Properties

Label 4842.2
Level 4842
Weight 2
Dimension 171851
Nonzero newspaces 12
Sturm bound 2604960

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(2604960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4842))\).

Total New Old
Modular forms 655528 171851 483677
Cusp forms 646953 171851 475102
Eisenstein series 8575 0 8575

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4842))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4842.2.a \(\chi_{4842}(1, \cdot)\) 4842.2.a.a 1 1
4842.2.a.b 1
4842.2.a.c 1
4842.2.a.d 2
4842.2.a.e 2
4842.2.a.f 2
4842.2.a.g 3
4842.2.a.h 3
4842.2.a.i 3
4842.2.a.j 4
4842.2.a.k 5
4842.2.a.l 6
4842.2.a.m 6
4842.2.a.n 7
4842.2.a.o 7
4842.2.a.p 8
4842.2.a.q 8
4842.2.a.r 9
4842.2.a.s 9
4842.2.a.t 13
4842.2.a.u 13
4842.2.d \(\chi_{4842}(4303, \cdot)\) n/a 112 1
4842.2.e \(\chi_{4842}(1615, \cdot)\) n/a 536 2
4842.2.f \(\chi_{4842}(2339, \cdot)\) n/a 180 2
4842.2.h \(\chi_{4842}(1075, \cdot)\) n/a 540 2
4842.2.l \(\chi_{4842}(725, \cdot)\) n/a 1080 4
4842.2.m \(\chi_{4842}(37, \cdot)\) n/a 7458 66
4842.2.n \(\chi_{4842}(55, \cdot)\) n/a 7392 66
4842.2.q \(\chi_{4842}(25, \cdot)\) n/a 35640 132
4842.2.s \(\chi_{4842}(17, \cdot)\) n/a 11880 132
4842.2.v \(\chi_{4842}(13, \cdot)\) n/a 35640 132
4842.2.w \(\chi_{4842}(29, \cdot)\) n/a 71280 264

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4842))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(4842)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(269))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(538))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(807))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1614))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2421))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4842))\)\(^{\oplus 1}\)