# Properties

 Label 4840.2.a.k Level $4840$ Weight $2$ Character orbit 4840.a Self dual yes Analytic conductor $38.648$ Analytic rank $1$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4840,2,Mod(1,4840)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4840, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4840.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4840 = 2^{3} \cdot 5 \cdot 11^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4840.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$38.6475945783$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 3$$ x^2 - 3 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{3}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{3} + q^{5} + ( - \beta - 2) q^{7}+O(q^{10})$$ q + b * q^3 + q^5 + (-b - 2) * q^7 $$q + \beta q^{3} + q^{5} + ( - \beta - 2) q^{7} + 2 \beta q^{13} + \beta q^{15} - 2 q^{19} + ( - 2 \beta - 3) q^{21} + ( - 2 \beta + 4) q^{23} + q^{25} - 3 \beta q^{27} + ( - 4 \beta - 2) q^{29} + (2 \beta + 2) q^{31} + ( - \beta - 2) q^{35} - 4 q^{37} + 6 q^{39} + ( - 4 \beta - 5) q^{41} + \beta q^{43} + ( - 5 \beta - 2) q^{47} + 4 \beta q^{49} + (2 \beta - 4) q^{53} - 2 \beta q^{57} + (2 \beta + 2) q^{59} + ( - 2 \beta - 5) q^{61} + 2 \beta q^{65} + ( - \beta + 4) q^{67} + (4 \beta - 6) q^{69} + (2 \beta + 6) q^{71} + ( - 4 \beta - 8) q^{73} + \beta q^{75} + (6 \beta - 4) q^{79} - 9 q^{81} + ( - 2 \beta + 4) q^{83} + ( - 2 \beta - 12) q^{87} + ( - 4 \beta + 9) q^{89} + ( - 4 \beta - 6) q^{91} + (2 \beta + 6) q^{93} - 2 q^{95} + (6 \beta - 4) q^{97} +O(q^{100})$$ q + b * q^3 + q^5 + (-b - 2) * q^7 + 2*b * q^13 + b * q^15 - 2 * q^19 + (-2*b - 3) * q^21 + (-2*b + 4) * q^23 + q^25 - 3*b * q^27 + (-4*b - 2) * q^29 + (2*b + 2) * q^31 + (-b - 2) * q^35 - 4 * q^37 + 6 * q^39 + (-4*b - 5) * q^41 + b * q^43 + (-5*b - 2) * q^47 + 4*b * q^49 + (2*b - 4) * q^53 - 2*b * q^57 + (2*b + 2) * q^59 + (-2*b - 5) * q^61 + 2*b * q^65 + (-b + 4) * q^67 + (4*b - 6) * q^69 + (2*b + 6) * q^71 + (-4*b - 8) * q^73 + b * q^75 + (6*b - 4) * q^79 - 9 * q^81 + (-2*b + 4) * q^83 + (-2*b - 12) * q^87 + (-4*b + 9) * q^89 + (-4*b - 6) * q^91 + (2*b + 6) * q^93 - 2 * q^95 + (6*b - 4) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{5} - 4 q^{7}+O(q^{10})$$ 2 * q + 2 * q^5 - 4 * q^7 $$2 q + 2 q^{5} - 4 q^{7} - 4 q^{19} - 6 q^{21} + 8 q^{23} + 2 q^{25} - 4 q^{29} + 4 q^{31} - 4 q^{35} - 8 q^{37} + 12 q^{39} - 10 q^{41} - 4 q^{47} - 8 q^{53} + 4 q^{59} - 10 q^{61} + 8 q^{67} - 12 q^{69} + 12 q^{71} - 16 q^{73} - 8 q^{79} - 18 q^{81} + 8 q^{83} - 24 q^{87} + 18 q^{89} - 12 q^{91} + 12 q^{93} - 4 q^{95} - 8 q^{97}+O(q^{100})$$ 2 * q + 2 * q^5 - 4 * q^7 - 4 * q^19 - 6 * q^21 + 8 * q^23 + 2 * q^25 - 4 * q^29 + 4 * q^31 - 4 * q^35 - 8 * q^37 + 12 * q^39 - 10 * q^41 - 4 * q^47 - 8 * q^53 + 4 * q^59 - 10 * q^61 + 8 * q^67 - 12 * q^69 + 12 * q^71 - 16 * q^73 - 8 * q^79 - 18 * q^81 + 8 * q^83 - 24 * q^87 + 18 * q^89 - 12 * q^91 + 12 * q^93 - 4 * q^95 - 8 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.73205 1.73205
0 −1.73205 0 1.00000 0 −0.267949 0 0 0
1.2 0 1.73205 0 1.00000 0 −3.73205 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$-1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4840.2.a.k 2
4.b odd 2 1 9680.2.a.br 2
11.b odd 2 1 4840.2.a.l yes 2
44.c even 2 1 9680.2.a.bq 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4840.2.a.k 2 1.a even 1 1 trivial
4840.2.a.l yes 2 11.b odd 2 1
9680.2.a.bq 2 44.c even 2 1
9680.2.a.br 2 4.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4840))$$:

 $$T_{3}^{2} - 3$$ T3^2 - 3 $$T_{7}^{2} + 4T_{7} + 1$$ T7^2 + 4*T7 + 1 $$T_{13}^{2} - 12$$ T13^2 - 12

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} - 3$$
$5$ $$(T - 1)^{2}$$
$7$ $$T^{2} + 4T + 1$$
$11$ $$T^{2}$$
$13$ $$T^{2} - 12$$
$17$ $$T^{2}$$
$19$ $$(T + 2)^{2}$$
$23$ $$T^{2} - 8T + 4$$
$29$ $$T^{2} + 4T - 44$$
$31$ $$T^{2} - 4T - 8$$
$37$ $$(T + 4)^{2}$$
$41$ $$T^{2} + 10T - 23$$
$43$ $$T^{2} - 3$$
$47$ $$T^{2} + 4T - 71$$
$53$ $$T^{2} + 8T + 4$$
$59$ $$T^{2} - 4T - 8$$
$61$ $$T^{2} + 10T + 13$$
$67$ $$T^{2} - 8T + 13$$
$71$ $$T^{2} - 12T + 24$$
$73$ $$T^{2} + 16T + 16$$
$79$ $$T^{2} + 8T - 92$$
$83$ $$T^{2} - 8T + 4$$
$89$ $$T^{2} - 18T + 33$$
$97$ $$T^{2} + 8T - 92$$