Properties

Label 4842.2.a
Level $4842$
Weight $2$
Character orbit 4842.a
Rep. character $\chi_{4842}(1,\cdot)$
Character field $\Q$
Dimension $113$
Newform subspaces $21$
Sturm bound $1620$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(1620\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4842))\).

Total New Old
Modular forms 818 113 705
Cusp forms 803 113 690
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(269\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(9\)
\(+\)\(+\)\(-\)\(-\)\(14\)
\(+\)\(-\)\(+\)\(-\)\(15\)
\(+\)\(-\)\(-\)\(+\)\(18\)
\(-\)\(+\)\(+\)\(-\)\(14\)
\(-\)\(+\)\(-\)\(+\)\(9\)
\(-\)\(-\)\(+\)\(+\)\(13\)
\(-\)\(-\)\(-\)\(-\)\(21\)
Plus space\(+\)\(49\)
Minus space\(-\)\(64\)

Trace form

\( 113 q + q^{2} + 113 q^{4} - 4 q^{5} - 4 q^{7} + q^{8} - 2 q^{10} + 2 q^{11} - 4 q^{14} + 113 q^{16} + 14 q^{17} - 4 q^{19} - 4 q^{20} - 8 q^{22} - 4 q^{23} + 109 q^{25} + 6 q^{26} - 4 q^{28} + 18 q^{29}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4842))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 269
4842.2.a.a 4842.a 1.a $1$ $38.664$ \(\Q\) None 4842.2.a.a \(-1\) \(0\) \(2\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}+2q^{7}-q^{8}-2q^{10}+\cdots\)
4842.2.a.b 4842.a 1.a $1$ $38.664$ \(\Q\) None 1614.2.a.a \(1\) \(0\) \(-2\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}-4q^{7}+q^{8}-2q^{10}+\cdots\)
4842.2.a.c 4842.a 1.a $1$ $38.664$ \(\Q\) None 4842.2.a.a \(1\) \(0\) \(-2\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+2q^{7}+q^{8}-2q^{10}+\cdots\)
4842.2.a.d 4842.a 1.a $2$ $38.664$ \(\Q(\sqrt{13}) \) None 538.2.a.b \(-2\) \(0\) \(-1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-\beta q^{5}-q^{7}-q^{8}+\beta q^{10}+\cdots\)
4842.2.a.e 4842.a 1.a $2$ $38.664$ \(\Q(\sqrt{5}) \) None 1614.2.a.b \(-2\) \(0\) \(2\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2\beta q^{5}+(-1+3\beta )q^{7}+\cdots\)
4842.2.a.f 4842.a 1.a $2$ $38.664$ \(\Q(\sqrt{5}) \) None 538.2.a.a \(-2\) \(0\) \(5\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(3-\beta )q^{5}+(-3+2\beta )q^{7}+\cdots\)
4842.2.a.g 4842.a 1.a $3$ $38.664$ 3.3.361.1 None 1614.2.a.d \(-3\) \(0\) \(1\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1-\beta _{1}-\beta _{2})q^{5}+(-1+\cdots)q^{7}+\cdots\)
4842.2.a.h 4842.a 1.a $3$ $38.664$ \(\Q(\zeta_{14})^+\) None 1614.2.a.e \(-3\) \(0\) \(7\) \(-6\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(2+\beta _{1})q^{5}+(-2+\beta _{1}+\cdots)q^{7}+\cdots\)
4842.2.a.i 4842.a 1.a $3$ $38.664$ \(\Q(\zeta_{14})^+\) None 1614.2.a.c \(3\) \(0\) \(1\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta _{1}q^{5}+(-2+\beta _{1}-\beta _{2})q^{7}+\cdots\)
4842.2.a.j 4842.a 1.a $4$ $38.664$ 4.4.4913.1 None 538.2.a.c \(4\) \(0\) \(-5\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1-\beta _{1})q^{5}-\beta _{2}q^{7}+\cdots\)
4842.2.a.k 4842.a 1.a $5$ $38.664$ 5.5.459533.1 None 1614.2.a.f \(5\) \(0\) \(5\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1+\beta _{1}+\beta _{4})q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
4842.2.a.l 4842.a 1.a $6$ $38.664$ 6.6.20228249.1 None 1614.2.a.h \(-6\) \(0\) \(-6\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1+\beta _{2})q^{5}+(1-\beta _{2}+\cdots)q^{7}+\cdots\)
4842.2.a.m 4842.a 1.a $6$ $38.664$ 6.6.137144153.1 None 1614.2.a.g \(6\) \(0\) \(-6\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1-\beta _{3})q^{5}+(-1+\beta _{4}+\cdots)q^{7}+\cdots\)
4842.2.a.n 4842.a 1.a $7$ $38.664$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 538.2.a.e \(-7\) \(0\) \(-7\) \(6\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta _{4})q^{5}+(1-\beta _{2}+\cdots)q^{7}+\cdots\)
4842.2.a.o 4842.a 1.a $7$ $38.664$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 538.2.a.d \(7\) \(0\) \(6\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-\beta _{3}+\beta _{4})q^{5}+(-1+\cdots)q^{7}+\cdots\)
4842.2.a.p 4842.a 1.a $8$ $38.664$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1614.2.a.j \(-8\) \(0\) \(-4\) \(9\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta _{5})q^{5}+(1+\beta _{1}+\cdots)q^{7}+\cdots\)
4842.2.a.q 4842.a 1.a $8$ $38.664$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1614.2.a.i \(8\) \(0\) \(0\) \(9\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-\beta _{1}q^{5}+(1+\beta _{2})q^{7}+q^{8}+\cdots\)
4842.2.a.r 4842.a 1.a $9$ $38.664$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 4842.2.a.r \(-9\) \(0\) \(5\) \(-10\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1-\beta _{1})q^{5}+(-1+\beta _{5}+\cdots)q^{7}+\cdots\)
4842.2.a.s 4842.a 1.a $9$ $38.664$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 4842.2.a.r \(9\) \(0\) \(-5\) \(-10\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1+\beta _{1})q^{5}+(-1+\beta _{5}+\cdots)q^{7}+\cdots\)
4842.2.a.t 4842.a 1.a $13$ $38.664$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 4842.2.a.t \(-13\) \(0\) \(-5\) \(6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-\beta _{1}q^{5}-\beta _{3}q^{7}-q^{8}+\cdots\)
4842.2.a.u 4842.a 1.a $13$ $38.664$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 4842.2.a.t \(13\) \(0\) \(5\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta _{1}q^{5}-\beta _{3}q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4842))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4842)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(538))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(807))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1614))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2421))\)\(^{\oplus 2}\)