) 8.66535 0.323388
\(719\) −28.5289 −1.06395 −0.531974 0.846761i \(-0.678549\pi\)
−0.531974 + 0.846761i \(0.678549\pi\)
\(720\) 0 0
\(721\) −0.234603 −0.00873707
\(722\) −18.0477 −0.671666
\(723\) 0 0
\(724\) −7.28875 −0.270884
\(725\) 41.8583 1.55458
\(726\) 0 0
\(727\) 28.4941 1.05679 0.528395 0.848999i \(-0.322794\pi\)
0.528395 + 0.848999i \(0.322794\pi\)
\(728\) −1.72600 −0.0639699
\(729\) 0 0
\(730\) 38.1130 1.41062
\(731\) 68.4082 2.53017
\(732\) 0 0
\(733\) 31.1617 1.15098 0.575491 0.817808i \(-0.304811\pi\)
0.575491 + 0.817808i \(0.304811\pi\)
\(734\) 7.50802 0.277126
\(735\) 0 0
\(736\) −0.750146 −0.0276507
\(737\) −14.2221 −0.523877
\(738\) 0 0
\(739\) 22.7409 0.836538 0.418269 0.908323i \(-0.362637\pi\)
0.418269 + 0.908323i \(0.362637\pi\)
\(740\) 16.5044 0.606713
\(741\) 0 0
\(742\) 5.42728 0.199242
\(743\) −33.4594 −1.22751 −0.613753 0.789498i \(-0.710341\pi\)
−0.613753 + 0.789498i \(0.710341\pi\)
\(744\) 0 0
\(745\) 75.0410 2.74929
\(746\) 2.14911 0.0786847
\(747\) 0 0
\(748\) −25.8072 −0.943604
\(749\) 1.86631 0.0681934
\(750\) 0 0
\(751\) −48.0493 −1.75334 −0.876672 0.481089i \(-0.840241\pi\)
−0.876672 + 0.481089i \(0.840241\pi\)
\(752\) −9.31636 −0.339733
\(753\) 0 0
\(754\) 14.4395 0.525854
\(755\) 14.2026 0.516885
\(756\) 0 0
\(757\) 52.5319 1.90930 0.954652 0.297725i \(-0.0962279\pi\)
0.954652 + 0.297725i \(0.0962279\pi\)
\(758\) 7.71644 0.280274
\(759\) 0 0
\(760\) −3.81141 −0.138254
\(761\) −50.4604 −1.82919 −0.914594 0.404373i \(-0.867490\pi\)
−0.914594 + 0.404373i \(0.867490\pi\)
\(762\) 0 0
\(763\) 8.33704 0.301821
\(764\) 6.55038 0.236985
\(765\) 0 0
\(766\) −1.88104 −0.0679646
\(767\) 10.5433 0.380698
\(768\) 0 0
\(769\) −38.6684 −1.39442 −0.697209 0.716867i \(-0.745575\pi\)
−0.697209 + 0.716867i \(0.745575\pi\)
\(770\) −7.71711 −0.278105
\(771\) 0 0
\(772\) 17.5467 0.631521
\(773\) 27.8089 1.00022 0.500108 0.865963i \(-0.333294\pi\)
0.500108 + 0.865963i \(0.333294\pi\)
\(774\) 0 0
\(775\) −80.6096 −2.89558
\(776\) −9.63757 −0.345968
\(777\) 0 0
\(778\) 10.7025 0.383704
\(779\) 2.02356 0.0725016
\(780\) 0 0
\(781\) 57.2390 2.04817
\(782\) −4.78065 −0.170956
\(783\) 0 0
\(784\) −6.76193 −0.241497
\(785\) 58.6316 2.09265
\(786\) 0 0
\(787\) −35.0440 −1.24918 −0.624592 0.780951i \(-0.714735\pi\)
−0.624592 + 0.780951i \(0.714735\pi\)
\(788\) 14.6051 0.520286
\(789\) 0 0
\(790\) −8.95274 −0.318524
\(791\) 6.49893 0.231075
\(792\) 0 0
\(793\) −26.6629 −0.946827
\(794\) 3.84774 0.136551
\(795\) 0 0
\(796\) −4.64162 −0.164518
\(797\) −44.3028 −1.56929 −0.784643 0.619947i \(-0.787154\pi\)
−0.784643 + 0.619947i \(0.787154\pi\)
\(798\) 0 0
\(799\) −59.3728 −2.10046
\(800\) 10.2545 0.362552
\(801\) 0 0
\(802\) 0.717694 0.0253426
\(803\) 39.5160 1.39449
\(804\) 0 0
\(805\) −1.42956 −0.0503852
\(806\) −27.8072 −0.979466
\(807\) 0 0
\(808\) −5.91748 −0.208176
\(809\) −17.8666 −0.628157 −0.314079 0.949397i \(-0.601696\pi\)
−0.314079 + 0.949397i \(0.601696\pi\)
\(810\) 0 0
\(811\) 7.94755 0.279076 0.139538 0.990217i \(-0.455438\pi\)
0.139538 + 0.990217i \(0.455438\pi\)
\(812\) −1.99169 −0.0698947
\(813\) 0 0
\(814\) 17.1119 0.599773
\(815\) 18.6510 0.653314
\(816\) 0 0
\(817\) 10.4750 0.366473
\(818\) −11.7906 −0.412247
\(819\) 0 0
\(820\) −8.09896 −0.282828
\(821\) −14.0212 −0.489342 −0.244671 0.969606i \(-0.578680\pi\)
−0.244671 + 0.969606i \(0.578680\pi\)
\(822\) 0 0
\(823\) −56.0461 −1.95364 −0.976822 0.214052i \(-0.931334\pi\)
−0.976822 + 0.214052i \(0.931334\pi\)
\(824\) 0.480814 0.0167500
\(825\) 0 0
\(826\) −1.45428 −0.0506009
\(827\) −28.6027 −0.994612 −0.497306 0.867575i \(-0.665677\pi\)
−0.497306 + 0.867575i \(0.665677\pi\)
\(828\) 0 0
\(829\) 7.08499 0.246072 0.123036 0.992402i \(-0.460737\pi\)
0.123036 + 0.992402i \(0.460737\pi\)
\(830\) −66.9142 −2.32263
\(831\) 0 0
\(832\) 3.53741 0.122638
\(833\) −43.0935 −1.49310
\(834\) 0 0
\(835\) −15.3948 −0.532760
\(836\) −3.95171 −0.136673
\(837\) 0 0
\(838\) 7.07076 0.244256
\(839\) 16.9860 0.586423 0.293211 0.956048i \(-0.405276\pi\)
0.293211 + 0.956048i \(0.405276\pi\)
\(840\) 0 0
\(841\) −12.3378 −0.425442
\(842\) −4.96469 −0.171094
\(843\) 0 0
\(844\) 15.7554 0.542324
\(845\) 1.90104 0.0653977
\(846\) 0 0
\(847\) −2.63398 −0.0905047
\(848\) −11.1231 −0.381969
\(849\) 0 0
\(850\) 65.3516 2.24154
\(851\) 3.16990 0.108663
\(852\) 0 0
\(853\) −25.5249 −0.873957 −0.436979 0.899472i \(-0.643951\pi\)
−0.436979 + 0.899472i \(0.643951\pi\)
\(854\) 3.67772 0.125849
\(855\) 0 0
\(856\) −3.82496 −0.130735
\(857\) 47.9302 1.63726 0.818632 0.574318i \(-0.194733\pi\)
0.818632 + 0.574318i \(0.194733\pi\)
\(858\) 0 0
\(859\) −6.23647 −0.212786 −0.106393 0.994324i \(-0.533930\pi\)
−0.106393 + 0.994324i \(0.533930\pi\)
\(860\) −41.9244 −1.42961
\(861\) 0 0
\(862\) −25.6140 −0.872417
\(863\) −8.46337 −0.288097 −0.144048 0.989571i \(-0.546012\pi\)
−0.144048 + 0.989571i \(0.546012\pi\)
\(864\) 0 0
\(865\) −93.9739 −3.19521
\(866\) −20.5767 −0.699226
\(867\) 0 0
\(868\) 3.83555 0.130187
\(869\) −9.28231 −0.314881
\(870\) 0 0
\(871\) 12.4236 0.420959
\(872\) −17.0866 −0.578625
\(873\) 0 0
\(874\) −0.732035 −0.0247614
\(875\) 10.0136 0.338520
\(876\) 0 0
\(877\) 42.1172 1.42220 0.711098 0.703093i \(-0.248198\pi\)
0.711098 + 0.703093i \(0.248198\pi\)
\(878\) 15.6900 0.529512
\(879\) 0 0
\(880\) 15.8161 0.533160
\(881\) 35.0575 1.18112 0.590558 0.806995i \(-0.298908\pi\)
0.590558 + 0.806995i \(0.298908\pi\)
\(882\) 0 0
\(883\) 49.3854 1.66195 0.830976 0.556308i \(-0.187783\pi\)
0.830976 + 0.556308i \(0.187783\pi\)
\(884\) 22.5438 0.758229
\(885\) 0 0
\(886\) −29.0018 −0.974335
\(887\) 20.5875 0.691261 0.345630 0.938371i \(-0.387665\pi\)
0.345630 + 0.938371i \(0.387665\pi\)
\(888\) 0 0
\(889\) −1.55630 −0.0521968
\(890\) 7.30281 0.244791
\(891\) 0 0
\(892\) 19.8791 0.665602
\(893\) −9.09144 −0.304233
\(894\) 0 0
\(895\) 67.0783 2.24218
\(896\) −0.487928 −0.0163005
\(897\) 0 0
\(898\) −18.1978 −0.607267
\(899\) −32.0876 −1.07018
\(900\) 0 0
\(901\) −70.8871 −2.36159
\(902\) −8.39710 −0.279593
\(903\) 0 0
\(904\) −13.3194 −0.442997
\(905\) 28.4677 0.946298
\(906\) 0 0
\(907\) −57.1062 −1.89618 −0.948090 0.318003i \(-0.896988\pi\)
−0.948090 + 0.318003i \(0.896988\pi\)
\(908\) −27.7566 −0.921136
\(909\) 0 0
\(910\) 6.74125 0.223470
\(911\) −1.11278 −0.0368680 −0.0184340 0.999830i \(-0.505868\pi\)
−0.0184340 + 0.999830i \(0.505868\pi\)
\(912\) 0 0
\(913\) −69.3775 −2.29606
\(914\) 32.1933 1.06486
\(915\) 0 0
\(916\) −17.6723 −0.583909
\(917\) −5.65874 −0.186868
\(918\) 0 0
\(919\) −24.6902 −0.814453 −0.407227 0.913327i \(-0.633504\pi\)
−0.407227 + 0.913327i \(0.633504\pi\)
\(920\) 2.92985 0.0965942
\(921\) 0 0
\(922\) 26.9152 0.886405
\(923\) −50.0009 −1.64580
\(924\) 0 0
\(925\) −43.3326 −1.42477
\(926\) −24.2349 −0.796407
\(927\) 0 0
\(928\) 4.08193 0.133996
\(929\) −53.4317 −1.75304 −0.876519 0.481368i \(-0.840140\pi\)
−0.876519 + 0.481368i \(0.840140\pi\)
\(930\) 0 0
\(931\) −6.59867 −0.216263
\(932\) 1.67230 0.0547779
\(933\) 0 0
\(934\) 17.7628 0.581216
\(935\) 100.795 3.29636
\(936\) 0 0
\(937\) −8.01583 −0.261866 −0.130933 0.991391i \(-0.541797\pi\)
−0.130933 + 0.991391i \(0.541797\pi\)
\(938\) −1.71364 −0.0559523
\(939\) 0 0
\(940\) 36.3870 1.18681
\(941\) 10.2934 0.335556 0.167778 0.985825i \(-0.446341\pi\)
0.167778 + 0.985825i \(0.446341\pi\)
\(942\) 0 0
\(943\) −1.55552 −0.0506547
\(944\) 2.98052 0.0970077
\(945\) 0 0
\(946\) −43.4677 −1.41326
\(947\) −42.4848 −1.38057 −0.690285 0.723538i \(-0.742515\pi\)
−0.690285 + 0.723538i \(0.742515\pi\)
\(948\) 0 0
\(949\) −34.5190 −1.12054
\(950\) 10.0069 0.324668
\(951\) 0 0
\(952\) −3.10955 −0.100781
\(953\) −59.0011 −1.91123 −0.955617 0.294612i \(-0.904809\pi\)
−0.955617 + 0.294612i \(0.904809\pi\)
\(954\) 0 0
\(955\) −25.5839 −0.827874
\(956\) 24.0925 0.779206
\(957\) 0 0
\(958\) −11.4930 −0.371323
\(959\) −3.57680 −0.115501
\(960\) 0 0
\(961\) 30.7936 0.993341
\(962\) −14.9481 −0.481945
\(963\) 0 0
\(964\) −18.2257 −0.587011
\(965\) −68.5324 −2.20614
\(966\) 0 0
\(967\) −0.781747 −0.0251393 −0.0125696 0.999921i \(-0.504001\pi\)
−0.0125696 + 0.999921i \(0.504001\pi\)
\(968\) 5.39830 0.173508
\(969\) 0 0
\(970\) 37.6415 1.20860
\(971\) −51.5702 −1.65497 −0.827484 0.561489i \(-0.810229\pi\)
−0.827484 + 0.561489i \(0.810229\pi\)
\(972\) 0 0
\(973\) 6.43708 0.206363
\(974\) 5.85514 0.187611
\(975\) 0 0
\(976\) −7.53741 −0.241267
\(977\) −3.02820 −0.0968806 −0.0484403 0.998826i \(-0.515425\pi\)
−0.0484403 + 0.998826i \(0.515425\pi\)
\(978\) 0 0
\(979\) 7.57164 0.241991
\(980\) 26.4101 0.843639
\(981\) 0 0
\(982\) −18.6544 −0.595287
\(983\) 45.6956 1.45746 0.728732 0.684799i \(-0.240110\pi\)
0.728732 + 0.684799i \(0.240110\pi\)
\(984\) 0 0
\(985\) −57.0432 −1.81755
\(986\) 26.0140 0.828454
\(987\) 0 0
\(988\) 3.45200 0.109823
\(989\) −8.05217 −0.256044
\(990\) 0 0
\(991\) −30.3370 −0.963685 −0.481843 0.876258i \(-0.660032\pi\)
−0.481843 + 0.876258i \(0.660032\pi\)
\(992\) −7.86089 −0.249583
\(993\) 0 0
\(994\) 6.89681 0.218754
\(995\) 18.1288 0.574721
\(996\) 0 0
\(997\) 27.9443 0.885004 0.442502 0.896767i \(-0.354091\pi\)
0.442502 + 0.896767i \(0.354091\pi\)
\(998\) 35.1119 1.11145
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.j.1.1 4
3.2 odd 2 538.2.a.c.1.3 4
12.11 even 2 4304.2.a.e.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.c.1.3 4 3.2 odd 2
4304.2.a.e.1.2 4 12.11 even 2
4842.2.a.j.1.1 4 1.1 even 1 trivial