Defining parameters
Level: | \( N \) | \(=\) | \( 4842 = 2 \cdot 3^{2} \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4842.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 21 \) | ||
Sturm bound: | \(1620\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4842))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 818 | 113 | 705 |
Cusp forms | 803 | 113 | 690 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(269\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(9\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(14\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(15\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(18\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(14\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(13\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(21\) |
Plus space | \(+\) | \(49\) | ||
Minus space | \(-\) | \(64\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4842))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4842))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4842)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(538))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(807))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1614))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2421))\)\(^{\oplus 2}\)