Properties

Label 4842.2.a.f.1.1
Level $4842$
Weight $2$
Character 4842.1
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 538)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4842.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.38197 q^{5} +0.236068 q^{7} -1.00000 q^{8} -1.38197 q^{10} +4.23607 q^{11} -1.00000 q^{13} -0.236068 q^{14} +1.00000 q^{16} +4.23607 q^{17} +2.00000 q^{19} +1.38197 q^{20} -4.23607 q^{22} +3.76393 q^{23} -3.09017 q^{25} +1.00000 q^{26} +0.236068 q^{28} +5.85410 q^{29} -1.47214 q^{31} -1.00000 q^{32} -4.23607 q^{34} +0.326238 q^{35} +4.70820 q^{37} -2.00000 q^{38} -1.38197 q^{40} +5.70820 q^{41} -2.23607 q^{43} +4.23607 q^{44} -3.76393 q^{46} +0.145898 q^{47} -6.94427 q^{49} +3.09017 q^{50} -1.00000 q^{52} +5.85410 q^{55} -0.236068 q^{56} -5.85410 q^{58} -13.5623 q^{59} +3.47214 q^{61} +1.47214 q^{62} +1.00000 q^{64} -1.38197 q^{65} +6.23607 q^{67} +4.23607 q^{68} -0.326238 q^{70} +3.70820 q^{71} +2.70820 q^{73} -4.70820 q^{74} +2.00000 q^{76} +1.00000 q^{77} +10.7984 q^{79} +1.38197 q^{80} -5.70820 q^{82} +0.763932 q^{83} +5.85410 q^{85} +2.23607 q^{86} -4.23607 q^{88} -14.7984 q^{89} -0.236068 q^{91} +3.76393 q^{92} -0.145898 q^{94} +2.76393 q^{95} -18.6525 q^{97} +6.94427 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 5 q^{5} - 4 q^{7} - 2 q^{8} - 5 q^{10} + 4 q^{11} - 2 q^{13} + 4 q^{14} + 2 q^{16} + 4 q^{17} + 4 q^{19} + 5 q^{20} - 4 q^{22} + 12 q^{23} + 5 q^{25} + 2 q^{26} - 4 q^{28} + 5 q^{29}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.38197 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(6\) 0 0
\(7\) 0.236068 0.0892253 0.0446127 0.999004i \(-0.485795\pi\)
0.0446127 + 0.999004i \(0.485795\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.38197 −0.437016
\(11\) 4.23607 1.27722 0.638611 0.769529i \(-0.279509\pi\)
0.638611 + 0.769529i \(0.279509\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) −0.236068 −0.0630918
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.23607 1.02740 0.513699 0.857971i \(-0.328275\pi\)
0.513699 + 0.857971i \(0.328275\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 1.38197 0.309017
\(21\) 0 0
\(22\) −4.23607 −0.903133
\(23\) 3.76393 0.784834 0.392417 0.919787i \(-0.371639\pi\)
0.392417 + 0.919787i \(0.371639\pi\)
\(24\) 0 0
\(25\) −3.09017 −0.618034
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 0.236068 0.0446127
\(29\) 5.85410 1.08708 0.543540 0.839383i \(-0.317084\pi\)
0.543540 + 0.839383i \(0.317084\pi\)
\(30\) 0 0
\(31\) −1.47214 −0.264403 −0.132202 0.991223i \(-0.542205\pi\)
−0.132202 + 0.991223i \(0.542205\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.23607 −0.726480
\(35\) 0.326238 0.0551443
\(36\) 0 0
\(37\) 4.70820 0.774024 0.387012 0.922075i \(-0.373507\pi\)
0.387012 + 0.922075i \(0.373507\pi\)
\(38\) −2.00000 −0.324443
\(39\) 0 0
\(40\) −1.38197 −0.218508
\(41\) 5.70820 0.891472 0.445736 0.895165i \(-0.352942\pi\)
0.445736 + 0.895165i \(0.352942\pi\)
\(42\) 0 0
\(43\) −2.23607 −0.340997 −0.170499 0.985358i \(-0.554538\pi\)
−0.170499 + 0.985358i \(0.554538\pi\)
\(44\) 4.23607 0.638611
\(45\) 0 0
\(46\) −3.76393 −0.554962
\(47\) 0.145898 0.0212814 0.0106407 0.999943i \(-0.496613\pi\)
0.0106407 + 0.999943i \(0.496613\pi\)
\(48\) 0 0
\(49\) −6.94427 −0.992039
\(50\) 3.09017 0.437016
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 5.85410 0.789367
\(56\) −0.236068 −0.0315459
\(57\) 0 0
\(58\) −5.85410 −0.768681
\(59\) −13.5623 −1.76566 −0.882831 0.469691i \(-0.844365\pi\)
−0.882831 + 0.469691i \(0.844365\pi\)
\(60\) 0 0
\(61\) 3.47214 0.444561 0.222281 0.974983i \(-0.428650\pi\)
0.222281 + 0.974983i \(0.428650\pi\)
\(62\) 1.47214 0.186961
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.38197 −0.171412
\(66\) 0 0
\(67\) 6.23607 0.761857 0.380928 0.924605i \(-0.375604\pi\)
0.380928 + 0.924605i \(0.375604\pi\)
\(68\) 4.23607 0.513699
\(69\) 0 0
\(70\) −0.326238 −0.0389929
\(71\) 3.70820 0.440083 0.220041 0.975491i \(-0.429381\pi\)
0.220041 + 0.975491i \(0.429381\pi\)
\(72\) 0 0
\(73\) 2.70820 0.316971 0.158486 0.987361i \(-0.449339\pi\)
0.158486 + 0.987361i \(0.449339\pi\)
\(74\) −4.70820 −0.547318
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 10.7984 1.21491 0.607456 0.794353i \(-0.292190\pi\)
0.607456 + 0.794353i \(0.292190\pi\)
\(80\) 1.38197 0.154508
\(81\) 0 0
\(82\) −5.70820 −0.630366
\(83\) 0.763932 0.0838524 0.0419262 0.999121i \(-0.486651\pi\)
0.0419262 + 0.999121i \(0.486651\pi\)
\(84\) 0 0
\(85\) 5.85410 0.634967
\(86\) 2.23607 0.241121
\(87\) 0 0
\(88\) −4.23607 −0.451566
\(89\) −14.7984 −1.56862 −0.784312 0.620366i \(-0.786984\pi\)
−0.784312 + 0.620366i \(0.786984\pi\)
\(90\) 0 0
\(91\) −0.236068 −0.0247466
\(92\) 3.76393 0.392417
\(93\) 0 0
\(94\) −0.145898 −0.0150482
\(95\) 2.76393 0.283573
\(96\) 0 0
\(97\) −18.6525 −1.89387 −0.946936 0.321422i \(-0.895839\pi\)
−0.946936 + 0.321422i \(0.895839\pi\)
\(98\) 6.94427 0.701477
\(99\) 0 0
\(100\) −3.09017 −0.309017
\(101\) −6.09017 −0.605995 −0.302997 0.952991i \(-0.597987\pi\)
−0.302997 + 0.952991i \(0.597987\pi\)
\(102\) 0 0
\(103\) 4.14590 0.408507 0.204254 0.978918i \(-0.434523\pi\)
0.204254 + 0.978918i \(0.434523\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 0 0
\(107\) 7.76393 0.750568 0.375284 0.926910i \(-0.377545\pi\)
0.375284 + 0.926910i \(0.377545\pi\)
\(108\) 0 0
\(109\) 8.70820 0.834095 0.417047 0.908885i \(-0.363065\pi\)
0.417047 + 0.908885i \(0.363065\pi\)
\(110\) −5.85410 −0.558167
\(111\) 0 0
\(112\) 0.236068 0.0223063
\(113\) 17.6180 1.65737 0.828683 0.559719i \(-0.189091\pi\)
0.828683 + 0.559719i \(0.189091\pi\)
\(114\) 0 0
\(115\) 5.20163 0.485054
\(116\) 5.85410 0.543540
\(117\) 0 0
\(118\) 13.5623 1.24851
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 6.94427 0.631297
\(122\) −3.47214 −0.314352
\(123\) 0 0
\(124\) −1.47214 −0.132202
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) −3.79837 −0.337051 −0.168526 0.985697i \(-0.553901\pi\)
−0.168526 + 0.985697i \(0.553901\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 1.38197 0.121206
\(131\) −7.23607 −0.632218 −0.316109 0.948723i \(-0.602377\pi\)
−0.316109 + 0.948723i \(0.602377\pi\)
\(132\) 0 0
\(133\) 0.472136 0.0409394
\(134\) −6.23607 −0.538714
\(135\) 0 0
\(136\) −4.23607 −0.363240
\(137\) 13.3820 1.14330 0.571649 0.820498i \(-0.306304\pi\)
0.571649 + 0.820498i \(0.306304\pi\)
\(138\) 0 0
\(139\) −9.56231 −0.811064 −0.405532 0.914081i \(-0.632914\pi\)
−0.405532 + 0.914081i \(0.632914\pi\)
\(140\) 0.326238 0.0275721
\(141\) 0 0
\(142\) −3.70820 −0.311186
\(143\) −4.23607 −0.354238
\(144\) 0 0
\(145\) 8.09017 0.671852
\(146\) −2.70820 −0.224133
\(147\) 0 0
\(148\) 4.70820 0.387012
\(149\) 15.3262 1.25557 0.627787 0.778385i \(-0.283961\pi\)
0.627787 + 0.778385i \(0.283961\pi\)
\(150\) 0 0
\(151\) 7.94427 0.646496 0.323248 0.946314i \(-0.395225\pi\)
0.323248 + 0.946314i \(0.395225\pi\)
\(152\) −2.00000 −0.162221
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) −2.03444 −0.163410
\(156\) 0 0
\(157\) −8.65248 −0.690543 −0.345271 0.938503i \(-0.612213\pi\)
−0.345271 + 0.938503i \(0.612213\pi\)
\(158\) −10.7984 −0.859072
\(159\) 0 0
\(160\) −1.38197 −0.109254
\(161\) 0.888544 0.0700271
\(162\) 0 0
\(163\) 1.67376 0.131099 0.0655496 0.997849i \(-0.479120\pi\)
0.0655496 + 0.997849i \(0.479120\pi\)
\(164\) 5.70820 0.445736
\(165\) 0 0
\(166\) −0.763932 −0.0592926
\(167\) −1.38197 −0.106940 −0.0534699 0.998569i \(-0.517028\pi\)
−0.0534699 + 0.998569i \(0.517028\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) −5.85410 −0.448989
\(171\) 0 0
\(172\) −2.23607 −0.170499
\(173\) −1.47214 −0.111924 −0.0559622 0.998433i \(-0.517823\pi\)
−0.0559622 + 0.998433i \(0.517823\pi\)
\(174\) 0 0
\(175\) −0.729490 −0.0551443
\(176\) 4.23607 0.319306
\(177\) 0 0
\(178\) 14.7984 1.10919
\(179\) −5.29180 −0.395527 −0.197764 0.980250i \(-0.563368\pi\)
−0.197764 + 0.980250i \(0.563368\pi\)
\(180\) 0 0
\(181\) −7.41641 −0.551257 −0.275629 0.961264i \(-0.588886\pi\)
−0.275629 + 0.961264i \(0.588886\pi\)
\(182\) 0.236068 0.0174985
\(183\) 0 0
\(184\) −3.76393 −0.277481
\(185\) 6.50658 0.478373
\(186\) 0 0
\(187\) 17.9443 1.31222
\(188\) 0.145898 0.0106407
\(189\) 0 0
\(190\) −2.76393 −0.200517
\(191\) 22.9443 1.66019 0.830095 0.557623i \(-0.188286\pi\)
0.830095 + 0.557623i \(0.188286\pi\)
\(192\) 0 0
\(193\) −3.76393 −0.270934 −0.135467 0.990782i \(-0.543253\pi\)
−0.135467 + 0.990782i \(0.543253\pi\)
\(194\) 18.6525 1.33917
\(195\) 0 0
\(196\) −6.94427 −0.496019
\(197\) 24.6180 1.75396 0.876981 0.480525i \(-0.159554\pi\)
0.876981 + 0.480525i \(0.159554\pi\)
\(198\) 0 0
\(199\) −7.61803 −0.540028 −0.270014 0.962856i \(-0.587028\pi\)
−0.270014 + 0.962856i \(0.587028\pi\)
\(200\) 3.09017 0.218508
\(201\) 0 0
\(202\) 6.09017 0.428503
\(203\) 1.38197 0.0969950
\(204\) 0 0
\(205\) 7.88854 0.550960
\(206\) −4.14590 −0.288858
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 8.47214 0.586030
\(210\) 0 0
\(211\) −5.85410 −0.403013 −0.201506 0.979487i \(-0.564584\pi\)
−0.201506 + 0.979487i \(0.564584\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −7.76393 −0.530731
\(215\) −3.09017 −0.210748
\(216\) 0 0
\(217\) −0.347524 −0.0235915
\(218\) −8.70820 −0.589794
\(219\) 0 0
\(220\) 5.85410 0.394683
\(221\) −4.23607 −0.284949
\(222\) 0 0
\(223\) 10.3262 0.691496 0.345748 0.938327i \(-0.387625\pi\)
0.345748 + 0.938327i \(0.387625\pi\)
\(224\) −0.236068 −0.0157730
\(225\) 0 0
\(226\) −17.6180 −1.17193
\(227\) −5.03444 −0.334148 −0.167074 0.985944i \(-0.553432\pi\)
−0.167074 + 0.985944i \(0.553432\pi\)
\(228\) 0 0
\(229\) 2.70820 0.178963 0.0894816 0.995988i \(-0.471479\pi\)
0.0894816 + 0.995988i \(0.471479\pi\)
\(230\) −5.20163 −0.342985
\(231\) 0 0
\(232\) −5.85410 −0.384341
\(233\) 0.236068 0.0154653 0.00773266 0.999970i \(-0.497539\pi\)
0.00773266 + 0.999970i \(0.497539\pi\)
\(234\) 0 0
\(235\) 0.201626 0.0131526
\(236\) −13.5623 −0.882831
\(237\) 0 0
\(238\) −1.00000 −0.0648204
\(239\) −14.2705 −0.923083 −0.461541 0.887119i \(-0.652703\pi\)
−0.461541 + 0.887119i \(0.652703\pi\)
\(240\) 0 0
\(241\) 8.70820 0.560945 0.280472 0.959862i \(-0.409509\pi\)
0.280472 + 0.959862i \(0.409509\pi\)
\(242\) −6.94427 −0.446395
\(243\) 0 0
\(244\) 3.47214 0.222281
\(245\) −9.59675 −0.613114
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 1.47214 0.0934807
\(249\) 0 0
\(250\) 11.1803 0.707107
\(251\) −12.9098 −0.814861 −0.407431 0.913236i \(-0.633575\pi\)
−0.407431 + 0.913236i \(0.633575\pi\)
\(252\) 0 0
\(253\) 15.9443 1.00241
\(254\) 3.79837 0.238331
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −3.47214 −0.216586 −0.108293 0.994119i \(-0.534538\pi\)
−0.108293 + 0.994119i \(0.534538\pi\)
\(258\) 0 0
\(259\) 1.11146 0.0690625
\(260\) −1.38197 −0.0857059
\(261\) 0 0
\(262\) 7.23607 0.447046
\(263\) 10.2705 0.633307 0.316653 0.948541i \(-0.397441\pi\)
0.316653 + 0.948541i \(0.397441\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.472136 −0.0289485
\(267\) 0 0
\(268\) 6.23607 0.380928
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) −16.1246 −0.979500 −0.489750 0.871863i \(-0.662912\pi\)
−0.489750 + 0.871863i \(0.662912\pi\)
\(272\) 4.23607 0.256849
\(273\) 0 0
\(274\) −13.3820 −0.808434
\(275\) −13.0902 −0.789367
\(276\) 0 0
\(277\) −23.6180 −1.41907 −0.709535 0.704670i \(-0.751095\pi\)
−0.709535 + 0.704670i \(0.751095\pi\)
\(278\) 9.56231 0.573509
\(279\) 0 0
\(280\) −0.326238 −0.0194964
\(281\) 6.81966 0.406827 0.203413 0.979093i \(-0.434796\pi\)
0.203413 + 0.979093i \(0.434796\pi\)
\(282\) 0 0
\(283\) 10.2361 0.608471 0.304236 0.952597i \(-0.401599\pi\)
0.304236 + 0.952597i \(0.401599\pi\)
\(284\) 3.70820 0.220041
\(285\) 0 0
\(286\) 4.23607 0.250484
\(287\) 1.34752 0.0795418
\(288\) 0 0
\(289\) 0.944272 0.0555454
\(290\) −8.09017 −0.475071
\(291\) 0 0
\(292\) 2.70820 0.158486
\(293\) −16.4721 −0.962312 −0.481156 0.876635i \(-0.659783\pi\)
−0.481156 + 0.876635i \(0.659783\pi\)
\(294\) 0 0
\(295\) −18.7426 −1.09124
\(296\) −4.70820 −0.273659
\(297\) 0 0
\(298\) −15.3262 −0.887825
\(299\) −3.76393 −0.217674
\(300\) 0 0
\(301\) −0.527864 −0.0304256
\(302\) −7.94427 −0.457141
\(303\) 0 0
\(304\) 2.00000 0.114708
\(305\) 4.79837 0.274754
\(306\) 0 0
\(307\) −8.12461 −0.463696 −0.231848 0.972752i \(-0.574477\pi\)
−0.231848 + 0.972752i \(0.574477\pi\)
\(308\) 1.00000 0.0569803
\(309\) 0 0
\(310\) 2.03444 0.115549
\(311\) 12.7639 0.723776 0.361888 0.932222i \(-0.382132\pi\)
0.361888 + 0.932222i \(0.382132\pi\)
\(312\) 0 0
\(313\) 19.8541 1.12222 0.561110 0.827741i \(-0.310374\pi\)
0.561110 + 0.827741i \(0.310374\pi\)
\(314\) 8.65248 0.488287
\(315\) 0 0
\(316\) 10.7984 0.607456
\(317\) 25.7639 1.44705 0.723523 0.690300i \(-0.242521\pi\)
0.723523 + 0.690300i \(0.242521\pi\)
\(318\) 0 0
\(319\) 24.7984 1.38844
\(320\) 1.38197 0.0772542
\(321\) 0 0
\(322\) −0.888544 −0.0495166
\(323\) 8.47214 0.471402
\(324\) 0 0
\(325\) 3.09017 0.171412
\(326\) −1.67376 −0.0927011
\(327\) 0 0
\(328\) −5.70820 −0.315183
\(329\) 0.0344419 0.00189884
\(330\) 0 0
\(331\) 23.1803 1.27411 0.637053 0.770820i \(-0.280153\pi\)
0.637053 + 0.770820i \(0.280153\pi\)
\(332\) 0.763932 0.0419262
\(333\) 0 0
\(334\) 1.38197 0.0756178
\(335\) 8.61803 0.470853
\(336\) 0 0
\(337\) 18.9787 1.03384 0.516918 0.856035i \(-0.327079\pi\)
0.516918 + 0.856035i \(0.327079\pi\)
\(338\) 12.0000 0.652714
\(339\) 0 0
\(340\) 5.85410 0.317483
\(341\) −6.23607 −0.337702
\(342\) 0 0
\(343\) −3.29180 −0.177740
\(344\) 2.23607 0.120561
\(345\) 0 0
\(346\) 1.47214 0.0791425
\(347\) 31.3607 1.68353 0.841765 0.539845i \(-0.181517\pi\)
0.841765 + 0.539845i \(0.181517\pi\)
\(348\) 0 0
\(349\) −12.2705 −0.656825 −0.328413 0.944534i \(-0.606514\pi\)
−0.328413 + 0.944534i \(0.606514\pi\)
\(350\) 0.729490 0.0389929
\(351\) 0 0
\(352\) −4.23607 −0.225783
\(353\) 3.14590 0.167439 0.0837196 0.996489i \(-0.473320\pi\)
0.0837196 + 0.996489i \(0.473320\pi\)
\(354\) 0 0
\(355\) 5.12461 0.271986
\(356\) −14.7984 −0.784312
\(357\) 0 0
\(358\) 5.29180 0.279680
\(359\) −0.944272 −0.0498368 −0.0249184 0.999689i \(-0.507933\pi\)
−0.0249184 + 0.999689i \(0.507933\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 7.41641 0.389798
\(363\) 0 0
\(364\) −0.236068 −0.0123733
\(365\) 3.74265 0.195899
\(366\) 0 0
\(367\) −33.7984 −1.76426 −0.882130 0.471005i \(-0.843891\pi\)
−0.882130 + 0.471005i \(0.843891\pi\)
\(368\) 3.76393 0.196209
\(369\) 0 0
\(370\) −6.50658 −0.338261
\(371\) 0 0
\(372\) 0 0
\(373\) −10.9443 −0.566673 −0.283336 0.959021i \(-0.591441\pi\)
−0.283336 + 0.959021i \(0.591441\pi\)
\(374\) −17.9443 −0.927876
\(375\) 0 0
\(376\) −0.145898 −0.00752412
\(377\) −5.85410 −0.301502
\(378\) 0 0
\(379\) 12.8541 0.660271 0.330135 0.943934i \(-0.392906\pi\)
0.330135 + 0.943934i \(0.392906\pi\)
\(380\) 2.76393 0.141787
\(381\) 0 0
\(382\) −22.9443 −1.17393
\(383\) 19.6180 1.00243 0.501217 0.865321i \(-0.332886\pi\)
0.501217 + 0.865321i \(0.332886\pi\)
\(384\) 0 0
\(385\) 1.38197 0.0704315
\(386\) 3.76393 0.191579
\(387\) 0 0
\(388\) −18.6525 −0.946936
\(389\) −11.0557 −0.560548 −0.280274 0.959920i \(-0.590425\pi\)
−0.280274 + 0.959920i \(0.590425\pi\)
\(390\) 0 0
\(391\) 15.9443 0.806336
\(392\) 6.94427 0.350739
\(393\) 0 0
\(394\) −24.6180 −1.24024
\(395\) 14.9230 0.750857
\(396\) 0 0
\(397\) −0.729490 −0.0366121 −0.0183060 0.999832i \(-0.505827\pi\)
−0.0183060 + 0.999832i \(0.505827\pi\)
\(398\) 7.61803 0.381858
\(399\) 0 0
\(400\) −3.09017 −0.154508
\(401\) −29.2705 −1.46170 −0.730850 0.682538i \(-0.760876\pi\)
−0.730850 + 0.682538i \(0.760876\pi\)
\(402\) 0 0
\(403\) 1.47214 0.0733323
\(404\) −6.09017 −0.302997
\(405\) 0 0
\(406\) −1.38197 −0.0685858
\(407\) 19.9443 0.988601
\(408\) 0 0
\(409\) 19.6525 0.971752 0.485876 0.874028i \(-0.338501\pi\)
0.485876 + 0.874028i \(0.338501\pi\)
\(410\) −7.88854 −0.389587
\(411\) 0 0
\(412\) 4.14590 0.204254
\(413\) −3.20163 −0.157542
\(414\) 0 0
\(415\) 1.05573 0.0518237
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) −8.47214 −0.414386
\(419\) 37.5623 1.83504 0.917519 0.397691i \(-0.130188\pi\)
0.917519 + 0.397691i \(0.130188\pi\)
\(420\) 0 0
\(421\) 2.52786 0.123201 0.0616003 0.998101i \(-0.480380\pi\)
0.0616003 + 0.998101i \(0.480380\pi\)
\(422\) 5.85410 0.284973
\(423\) 0 0
\(424\) 0 0
\(425\) −13.0902 −0.634967
\(426\) 0 0
\(427\) 0.819660 0.0396661
\(428\) 7.76393 0.375284
\(429\) 0 0
\(430\) 3.09017 0.149021
\(431\) 6.52786 0.314436 0.157218 0.987564i \(-0.449747\pi\)
0.157218 + 0.987564i \(0.449747\pi\)
\(432\) 0 0
\(433\) 36.7984 1.76842 0.884208 0.467092i \(-0.154698\pi\)
0.884208 + 0.467092i \(0.154698\pi\)
\(434\) 0.347524 0.0166817
\(435\) 0 0
\(436\) 8.70820 0.417047
\(437\) 7.52786 0.360107
\(438\) 0 0
\(439\) 25.8541 1.23395 0.616974 0.786983i \(-0.288358\pi\)
0.616974 + 0.786983i \(0.288358\pi\)
\(440\) −5.85410 −0.279083
\(441\) 0 0
\(442\) 4.23607 0.201489
\(443\) −6.58359 −0.312796 −0.156398 0.987694i \(-0.549988\pi\)
−0.156398 + 0.987694i \(0.549988\pi\)
\(444\) 0 0
\(445\) −20.4508 −0.969463
\(446\) −10.3262 −0.488962
\(447\) 0 0
\(448\) 0.236068 0.0111532
\(449\) −14.0902 −0.664956 −0.332478 0.943111i \(-0.607885\pi\)
−0.332478 + 0.943111i \(0.607885\pi\)
\(450\) 0 0
\(451\) 24.1803 1.13861
\(452\) 17.6180 0.828683
\(453\) 0 0
\(454\) 5.03444 0.236278
\(455\) −0.326238 −0.0152943
\(456\) 0 0
\(457\) 2.20163 0.102988 0.0514939 0.998673i \(-0.483602\pi\)
0.0514939 + 0.998673i \(0.483602\pi\)
\(458\) −2.70820 −0.126546
\(459\) 0 0
\(460\) 5.20163 0.242527
\(461\) 19.1246 0.890722 0.445361 0.895351i \(-0.353075\pi\)
0.445361 + 0.895351i \(0.353075\pi\)
\(462\) 0 0
\(463\) −8.90983 −0.414075 −0.207037 0.978333i \(-0.566382\pi\)
−0.207037 + 0.978333i \(0.566382\pi\)
\(464\) 5.85410 0.271770
\(465\) 0 0
\(466\) −0.236068 −0.0109356
\(467\) 33.4164 1.54633 0.773163 0.634207i \(-0.218673\pi\)
0.773163 + 0.634207i \(0.218673\pi\)
\(468\) 0 0
\(469\) 1.47214 0.0679769
\(470\) −0.201626 −0.00930032
\(471\) 0 0
\(472\) 13.5623 0.624256
\(473\) −9.47214 −0.435529
\(474\) 0 0
\(475\) −6.18034 −0.283573
\(476\) 1.00000 0.0458349
\(477\) 0 0
\(478\) 14.2705 0.652718
\(479\) −12.5967 −0.575560 −0.287780 0.957697i \(-0.592917\pi\)
−0.287780 + 0.957697i \(0.592917\pi\)
\(480\) 0 0
\(481\) −4.70820 −0.214676
\(482\) −8.70820 −0.396648
\(483\) 0 0
\(484\) 6.94427 0.315649
\(485\) −25.7771 −1.17048
\(486\) 0 0
\(487\) 38.8328 1.75968 0.879841 0.475267i \(-0.157649\pi\)
0.879841 + 0.475267i \(0.157649\pi\)
\(488\) −3.47214 −0.157176
\(489\) 0 0
\(490\) 9.59675 0.433537
\(491\) −11.2361 −0.507077 −0.253538 0.967325i \(-0.581594\pi\)
−0.253538 + 0.967325i \(0.581594\pi\)
\(492\) 0 0
\(493\) 24.7984 1.11686
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) −1.47214 −0.0661009
\(497\) 0.875388 0.0392665
\(498\) 0 0
\(499\) −5.94427 −0.266102 −0.133051 0.991109i \(-0.542477\pi\)
−0.133051 + 0.991109i \(0.542477\pi\)
\(500\) −11.1803 −0.500000
\(501\) 0 0
\(502\) 12.9098 0.576194
\(503\) 10.3607 0.461960 0.230980 0.972959i \(-0.425807\pi\)
0.230980 + 0.972959i \(0.425807\pi\)
\(504\) 0 0
\(505\) −8.41641 −0.374525
\(506\) −15.9443 −0.708809
\(507\) 0 0
\(508\) −3.79837 −0.168526
\(509\) −42.3262 −1.87608 −0.938039 0.346530i \(-0.887360\pi\)
−0.938039 + 0.346530i \(0.887360\pi\)
\(510\) 0 0
\(511\) 0.639320 0.0282819
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 3.47214 0.153149
\(515\) 5.72949 0.252472
\(516\) 0 0
\(517\) 0.618034 0.0271811
\(518\) −1.11146 −0.0488346
\(519\) 0 0
\(520\) 1.38197 0.0606032
\(521\) −3.58359 −0.157000 −0.0785000 0.996914i \(-0.525013\pi\)
−0.0785000 + 0.996914i \(0.525013\pi\)
\(522\) 0 0
\(523\) 25.3820 1.10988 0.554938 0.831892i \(-0.312742\pi\)
0.554938 + 0.831892i \(0.312742\pi\)
\(524\) −7.23607 −0.316109
\(525\) 0 0
\(526\) −10.2705 −0.447816
\(527\) −6.23607 −0.271647
\(528\) 0 0
\(529\) −8.83282 −0.384035
\(530\) 0 0
\(531\) 0 0
\(532\) 0.472136 0.0204697
\(533\) −5.70820 −0.247250
\(534\) 0 0
\(535\) 10.7295 0.463876
\(536\) −6.23607 −0.269357
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) −29.4164 −1.26705
\(540\) 0 0
\(541\) 11.5279 0.495622 0.247811 0.968808i \(-0.420289\pi\)
0.247811 + 0.968808i \(0.420289\pi\)
\(542\) 16.1246 0.692611
\(543\) 0 0
\(544\) −4.23607 −0.181620
\(545\) 12.0344 0.515499
\(546\) 0 0
\(547\) 27.7984 1.18857 0.594286 0.804254i \(-0.297435\pi\)
0.594286 + 0.804254i \(0.297435\pi\)
\(548\) 13.3820 0.571649
\(549\) 0 0
\(550\) 13.0902 0.558167
\(551\) 11.7082 0.498786
\(552\) 0 0
\(553\) 2.54915 0.108401
\(554\) 23.6180 1.00343
\(555\) 0 0
\(556\) −9.56231 −0.405532
\(557\) −41.7082 −1.76723 −0.883617 0.468211i \(-0.844899\pi\)
−0.883617 + 0.468211i \(0.844899\pi\)
\(558\) 0 0
\(559\) 2.23607 0.0945756
\(560\) 0.326238 0.0137861
\(561\) 0 0
\(562\) −6.81966 −0.287670
\(563\) −20.7082 −0.872747 −0.436373 0.899766i \(-0.643737\pi\)
−0.436373 + 0.899766i \(0.643737\pi\)
\(564\) 0 0
\(565\) 24.3475 1.02431
\(566\) −10.2361 −0.430254
\(567\) 0 0
\(568\) −3.70820 −0.155593
\(569\) 17.0902 0.716457 0.358229 0.933634i \(-0.383381\pi\)
0.358229 + 0.933634i \(0.383381\pi\)
\(570\) 0 0
\(571\) 10.0000 0.418487 0.209243 0.977864i \(-0.432900\pi\)
0.209243 + 0.977864i \(0.432900\pi\)
\(572\) −4.23607 −0.177119
\(573\) 0 0
\(574\) −1.34752 −0.0562446
\(575\) −11.6312 −0.485054
\(576\) 0 0
\(577\) 3.00000 0.124892 0.0624458 0.998048i \(-0.480110\pi\)
0.0624458 + 0.998048i \(0.480110\pi\)
\(578\) −0.944272 −0.0392765
\(579\) 0 0
\(580\) 8.09017 0.335926
\(581\) 0.180340 0.00748176
\(582\) 0 0
\(583\) 0 0
\(584\) −2.70820 −0.112066
\(585\) 0 0
\(586\) 16.4721 0.680458
\(587\) 26.3262 1.08660 0.543300 0.839539i \(-0.317175\pi\)
0.543300 + 0.839539i \(0.317175\pi\)
\(588\) 0 0
\(589\) −2.94427 −0.121317
\(590\) 18.7426 0.771623
\(591\) 0 0
\(592\) 4.70820 0.193506
\(593\) 27.4164 1.12586 0.562928 0.826506i \(-0.309675\pi\)
0.562928 + 0.826506i \(0.309675\pi\)
\(594\) 0 0
\(595\) 1.38197 0.0566551
\(596\) 15.3262 0.627787
\(597\) 0 0
\(598\) 3.76393 0.153919
\(599\) −33.5967 −1.37273 −0.686363 0.727259i \(-0.740794\pi\)
−0.686363 + 0.727259i \(0.740794\pi\)
\(600\) 0 0
\(601\) 34.6869 1.41491 0.707454 0.706759i \(-0.249843\pi\)
0.707454 + 0.706759i \(0.249843\pi\)
\(602\) 0.527864 0.0215141
\(603\) 0 0
\(604\) 7.94427 0.323248
\(605\) 9.59675 0.390163
\(606\) 0 0
\(607\) −48.5755 −1.97162 −0.985809 0.167873i \(-0.946310\pi\)
−0.985809 + 0.167873i \(0.946310\pi\)
\(608\) −2.00000 −0.0811107
\(609\) 0 0
\(610\) −4.79837 −0.194280
\(611\) −0.145898 −0.00590240
\(612\) 0 0
\(613\) −35.4721 −1.43271 −0.716353 0.697738i \(-0.754190\pi\)
−0.716353 + 0.697738i \(0.754190\pi\)
\(614\) 8.12461 0.327883
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) 33.1591 1.33493 0.667467 0.744640i \(-0.267379\pi\)
0.667467 + 0.744640i \(0.267379\pi\)
\(618\) 0 0
\(619\) 12.8328 0.515794 0.257897 0.966172i \(-0.416970\pi\)
0.257897 + 0.966172i \(0.416970\pi\)
\(620\) −2.03444 −0.0817052
\(621\) 0 0
\(622\) −12.7639 −0.511787
\(623\) −3.49342 −0.139961
\(624\) 0 0
\(625\) 0 0
\(626\) −19.8541 −0.793530
\(627\) 0 0
\(628\) −8.65248 −0.345271
\(629\) 19.9443 0.795230
\(630\) 0 0
\(631\) 29.7984 1.18625 0.593127 0.805109i \(-0.297893\pi\)
0.593127 + 0.805109i \(0.297893\pi\)
\(632\) −10.7984 −0.429536
\(633\) 0 0
\(634\) −25.7639 −1.02322
\(635\) −5.24922 −0.208309
\(636\) 0 0
\(637\) 6.94427 0.275142
\(638\) −24.7984 −0.981777
\(639\) 0 0
\(640\) −1.38197 −0.0546270
\(641\) 19.1803 0.757578 0.378789 0.925483i \(-0.376341\pi\)
0.378789 + 0.925483i \(0.376341\pi\)
\(642\) 0 0
\(643\) −10.8541 −0.428044 −0.214022 0.976829i \(-0.568656\pi\)
−0.214022 + 0.976829i \(0.568656\pi\)
\(644\) 0.888544 0.0350135
\(645\) 0 0
\(646\) −8.47214 −0.333332
\(647\) 25.1803 0.989941 0.494971 0.868910i \(-0.335179\pi\)
0.494971 + 0.868910i \(0.335179\pi\)
\(648\) 0 0
\(649\) −57.4508 −2.25514
\(650\) −3.09017 −0.121206
\(651\) 0 0
\(652\) 1.67376 0.0655496
\(653\) −39.5410 −1.54736 −0.773680 0.633577i \(-0.781586\pi\)
−0.773680 + 0.633577i \(0.781586\pi\)
\(654\) 0 0
\(655\) −10.0000 −0.390732
\(656\) 5.70820 0.222868
\(657\) 0 0
\(658\) −0.0344419 −0.00134268
\(659\) 15.6738 0.610563 0.305282 0.952262i \(-0.401249\pi\)
0.305282 + 0.952262i \(0.401249\pi\)
\(660\) 0 0
\(661\) −14.1459 −0.550212 −0.275106 0.961414i \(-0.588713\pi\)
−0.275106 + 0.961414i \(0.588713\pi\)
\(662\) −23.1803 −0.900929
\(663\) 0 0
\(664\) −0.763932 −0.0296463
\(665\) 0.652476 0.0253019
\(666\) 0 0
\(667\) 22.0344 0.853177
\(668\) −1.38197 −0.0534699
\(669\) 0 0
\(670\) −8.61803 −0.332944
\(671\) 14.7082 0.567804
\(672\) 0 0
\(673\) −2.70820 −0.104394 −0.0521968 0.998637i \(-0.516622\pi\)
−0.0521968 + 0.998637i \(0.516622\pi\)
\(674\) −18.9787 −0.731033
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 37.5623 1.44364 0.721818 0.692083i \(-0.243307\pi\)
0.721818 + 0.692083i \(0.243307\pi\)
\(678\) 0 0
\(679\) −4.40325 −0.168981
\(680\) −5.85410 −0.224495
\(681\) 0 0
\(682\) 6.23607 0.238791
\(683\) 16.7639 0.641454 0.320727 0.947172i \(-0.396073\pi\)
0.320727 + 0.947172i \(0.396073\pi\)
\(684\) 0 0
\(685\) 18.4934 0.706597
\(686\) 3.29180 0.125681
\(687\) 0 0
\(688\) −2.23607 −0.0852493
\(689\) 0 0
\(690\) 0 0
\(691\) 25.1246 0.955785 0.477893 0.878418i \(-0.341401\pi\)
0.477893 + 0.878418i \(0.341401\pi\)
\(692\) −1.47214 −0.0559622
\(693\) 0 0
\(694\) −31.3607 −1.19044
\(695\) −13.2148 −0.501265
\(696\) 0 0
\(697\) 24.1803 0.915896
\(698\) 12.2705 0.464446
\(699\) 0 0
\(700\) −0.729490 −0.0275721
\(701\) −35.9787 −1.35890 −0.679449 0.733723i \(-0.737781\pi\)
−0.679449 + 0.733723i \(0.737781\pi\)
\(702\) 0 0
\(703\) 9.41641 0.355147
\(704\) 4.23607 0.159653
\(705\) 0 0
\(706\) −3.14590 −0.118397
\(707\) −1.43769 −0.0540701
\(708\) 0 0
\(709\) −20.0557 −0.753209 −0.376604 0.926374i \(-0.622908\pi\)
−0.376604 + 0.926374i \(0.622908\pi\)
\(710\) −5.12461 −0.192323
\(711\) 0 0
\(712\) 14.7984 0.554593
\(713\) −5.54102 −0.207513
\(714\) 0 0
\(715\) −5.85410 −0.218931
\(716\) −5.29180 −0.197764
\(717\) 0 0
\(718\) 0.944272 0.0352399
\(719\) −19.8197 −0.739149 −0.369574 0.929201i \(-0.620496\pi\)
−0.369574 + 0.929201i \(0.620496\pi\)
\(720\) 0 0
\(721\) 0.978714 0.0364492
\(722\) 15.0000 0.558242
\(723\) 0 0
\(724\) −7.41641 −0.275629
\(725\) −18.0902 −0.671852
\(726\) 0 0
\(727\) −31.2918 −1.16055 −0.580274 0.814421i \(-0.697055\pi\)
−0.580274 + 0.814421i \(0.697055\pi\)
\(728\) 0.236068 0.00874926
\(729\) 0 0
\(730\) −3.74265 −0.138522
\(731\) −9.47214 −0.350340
\(732\) 0 0
\(733\) 11.3607 0.419616 0.209808 0.977743i \(-0.432716\pi\)
0.209808 + 0.977743i \(0.432716\pi\)
\(734\) 33.7984 1.24752
\(735\) 0 0
\(736\) −3.76393 −0.138740
\(737\) 26.4164 0.973061
\(738\) 0 0
\(739\) 5.96556 0.219447 0.109723 0.993962i \(-0.465004\pi\)
0.109723 + 0.993962i \(0.465004\pi\)
\(740\) 6.50658 0.239187
\(741\) 0 0
\(742\) 0 0
\(743\) 33.7984 1.23994 0.619971 0.784625i \(-0.287144\pi\)
0.619971 + 0.784625i \(0.287144\pi\)
\(744\) 0 0
\(745\) 21.1803 0.775988
\(746\) 10.9443 0.400698
\(747\) 0 0
\(748\) 17.9443 0.656108
\(749\) 1.83282 0.0669696
\(750\) 0 0
\(751\) −42.8673 −1.56425 −0.782124 0.623123i \(-0.785864\pi\)
−0.782124 + 0.623123i \(0.785864\pi\)
\(752\) 0.145898 0.00532035
\(753\) 0 0
\(754\) 5.85410 0.213194
\(755\) 10.9787 0.399556
\(756\) 0 0
\(757\) −21.0557 −0.765283 −0.382642 0.923897i \(-0.624986\pi\)
−0.382642 + 0.923897i \(0.624986\pi\)
\(758\) −12.8541 −0.466882
\(759\) 0 0
\(760\) −2.76393 −0.100258
\(761\) −25.4164 −0.921344 −0.460672 0.887570i \(-0.652392\pi\)
−0.460672 + 0.887570i \(0.652392\pi\)
\(762\) 0 0
\(763\) 2.05573 0.0744224
\(764\) 22.9443 0.830095
\(765\) 0 0
\(766\) −19.6180 −0.708828
\(767\) 13.5623 0.489706
\(768\) 0 0
\(769\) −17.6738 −0.637332 −0.318666 0.947867i \(-0.603235\pi\)
−0.318666 + 0.947867i \(0.603235\pi\)
\(770\) −1.38197 −0.0498026
\(771\) 0 0
\(772\) −3.76393 −0.135467
\(773\) 1.59675 0.0574310 0.0287155 0.999588i \(-0.490858\pi\)
0.0287155 + 0.999588i \(0.490858\pi\)
\(774\) 0 0
\(775\) 4.54915 0.163410
\(776\) 18.6525 0.669585
\(777\) 0 0
\(778\) 11.0557 0.396367
\(779\) 11.4164 0.409035
\(780\) 0 0
\(781\) 15.7082 0.562084
\(782\) −15.9443 −0.570166
\(783\) 0 0
\(784\) −6.94427 −0.248010
\(785\) −11.9574 −0.426779
\(786\) 0 0
\(787\) −33.6525 −1.19958 −0.599791 0.800157i \(-0.704749\pi\)
−0.599791 + 0.800157i \(0.704749\pi\)
\(788\) 24.6180 0.876981
\(789\) 0 0
\(790\) −14.9230 −0.530936
\(791\) 4.15905 0.147879
\(792\) 0 0
\(793\) −3.47214 −0.123299
\(794\) 0.729490 0.0258886
\(795\) 0 0
\(796\) −7.61803 −0.270014
\(797\) −37.7984 −1.33889 −0.669444 0.742863i \(-0.733467\pi\)
−0.669444 + 0.742863i \(0.733467\pi\)
\(798\) 0 0
\(799\) 0.618034 0.0218645
\(800\) 3.09017 0.109254
\(801\) 0 0
\(802\) 29.2705 1.03358
\(803\) 11.4721 0.404843
\(804\) 0 0
\(805\) 1.22794 0.0432791
\(806\) −1.47214 −0.0518538
\(807\) 0 0
\(808\) 6.09017 0.214251
\(809\) −24.4721 −0.860394 −0.430197 0.902735i \(-0.641556\pi\)
−0.430197 + 0.902735i \(0.641556\pi\)
\(810\) 0 0
\(811\) 1.59675 0.0560694 0.0280347 0.999607i \(-0.491075\pi\)
0.0280347 + 0.999607i \(0.491075\pi\)
\(812\) 1.38197 0.0484975
\(813\) 0 0
\(814\) −19.9443 −0.699046
\(815\) 2.31308 0.0810237
\(816\) 0 0
\(817\) −4.47214 −0.156460
\(818\) −19.6525 −0.687133
\(819\) 0 0
\(820\) 7.88854 0.275480
\(821\) 6.36068 0.221989 0.110995 0.993821i \(-0.464596\pi\)
0.110995 + 0.993821i \(0.464596\pi\)
\(822\) 0 0
\(823\) −15.1115 −0.526752 −0.263376 0.964693i \(-0.584836\pi\)
−0.263376 + 0.964693i \(0.584836\pi\)
\(824\) −4.14590 −0.144429
\(825\) 0 0
\(826\) 3.20163 0.111399
\(827\) −4.74265 −0.164918 −0.0824590 0.996594i \(-0.526277\pi\)
−0.0824590 + 0.996594i \(0.526277\pi\)
\(828\) 0 0
\(829\) 19.2016 0.666900 0.333450 0.942768i \(-0.391787\pi\)
0.333450 + 0.942768i \(0.391787\pi\)
\(830\) −1.05573 −0.0366449
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) −29.4164 −1.01922
\(834\) 0 0
\(835\) −1.90983 −0.0660924
\(836\) 8.47214 0.293015
\(837\) 0 0
\(838\) −37.5623 −1.29757
\(839\) 41.4508 1.43104 0.715521 0.698591i \(-0.246189\pi\)
0.715521 + 0.698591i \(0.246189\pi\)
\(840\) 0 0
\(841\) 5.27051 0.181742
\(842\) −2.52786 −0.0871159
\(843\) 0 0
\(844\) −5.85410 −0.201506
\(845\) −16.5836 −0.570493
\(846\) 0 0
\(847\) 1.63932 0.0563277
\(848\) 0 0
\(849\) 0 0
\(850\) 13.0902 0.448989
\(851\) 17.7214 0.607480
\(852\) 0 0
\(853\) −48.8115 −1.67127 −0.835637 0.549281i \(-0.814902\pi\)
−0.835637 + 0.549281i \(0.814902\pi\)
\(854\) −0.819660 −0.0280482
\(855\) 0 0
\(856\) −7.76393 −0.265366
\(857\) −16.0689 −0.548903 −0.274451 0.961601i \(-0.588496\pi\)
−0.274451 + 0.961601i \(0.588496\pi\)
\(858\) 0 0
\(859\) 29.7426 1.01481 0.507403 0.861709i \(-0.330606\pi\)
0.507403 + 0.861709i \(0.330606\pi\)
\(860\) −3.09017 −0.105374
\(861\) 0 0
\(862\) −6.52786 −0.222340
\(863\) −1.67376 −0.0569755 −0.0284878 0.999594i \(-0.509069\pi\)
−0.0284878 + 0.999594i \(0.509069\pi\)
\(864\) 0 0
\(865\) −2.03444 −0.0691731
\(866\) −36.7984 −1.25046
\(867\) 0 0
\(868\) −0.347524 −0.0117957
\(869\) 45.7426 1.55171
\(870\) 0 0
\(871\) −6.23607 −0.211301
\(872\) −8.70820 −0.294897
\(873\) 0 0
\(874\) −7.52786 −0.254634
\(875\) −2.63932 −0.0892253
\(876\) 0 0
\(877\) −53.5755 −1.80911 −0.904557 0.426352i \(-0.859799\pi\)
−0.904557 + 0.426352i \(0.859799\pi\)
\(878\) −25.8541 −0.872534
\(879\) 0 0
\(880\) 5.85410 0.197342
\(881\) 6.49342 0.218769 0.109384 0.994000i \(-0.465112\pi\)
0.109384 + 0.994000i \(0.465112\pi\)
\(882\) 0 0
\(883\) 48.1935 1.62184 0.810920 0.585157i \(-0.198967\pi\)
0.810920 + 0.585157i \(0.198967\pi\)
\(884\) −4.23607 −0.142474
\(885\) 0 0
\(886\) 6.58359 0.221180
\(887\) −39.8328 −1.33746 −0.668728 0.743508i \(-0.733161\pi\)
−0.668728 + 0.743508i \(0.733161\pi\)
\(888\) 0 0
\(889\) −0.896674 −0.0300735
\(890\) 20.4508 0.685514
\(891\) 0 0
\(892\) 10.3262 0.345748
\(893\) 0.291796 0.00976458
\(894\) 0 0
\(895\) −7.31308 −0.244449
\(896\) −0.236068 −0.00788648
\(897\) 0 0
\(898\) 14.0902 0.470195
\(899\) −8.61803 −0.287428
\(900\) 0 0
\(901\) 0 0
\(902\) −24.1803 −0.805117
\(903\) 0 0
\(904\) −17.6180 −0.585967
\(905\) −10.2492 −0.340696
\(906\) 0 0
\(907\) 26.1246 0.867453 0.433727 0.901044i \(-0.357198\pi\)
0.433727 + 0.901044i \(0.357198\pi\)
\(908\) −5.03444 −0.167074
\(909\) 0 0
\(910\) 0.326238 0.0108147
\(911\) 44.3394 1.46903 0.734515 0.678593i \(-0.237410\pi\)
0.734515 + 0.678593i \(0.237410\pi\)
\(912\) 0 0
\(913\) 3.23607 0.107098
\(914\) −2.20163 −0.0728233
\(915\) 0 0
\(916\) 2.70820 0.0894816
\(917\) −1.70820 −0.0564099
\(918\) 0 0
\(919\) −36.6525 −1.20905 −0.604527 0.796585i \(-0.706638\pi\)
−0.604527 + 0.796585i \(0.706638\pi\)
\(920\) −5.20163 −0.171493
\(921\) 0 0
\(922\) −19.1246 −0.629836
\(923\) −3.70820 −0.122057
\(924\) 0 0
\(925\) −14.5492 −0.478373
\(926\) 8.90983 0.292795
\(927\) 0 0
\(928\) −5.85410 −0.192170
\(929\) −40.1803 −1.31827 −0.659137 0.752023i \(-0.729078\pi\)
−0.659137 + 0.752023i \(0.729078\pi\)
\(930\) 0 0
\(931\) −13.8885 −0.455179
\(932\) 0.236068 0.00773266
\(933\) 0 0
\(934\) −33.4164 −1.09342
\(935\) 24.7984 0.810994
\(936\) 0 0
\(937\) −21.9098 −0.715763 −0.357881 0.933767i \(-0.616501\pi\)
−0.357881 + 0.933767i \(0.616501\pi\)
\(938\) −1.47214 −0.0480669
\(939\) 0 0
\(940\) 0.201626 0.00657632
\(941\) 0.0212862 0.000693911 0 0.000346956 1.00000i \(-0.499890\pi\)
0.000346956 1.00000i \(0.499890\pi\)
\(942\) 0 0
\(943\) 21.4853 0.699657
\(944\) −13.5623 −0.441415
\(945\) 0 0
\(946\) 9.47214 0.307966
\(947\) −1.21478 −0.0394751 −0.0197376 0.999805i \(-0.506283\pi\)
−0.0197376 + 0.999805i \(0.506283\pi\)
\(948\) 0 0
\(949\) −2.70820 −0.0879120
\(950\) 6.18034 0.200517
\(951\) 0 0
\(952\) −1.00000 −0.0324102
\(953\) 37.3050 1.20843 0.604213 0.796823i \(-0.293488\pi\)
0.604213 + 0.796823i \(0.293488\pi\)
\(954\) 0 0
\(955\) 31.7082 1.02605
\(956\) −14.2705 −0.461541
\(957\) 0 0
\(958\) 12.5967 0.406982
\(959\) 3.15905 0.102011
\(960\) 0 0
\(961\) −28.8328 −0.930091
\(962\) 4.70820 0.151799
\(963\) 0 0
\(964\) 8.70820 0.280472
\(965\) −5.20163 −0.167446
\(966\) 0 0
\(967\) −4.85410 −0.156097 −0.0780487 0.996950i \(-0.524869\pi\)
−0.0780487 + 0.996950i \(0.524869\pi\)
\(968\) −6.94427 −0.223197
\(969\) 0 0
\(970\) 25.7771 0.827652
\(971\) −30.6525 −0.983685 −0.491842 0.870684i \(-0.663676\pi\)
−0.491842 + 0.870684i \(0.663676\pi\)
\(972\) 0 0
\(973\) −2.25735 −0.0723675
\(974\) −38.8328 −1.24428
\(975\) 0 0
\(976\) 3.47214 0.111140
\(977\) −37.8541 −1.21106 −0.605530 0.795822i \(-0.707039\pi\)
−0.605530 + 0.795822i \(0.707039\pi\)
\(978\) 0 0
\(979\) −62.6869 −2.00348
\(980\) −9.59675 −0.306557
\(981\) 0 0
\(982\) 11.2361 0.358557
\(983\) 51.5623 1.64458 0.822291 0.569067i \(-0.192696\pi\)
0.822291 + 0.569067i \(0.192696\pi\)
\(984\) 0 0
\(985\) 34.0213 1.08401
\(986\) −24.7984 −0.789741
\(987\) 0 0
\(988\) −2.00000 −0.0636285
\(989\) −8.41641 −0.267626
\(990\) 0 0
\(991\) −18.6180 −0.591421 −0.295711 0.955278i \(-0.595556\pi\)
−0.295711 + 0.955278i \(0.595556\pi\)
\(992\) 1.47214 0.0467404
\(993\) 0 0
\(994\) −0.875388 −0.0277656
\(995\) −10.5279 −0.333756
\(996\) 0 0
\(997\) −44.4164 −1.40668 −0.703341 0.710853i \(-0.748309\pi\)
−0.703341 + 0.710853i \(0.748309\pi\)
\(998\) 5.94427 0.188163
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4842.2.a.f.1.1 2
3.2 odd 2 538.2.a.a.1.1 2
12.11 even 2 4304.2.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.a.a.1.1 2 3.2 odd 2
4304.2.a.d.1.2 2 12.11 even 2
4842.2.a.f.1.1 2 1.1 even 1 trivial