Properties

Label 4840.2.a.bc.1.6
Level $4840$
Weight $2$
Character 4840.1
Self dual yes
Analytic conductor $38.648$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4840,2,Mod(1,4840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4840.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4840 = 2^{3} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6475945783\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.22733568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} - 2x^{3} + 16x^{2} + 8x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.27997\) of defining polynomial
Character \(\chi\) \(=\) 4840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.19828 q^{3} +1.00000 q^{5} -2.58485 q^{7} +1.83244 q^{9} +O(q^{10})\) \(q+2.19828 q^{3} +1.00000 q^{5} -2.58485 q^{7} +1.83244 q^{9} -1.66906 q^{13} +2.19828 q^{15} -6.39656 q^{17} -0.330943 q^{19} -5.68224 q^{21} +1.33727 q^{23} +1.00000 q^{25} -2.56662 q^{27} -0.941551 q^{29} +5.78263 q^{31} -2.58485 q^{35} -7.41429 q^{37} -3.66906 q^{39} -5.49063 q^{41} +4.54413 q^{43} +1.83244 q^{45} -7.21601 q^{47} -0.318527 q^{49} -14.0614 q^{51} +6.55577 q^{53} -0.727506 q^{57} -7.74191 q^{59} -3.88821 q^{61} -4.73660 q^{63} -1.66906 q^{65} +9.68736 q^{67} +2.93969 q^{69} -11.4882 q^{71} +12.1229 q^{73} +2.19828 q^{75} -7.61507 q^{79} -11.1395 q^{81} -9.29886 q^{83} -6.39656 q^{85} -2.06979 q^{87} -17.7651 q^{89} +4.31427 q^{91} +12.7118 q^{93} -0.330943 q^{95} +4.03731 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 6 q^{5} - 4 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{3} + 6 q^{5} - 4 q^{7} + 4 q^{9} - 2 q^{15} - 8 q^{17} - 12 q^{19} + 8 q^{21} - 8 q^{23} + 6 q^{25} - 14 q^{27} - 16 q^{29} - 4 q^{31} - 4 q^{35} + 8 q^{37} - 12 q^{39} - 32 q^{41} + 4 q^{43} + 4 q^{45} - 6 q^{47} + 16 q^{49} - 40 q^{51} + 8 q^{53} + 16 q^{57} + 4 q^{59} - 16 q^{61} - 28 q^{63} - 2 q^{67} + 8 q^{69} - 28 q^{71} - 16 q^{73} - 2 q^{75} - 10 q^{81} - 12 q^{83} - 8 q^{85} + 24 q^{87} + 18 q^{89} - 24 q^{91} + 20 q^{93} - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.19828 1.26918 0.634589 0.772850i \(-0.281169\pi\)
0.634589 + 0.772850i \(0.281169\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.58485 −0.976983 −0.488492 0.872569i \(-0.662453\pi\)
−0.488492 + 0.872569i \(0.662453\pi\)
\(8\) 0 0
\(9\) 1.83244 0.610814
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −1.66906 −0.462913 −0.231457 0.972845i \(-0.574349\pi\)
−0.231457 + 0.972845i \(0.574349\pi\)
\(14\) 0 0
\(15\) 2.19828 0.567594
\(16\) 0 0
\(17\) −6.39656 −1.55139 −0.775697 0.631105i \(-0.782602\pi\)
−0.775697 + 0.631105i \(0.782602\pi\)
\(18\) 0 0
\(19\) −0.330943 −0.0759236 −0.0379618 0.999279i \(-0.512087\pi\)
−0.0379618 + 0.999279i \(0.512087\pi\)
\(20\) 0 0
\(21\) −5.68224 −1.23997
\(22\) 0 0
\(23\) 1.33727 0.278839 0.139420 0.990233i \(-0.455476\pi\)
0.139420 + 0.990233i \(0.455476\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −2.56662 −0.493947
\(28\) 0 0
\(29\) −0.941551 −0.174842 −0.0874208 0.996171i \(-0.527862\pi\)
−0.0874208 + 0.996171i \(0.527862\pi\)
\(30\) 0 0
\(31\) 5.78263 1.03859 0.519295 0.854595i \(-0.326194\pi\)
0.519295 + 0.854595i \(0.326194\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.58485 −0.436920
\(36\) 0 0
\(37\) −7.41429 −1.21890 −0.609451 0.792824i \(-0.708610\pi\)
−0.609451 + 0.792824i \(0.708610\pi\)
\(38\) 0 0
\(39\) −3.66906 −0.587519
\(40\) 0 0
\(41\) −5.49063 −0.857492 −0.428746 0.903425i \(-0.641045\pi\)
−0.428746 + 0.903425i \(0.641045\pi\)
\(42\) 0 0
\(43\) 4.54413 0.692973 0.346487 0.938055i \(-0.387375\pi\)
0.346487 + 0.938055i \(0.387375\pi\)
\(44\) 0 0
\(45\) 1.83244 0.273164
\(46\) 0 0
\(47\) −7.21601 −1.05256 −0.526281 0.850310i \(-0.676414\pi\)
−0.526281 + 0.850310i \(0.676414\pi\)
\(48\) 0 0
\(49\) −0.318527 −0.0455039
\(50\) 0 0
\(51\) −14.0614 −1.96900
\(52\) 0 0
\(53\) 6.55577 0.900505 0.450252 0.892901i \(-0.351334\pi\)
0.450252 + 0.892901i \(0.351334\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.727506 −0.0963606
\(58\) 0 0
\(59\) −7.74191 −1.00791 −0.503955 0.863730i \(-0.668122\pi\)
−0.503955 + 0.863730i \(0.668122\pi\)
\(60\) 0 0
\(61\) −3.88821 −0.497834 −0.248917 0.968525i \(-0.580075\pi\)
−0.248917 + 0.968525i \(0.580075\pi\)
\(62\) 0 0
\(63\) −4.73660 −0.596755
\(64\) 0 0
\(65\) −1.66906 −0.207021
\(66\) 0 0
\(67\) 9.68736 1.18350 0.591750 0.806122i \(-0.298437\pi\)
0.591750 + 0.806122i \(0.298437\pi\)
\(68\) 0 0
\(69\) 2.93969 0.353897
\(70\) 0 0
\(71\) −11.4882 −1.36340 −0.681701 0.731631i \(-0.738760\pi\)
−0.681701 + 0.731631i \(0.738760\pi\)
\(72\) 0 0
\(73\) 12.1229 1.41888 0.709439 0.704767i \(-0.248949\pi\)
0.709439 + 0.704767i \(0.248949\pi\)
\(74\) 0 0
\(75\) 2.19828 0.253836
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.61507 −0.856762 −0.428381 0.903598i \(-0.640916\pi\)
−0.428381 + 0.903598i \(0.640916\pi\)
\(80\) 0 0
\(81\) −11.1395 −1.23772
\(82\) 0 0
\(83\) −9.29886 −1.02068 −0.510341 0.859972i \(-0.670481\pi\)
−0.510341 + 0.859972i \(0.670481\pi\)
\(84\) 0 0
\(85\) −6.39656 −0.693805
\(86\) 0 0
\(87\) −2.06979 −0.221905
\(88\) 0 0
\(89\) −17.7651 −1.88309 −0.941546 0.336885i \(-0.890627\pi\)
−0.941546 + 0.336885i \(0.890627\pi\)
\(90\) 0 0
\(91\) 4.31427 0.452258
\(92\) 0 0
\(93\) 12.7118 1.31816
\(94\) 0 0
\(95\) −0.330943 −0.0339541
\(96\) 0 0
\(97\) 4.03731 0.409927 0.204963 0.978770i \(-0.434292\pi\)
0.204963 + 0.978770i \(0.434292\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.90476 0.985560 0.492780 0.870154i \(-0.335981\pi\)
0.492780 + 0.870154i \(0.335981\pi\)
\(102\) 0 0
\(103\) −11.9304 −1.17553 −0.587766 0.809031i \(-0.699993\pi\)
−0.587766 + 0.809031i \(0.699993\pi\)
\(104\) 0 0
\(105\) −5.68224 −0.554530
\(106\) 0 0
\(107\) −11.4320 −1.10517 −0.552585 0.833457i \(-0.686359\pi\)
−0.552585 + 0.833457i \(0.686359\pi\)
\(108\) 0 0
\(109\) −13.2534 −1.26945 −0.634724 0.772739i \(-0.718886\pi\)
−0.634724 + 0.772739i \(0.718886\pi\)
\(110\) 0 0
\(111\) −16.2987 −1.54700
\(112\) 0 0
\(113\) 14.4580 1.36010 0.680048 0.733168i \(-0.261959\pi\)
0.680048 + 0.733168i \(0.261959\pi\)
\(114\) 0 0
\(115\) 1.33727 0.124701
\(116\) 0 0
\(117\) −3.05845 −0.282754
\(118\) 0 0
\(119\) 16.5342 1.51569
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −12.0700 −1.08831
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −17.9795 −1.59542 −0.797711 0.603040i \(-0.793956\pi\)
−0.797711 + 0.603040i \(0.793956\pi\)
\(128\) 0 0
\(129\) 9.98928 0.879507
\(130\) 0 0
\(131\) 9.70451 0.847887 0.423943 0.905689i \(-0.360646\pi\)
0.423943 + 0.905689i \(0.360646\pi\)
\(132\) 0 0
\(133\) 0.855440 0.0741761
\(134\) 0 0
\(135\) −2.56662 −0.220900
\(136\) 0 0
\(137\) 19.4516 1.66186 0.830931 0.556375i \(-0.187808\pi\)
0.830931 + 0.556375i \(0.187808\pi\)
\(138\) 0 0
\(139\) −1.88457 −0.159847 −0.0799235 0.996801i \(-0.525468\pi\)
−0.0799235 + 0.996801i \(0.525468\pi\)
\(140\) 0 0
\(141\) −15.8628 −1.33589
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.941551 −0.0781915
\(146\) 0 0
\(147\) −0.700213 −0.0577526
\(148\) 0 0
\(149\) 8.19423 0.671298 0.335649 0.941987i \(-0.391044\pi\)
0.335649 + 0.941987i \(0.391044\pi\)
\(150\) 0 0
\(151\) −3.64408 −0.296551 −0.148275 0.988946i \(-0.547372\pi\)
−0.148275 + 0.988946i \(0.547372\pi\)
\(152\) 0 0
\(153\) −11.7213 −0.947613
\(154\) 0 0
\(155\) 5.78263 0.464472
\(156\) 0 0
\(157\) −8.12289 −0.648277 −0.324139 0.946010i \(-0.605074\pi\)
−0.324139 + 0.946010i \(0.605074\pi\)
\(158\) 0 0
\(159\) 14.4114 1.14290
\(160\) 0 0
\(161\) −3.45664 −0.272421
\(162\) 0 0
\(163\) 12.1858 0.954464 0.477232 0.878777i \(-0.341640\pi\)
0.477232 + 0.878777i \(0.341640\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.9941 1.77933 0.889667 0.456610i \(-0.150936\pi\)
0.889667 + 0.456610i \(0.150936\pi\)
\(168\) 0 0
\(169\) −10.2142 −0.785711
\(170\) 0 0
\(171\) −0.606434 −0.0463752
\(172\) 0 0
\(173\) −13.0803 −0.994475 −0.497237 0.867615i \(-0.665652\pi\)
−0.497237 + 0.867615i \(0.665652\pi\)
\(174\) 0 0
\(175\) −2.58485 −0.195397
\(176\) 0 0
\(177\) −17.0189 −1.27922
\(178\) 0 0
\(179\) 2.75740 0.206098 0.103049 0.994676i \(-0.467140\pi\)
0.103049 + 0.994676i \(0.467140\pi\)
\(180\) 0 0
\(181\) 3.38392 0.251524 0.125762 0.992060i \(-0.459862\pi\)
0.125762 + 0.992060i \(0.459862\pi\)
\(182\) 0 0
\(183\) −8.54737 −0.631840
\(184\) 0 0
\(185\) −7.41429 −0.545109
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 6.63434 0.482577
\(190\) 0 0
\(191\) −0.0917500 −0.00663880 −0.00331940 0.999994i \(-0.501057\pi\)
−0.00331940 + 0.999994i \(0.501057\pi\)
\(192\) 0 0
\(193\) 24.9932 1.79905 0.899525 0.436869i \(-0.143913\pi\)
0.899525 + 0.436869i \(0.143913\pi\)
\(194\) 0 0
\(195\) −3.66906 −0.262747
\(196\) 0 0
\(197\) −18.6454 −1.32843 −0.664216 0.747540i \(-0.731235\pi\)
−0.664216 + 0.747540i \(0.731235\pi\)
\(198\) 0 0
\(199\) −21.9376 −1.55511 −0.777557 0.628812i \(-0.783541\pi\)
−0.777557 + 0.628812i \(0.783541\pi\)
\(200\) 0 0
\(201\) 21.2956 1.50207
\(202\) 0 0
\(203\) 2.43377 0.170817
\(204\) 0 0
\(205\) −5.49063 −0.383482
\(206\) 0 0
\(207\) 2.45046 0.170319
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −16.8128 −1.15744 −0.578719 0.815527i \(-0.696447\pi\)
−0.578719 + 0.815527i \(0.696447\pi\)
\(212\) 0 0
\(213\) −25.2544 −1.73040
\(214\) 0 0
\(215\) 4.54413 0.309907
\(216\) 0 0
\(217\) −14.9473 −1.01469
\(218\) 0 0
\(219\) 26.6495 1.80081
\(220\) 0 0
\(221\) 10.6762 0.718161
\(222\) 0 0
\(223\) 0.156711 0.0104942 0.00524708 0.999986i \(-0.498330\pi\)
0.00524708 + 0.999986i \(0.498330\pi\)
\(224\) 0 0
\(225\) 1.83244 0.122163
\(226\) 0 0
\(227\) −4.26616 −0.283155 −0.141577 0.989927i \(-0.545217\pi\)
−0.141577 + 0.989927i \(0.545217\pi\)
\(228\) 0 0
\(229\) −3.55280 −0.234776 −0.117388 0.993086i \(-0.537452\pi\)
−0.117388 + 0.993086i \(0.537452\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.20904 0.144719 0.0723596 0.997379i \(-0.476947\pi\)
0.0723596 + 0.997379i \(0.476947\pi\)
\(234\) 0 0
\(235\) −7.21601 −0.470720
\(236\) 0 0
\(237\) −16.7401 −1.08738
\(238\) 0 0
\(239\) −12.7323 −0.823586 −0.411793 0.911277i \(-0.635097\pi\)
−0.411793 + 0.911277i \(0.635097\pi\)
\(240\) 0 0
\(241\) 13.6950 0.882171 0.441085 0.897465i \(-0.354594\pi\)
0.441085 + 0.897465i \(0.354594\pi\)
\(242\) 0 0
\(243\) −16.7879 −1.07694
\(244\) 0 0
\(245\) −0.318527 −0.0203500
\(246\) 0 0
\(247\) 0.552363 0.0351460
\(248\) 0 0
\(249\) −20.4415 −1.29543
\(250\) 0 0
\(251\) −9.12212 −0.575783 −0.287892 0.957663i \(-0.592954\pi\)
−0.287892 + 0.957663i \(0.592954\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −14.0614 −0.880562
\(256\) 0 0
\(257\) 23.2138 1.44804 0.724019 0.689780i \(-0.242293\pi\)
0.724019 + 0.689780i \(0.242293\pi\)
\(258\) 0 0
\(259\) 19.1649 1.19085
\(260\) 0 0
\(261\) −1.72534 −0.106796
\(262\) 0 0
\(263\) 30.5012 1.88078 0.940392 0.340092i \(-0.110458\pi\)
0.940392 + 0.340092i \(0.110458\pi\)
\(264\) 0 0
\(265\) 6.55577 0.402718
\(266\) 0 0
\(267\) −39.0526 −2.38998
\(268\) 0 0
\(269\) −5.13465 −0.313065 −0.156533 0.987673i \(-0.550032\pi\)
−0.156533 + 0.987673i \(0.550032\pi\)
\(270\) 0 0
\(271\) −12.6879 −0.770734 −0.385367 0.922763i \(-0.625925\pi\)
−0.385367 + 0.922763i \(0.625925\pi\)
\(272\) 0 0
\(273\) 9.48398 0.573996
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.3144 0.739899 0.369949 0.929052i \(-0.379375\pi\)
0.369949 + 0.929052i \(0.379375\pi\)
\(278\) 0 0
\(279\) 10.5963 0.634386
\(280\) 0 0
\(281\) −13.3736 −0.797800 −0.398900 0.916994i \(-0.630608\pi\)
−0.398900 + 0.916994i \(0.630608\pi\)
\(282\) 0 0
\(283\) 11.0470 0.656678 0.328339 0.944560i \(-0.393511\pi\)
0.328339 + 0.944560i \(0.393511\pi\)
\(284\) 0 0
\(285\) −0.727506 −0.0430938
\(286\) 0 0
\(287\) 14.1925 0.837756
\(288\) 0 0
\(289\) 23.9160 1.40682
\(290\) 0 0
\(291\) 8.87515 0.520270
\(292\) 0 0
\(293\) −25.4592 −1.48734 −0.743672 0.668545i \(-0.766918\pi\)
−0.743672 + 0.668545i \(0.766918\pi\)
\(294\) 0 0
\(295\) −7.74191 −0.450751
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.23197 −0.129078
\(300\) 0 0
\(301\) −11.7459 −0.677023
\(302\) 0 0
\(303\) 21.7734 1.25085
\(304\) 0 0
\(305\) −3.88821 −0.222638
\(306\) 0 0
\(307\) 30.1355 1.71992 0.859961 0.510360i \(-0.170488\pi\)
0.859961 + 0.510360i \(0.170488\pi\)
\(308\) 0 0
\(309\) −26.2263 −1.49196
\(310\) 0 0
\(311\) 12.3904 0.702598 0.351299 0.936263i \(-0.385740\pi\)
0.351299 + 0.936263i \(0.385740\pi\)
\(312\) 0 0
\(313\) 26.2056 1.48123 0.740613 0.671932i \(-0.234535\pi\)
0.740613 + 0.671932i \(0.234535\pi\)
\(314\) 0 0
\(315\) −4.73660 −0.266877
\(316\) 0 0
\(317\) −16.9782 −0.953589 −0.476794 0.879015i \(-0.658201\pi\)
−0.476794 + 0.879015i \(0.658201\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −25.1307 −1.40266
\(322\) 0 0
\(323\) 2.11690 0.117787
\(324\) 0 0
\(325\) −1.66906 −0.0925826
\(326\) 0 0
\(327\) −29.1348 −1.61116
\(328\) 0 0
\(329\) 18.6523 1.02834
\(330\) 0 0
\(331\) −13.7482 −0.755668 −0.377834 0.925873i \(-0.623331\pi\)
−0.377834 + 0.925873i \(0.623331\pi\)
\(332\) 0 0
\(333\) −13.5863 −0.744522
\(334\) 0 0
\(335\) 9.68736 0.529277
\(336\) 0 0
\(337\) 16.9287 0.922163 0.461081 0.887358i \(-0.347462\pi\)
0.461081 + 0.887358i \(0.347462\pi\)
\(338\) 0 0
\(339\) 31.7828 1.72620
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 18.9173 1.02144
\(344\) 0 0
\(345\) 2.93969 0.158268
\(346\) 0 0
\(347\) −9.03447 −0.484996 −0.242498 0.970152i \(-0.577967\pi\)
−0.242498 + 0.970152i \(0.577967\pi\)
\(348\) 0 0
\(349\) 27.5646 1.47550 0.737748 0.675076i \(-0.235889\pi\)
0.737748 + 0.675076i \(0.235889\pi\)
\(350\) 0 0
\(351\) 4.28384 0.228654
\(352\) 0 0
\(353\) 9.53305 0.507393 0.253696 0.967284i \(-0.418354\pi\)
0.253696 + 0.967284i \(0.418354\pi\)
\(354\) 0 0
\(355\) −11.4882 −0.609732
\(356\) 0 0
\(357\) 36.3468 1.92368
\(358\) 0 0
\(359\) 26.2842 1.38723 0.693615 0.720346i \(-0.256017\pi\)
0.693615 + 0.720346i \(0.256017\pi\)
\(360\) 0 0
\(361\) −18.8905 −0.994236
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.1229 0.634541
\(366\) 0 0
\(367\) −21.0794 −1.10033 −0.550167 0.835054i \(-0.685436\pi\)
−0.550167 + 0.835054i \(0.685436\pi\)
\(368\) 0 0
\(369\) −10.0613 −0.523768
\(370\) 0 0
\(371\) −16.9457 −0.879778
\(372\) 0 0
\(373\) −4.86333 −0.251813 −0.125907 0.992042i \(-0.540184\pi\)
−0.125907 + 0.992042i \(0.540184\pi\)
\(374\) 0 0
\(375\) 2.19828 0.113519
\(376\) 0 0
\(377\) 1.57150 0.0809364
\(378\) 0 0
\(379\) 17.6659 0.907435 0.453718 0.891146i \(-0.350097\pi\)
0.453718 + 0.891146i \(0.350097\pi\)
\(380\) 0 0
\(381\) −39.5240 −2.02488
\(382\) 0 0
\(383\) −20.9804 −1.07205 −0.536024 0.844203i \(-0.680074\pi\)
−0.536024 + 0.844203i \(0.680074\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.32685 0.423278
\(388\) 0 0
\(389\) −9.45185 −0.479228 −0.239614 0.970868i \(-0.577021\pi\)
−0.239614 + 0.970868i \(0.577021\pi\)
\(390\) 0 0
\(391\) −8.55391 −0.432590
\(392\) 0 0
\(393\) 21.3332 1.07612
\(394\) 0 0
\(395\) −7.61507 −0.383156
\(396\) 0 0
\(397\) 26.5417 1.33209 0.666046 0.745911i \(-0.267986\pi\)
0.666046 + 0.745911i \(0.267986\pi\)
\(398\) 0 0
\(399\) 1.88050 0.0941426
\(400\) 0 0
\(401\) 9.91003 0.494883 0.247442 0.968903i \(-0.420410\pi\)
0.247442 + 0.968903i \(0.420410\pi\)
\(402\) 0 0
\(403\) −9.65154 −0.480777
\(404\) 0 0
\(405\) −11.1395 −0.553525
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 24.9962 1.23598 0.617991 0.786185i \(-0.287947\pi\)
0.617991 + 0.786185i \(0.287947\pi\)
\(410\) 0 0
\(411\) 42.7601 2.10920
\(412\) 0 0
\(413\) 20.0117 0.984711
\(414\) 0 0
\(415\) −9.29886 −0.456463
\(416\) 0 0
\(417\) −4.14281 −0.202874
\(418\) 0 0
\(419\) 31.6860 1.54796 0.773982 0.633208i \(-0.218262\pi\)
0.773982 + 0.633208i \(0.218262\pi\)
\(420\) 0 0
\(421\) 27.6659 1.34835 0.674176 0.738571i \(-0.264499\pi\)
0.674176 + 0.738571i \(0.264499\pi\)
\(422\) 0 0
\(423\) −13.2229 −0.642920
\(424\) 0 0
\(425\) −6.39656 −0.310279
\(426\) 0 0
\(427\) 10.0505 0.486375
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.37658 −0.403486 −0.201743 0.979439i \(-0.564661\pi\)
−0.201743 + 0.979439i \(0.564661\pi\)
\(432\) 0 0
\(433\) 16.9179 0.813021 0.406511 0.913646i \(-0.366745\pi\)
0.406511 + 0.913646i \(0.366745\pi\)
\(434\) 0 0
\(435\) −2.06979 −0.0992390
\(436\) 0 0
\(437\) −0.442559 −0.0211705
\(438\) 0 0
\(439\) 15.9993 0.763605 0.381802 0.924244i \(-0.375303\pi\)
0.381802 + 0.924244i \(0.375303\pi\)
\(440\) 0 0
\(441\) −0.583683 −0.0277944
\(442\) 0 0
\(443\) −21.6509 −1.02867 −0.514333 0.857591i \(-0.671960\pi\)
−0.514333 + 0.857591i \(0.671960\pi\)
\(444\) 0 0
\(445\) −17.7651 −0.842144
\(446\) 0 0
\(447\) 18.0132 0.851997
\(448\) 0 0
\(449\) 10.9199 0.515341 0.257671 0.966233i \(-0.417045\pi\)
0.257671 + 0.966233i \(0.417045\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −8.01070 −0.376376
\(454\) 0 0
\(455\) 4.31427 0.202256
\(456\) 0 0
\(457\) −32.1926 −1.50591 −0.752953 0.658074i \(-0.771371\pi\)
−0.752953 + 0.658074i \(0.771371\pi\)
\(458\) 0 0
\(459\) 16.4176 0.766306
\(460\) 0 0
\(461\) −1.21757 −0.0567081 −0.0283540 0.999598i \(-0.509027\pi\)
−0.0283540 + 0.999598i \(0.509027\pi\)
\(462\) 0 0
\(463\) −25.9855 −1.20765 −0.603824 0.797118i \(-0.706357\pi\)
−0.603824 + 0.797118i \(0.706357\pi\)
\(464\) 0 0
\(465\) 12.7118 0.589498
\(466\) 0 0
\(467\) 20.3664 0.942442 0.471221 0.882015i \(-0.343813\pi\)
0.471221 + 0.882015i \(0.343813\pi\)
\(468\) 0 0
\(469\) −25.0404 −1.15626
\(470\) 0 0
\(471\) −17.8564 −0.822780
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.330943 −0.0151847
\(476\) 0 0
\(477\) 12.0131 0.550041
\(478\) 0 0
\(479\) 29.9861 1.37010 0.685050 0.728496i \(-0.259780\pi\)
0.685050 + 0.728496i \(0.259780\pi\)
\(480\) 0 0
\(481\) 12.3749 0.564245
\(482\) 0 0
\(483\) −7.59867 −0.345751
\(484\) 0 0
\(485\) 4.03731 0.183325
\(486\) 0 0
\(487\) −28.7529 −1.30292 −0.651460 0.758683i \(-0.725843\pi\)
−0.651460 + 0.758683i \(0.725843\pi\)
\(488\) 0 0
\(489\) 26.7878 1.21139
\(490\) 0 0
\(491\) −16.9472 −0.764816 −0.382408 0.923994i \(-0.624905\pi\)
−0.382408 + 0.923994i \(0.624905\pi\)
\(492\) 0 0
\(493\) 6.02269 0.271248
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 29.6954 1.33202
\(498\) 0 0
\(499\) −35.5491 −1.59140 −0.795699 0.605692i \(-0.792896\pi\)
−0.795699 + 0.605692i \(0.792896\pi\)
\(500\) 0 0
\(501\) 50.5474 2.25829
\(502\) 0 0
\(503\) −15.3213 −0.683142 −0.341571 0.939856i \(-0.610959\pi\)
−0.341571 + 0.939856i \(0.610959\pi\)
\(504\) 0 0
\(505\) 9.90476 0.440756
\(506\) 0 0
\(507\) −22.4538 −0.997208
\(508\) 0 0
\(509\) −34.5306 −1.53054 −0.765272 0.643707i \(-0.777395\pi\)
−0.765272 + 0.643707i \(0.777395\pi\)
\(510\) 0 0
\(511\) −31.3359 −1.38622
\(512\) 0 0
\(513\) 0.849406 0.0375022
\(514\) 0 0
\(515\) −11.9304 −0.525714
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −28.7541 −1.26217
\(520\) 0 0
\(521\) 7.89583 0.345922 0.172961 0.984929i \(-0.444666\pi\)
0.172961 + 0.984929i \(0.444666\pi\)
\(522\) 0 0
\(523\) −39.2227 −1.71509 −0.857545 0.514410i \(-0.828011\pi\)
−0.857545 + 0.514410i \(0.828011\pi\)
\(524\) 0 0
\(525\) −5.68224 −0.247993
\(526\) 0 0
\(527\) −36.9890 −1.61126
\(528\) 0 0
\(529\) −21.2117 −0.922249
\(530\) 0 0
\(531\) −14.1866 −0.615646
\(532\) 0 0
\(533\) 9.16417 0.396944
\(534\) 0 0
\(535\) −11.4320 −0.494247
\(536\) 0 0
\(537\) 6.06155 0.261575
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.28640 −0.184287 −0.0921433 0.995746i \(-0.529372\pi\)
−0.0921433 + 0.995746i \(0.529372\pi\)
\(542\) 0 0
\(543\) 7.43880 0.319229
\(544\) 0 0
\(545\) −13.2534 −0.567714
\(546\) 0 0
\(547\) 0.942165 0.0402841 0.0201420 0.999797i \(-0.493588\pi\)
0.0201420 + 0.999797i \(0.493588\pi\)
\(548\) 0 0
\(549\) −7.12491 −0.304084
\(550\) 0 0
\(551\) 0.311600 0.0132746
\(552\) 0 0
\(553\) 19.6838 0.837042
\(554\) 0 0
\(555\) −16.2987 −0.691841
\(556\) 0 0
\(557\) 20.7709 0.880089 0.440045 0.897976i \(-0.354963\pi\)
0.440045 + 0.897976i \(0.354963\pi\)
\(558\) 0 0
\(559\) −7.58441 −0.320786
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.09795 0.130563 0.0652815 0.997867i \(-0.479205\pi\)
0.0652815 + 0.997867i \(0.479205\pi\)
\(564\) 0 0
\(565\) 14.4580 0.608253
\(566\) 0 0
\(567\) 28.7939 1.20923
\(568\) 0 0
\(569\) 4.83283 0.202603 0.101301 0.994856i \(-0.467699\pi\)
0.101301 + 0.994856i \(0.467699\pi\)
\(570\) 0 0
\(571\) −9.40074 −0.393409 −0.196704 0.980463i \(-0.563024\pi\)
−0.196704 + 0.980463i \(0.563024\pi\)
\(572\) 0 0
\(573\) −0.201692 −0.00842582
\(574\) 0 0
\(575\) 1.33727 0.0557679
\(576\) 0 0
\(577\) 6.62302 0.275720 0.137860 0.990452i \(-0.455978\pi\)
0.137860 + 0.990452i \(0.455978\pi\)
\(578\) 0 0
\(579\) 54.9421 2.28332
\(580\) 0 0
\(581\) 24.0362 0.997189
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −3.05845 −0.126451
\(586\) 0 0
\(587\) −28.2488 −1.16595 −0.582976 0.812489i \(-0.698112\pi\)
−0.582976 + 0.812489i \(0.698112\pi\)
\(588\) 0 0
\(589\) −1.91372 −0.0788535
\(590\) 0 0
\(591\) −40.9879 −1.68602
\(592\) 0 0
\(593\) 1.97934 0.0812818 0.0406409 0.999174i \(-0.487060\pi\)
0.0406409 + 0.999174i \(0.487060\pi\)
\(594\) 0 0
\(595\) 16.5342 0.677835
\(596\) 0 0
\(597\) −48.2250 −1.97372
\(598\) 0 0
\(599\) −20.3610 −0.831927 −0.415964 0.909381i \(-0.636556\pi\)
−0.415964 + 0.909381i \(0.636556\pi\)
\(600\) 0 0
\(601\) 25.0897 1.02343 0.511716 0.859155i \(-0.329010\pi\)
0.511716 + 0.859155i \(0.329010\pi\)
\(602\) 0 0
\(603\) 17.7515 0.722898
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9.61170 0.390127 0.195063 0.980791i \(-0.437509\pi\)
0.195063 + 0.980791i \(0.437509\pi\)
\(608\) 0 0
\(609\) 5.35011 0.216798
\(610\) 0 0
\(611\) 12.0439 0.487245
\(612\) 0 0
\(613\) 16.4057 0.662618 0.331309 0.943522i \(-0.392510\pi\)
0.331309 + 0.943522i \(0.392510\pi\)
\(614\) 0 0
\(615\) −12.0700 −0.486707
\(616\) 0 0
\(617\) 36.5821 1.47274 0.736370 0.676579i \(-0.236538\pi\)
0.736370 + 0.676579i \(0.236538\pi\)
\(618\) 0 0
\(619\) 31.6865 1.27359 0.636793 0.771035i \(-0.280261\pi\)
0.636793 + 0.771035i \(0.280261\pi\)
\(620\) 0 0
\(621\) −3.43226 −0.137732
\(622\) 0 0
\(623\) 45.9201 1.83975
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 47.4260 1.89100
\(630\) 0 0
\(631\) −22.3894 −0.891307 −0.445654 0.895206i \(-0.647029\pi\)
−0.445654 + 0.895206i \(0.647029\pi\)
\(632\) 0 0
\(633\) −36.9592 −1.46900
\(634\) 0 0
\(635\) −17.9795 −0.713495
\(636\) 0 0
\(637\) 0.531640 0.0210643
\(638\) 0 0
\(639\) −21.0515 −0.832785
\(640\) 0 0
\(641\) 25.8587 1.02136 0.510678 0.859772i \(-0.329394\pi\)
0.510678 + 0.859772i \(0.329394\pi\)
\(642\) 0 0
\(643\) −46.6628 −1.84020 −0.920101 0.391681i \(-0.871894\pi\)
−0.920101 + 0.391681i \(0.871894\pi\)
\(644\) 0 0
\(645\) 9.98928 0.393327
\(646\) 0 0
\(647\) −25.9855 −1.02159 −0.510797 0.859701i \(-0.670650\pi\)
−0.510797 + 0.859701i \(0.670650\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −32.8583 −1.28782
\(652\) 0 0
\(653\) −3.44698 −0.134891 −0.0674453 0.997723i \(-0.521485\pi\)
−0.0674453 + 0.997723i \(0.521485\pi\)
\(654\) 0 0
\(655\) 9.70451 0.379187
\(656\) 0 0
\(657\) 22.2145 0.866670
\(658\) 0 0
\(659\) 15.6066 0.607945 0.303973 0.952681i \(-0.401687\pi\)
0.303973 + 0.952681i \(0.401687\pi\)
\(660\) 0 0
\(661\) 39.5126 1.53686 0.768431 0.639933i \(-0.221038\pi\)
0.768431 + 0.639933i \(0.221038\pi\)
\(662\) 0 0
\(663\) 23.4694 0.911474
\(664\) 0 0
\(665\) 0.855440 0.0331725
\(666\) 0 0
\(667\) −1.25910 −0.0487527
\(668\) 0 0
\(669\) 0.344496 0.0133190
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −4.33800 −0.167218 −0.0836089 0.996499i \(-0.526645\pi\)
−0.0836089 + 0.996499i \(0.526645\pi\)
\(674\) 0 0
\(675\) −2.56662 −0.0987893
\(676\) 0 0
\(677\) −41.6655 −1.60134 −0.800668 0.599109i \(-0.795522\pi\)
−0.800668 + 0.599109i \(0.795522\pi\)
\(678\) 0 0
\(679\) −10.4359 −0.400492
\(680\) 0 0
\(681\) −9.37822 −0.359374
\(682\) 0 0
\(683\) −43.4283 −1.66174 −0.830869 0.556468i \(-0.812156\pi\)
−0.830869 + 0.556468i \(0.812156\pi\)
\(684\) 0 0
\(685\) 19.4516 0.743207
\(686\) 0 0
\(687\) −7.81007 −0.297973
\(688\) 0 0
\(689\) −10.9420 −0.416856
\(690\) 0 0
\(691\) −19.6046 −0.745793 −0.372897 0.927873i \(-0.621635\pi\)
−0.372897 + 0.927873i \(0.621635\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.88457 −0.0714857
\(696\) 0 0
\(697\) 35.1212 1.33031
\(698\) 0 0
\(699\) 4.85610 0.183675
\(700\) 0 0
\(701\) −36.9648 −1.39614 −0.698071 0.716029i \(-0.745958\pi\)
−0.698071 + 0.716029i \(0.745958\pi\)
\(702\) 0 0
\(703\) 2.45371 0.0925434
\(704\) 0 0
\(705\) −15.8628 −0.597428
\(706\) 0 0
\(707\) −25.6024 −0.962876
\(708\) 0 0
\(709\) −41.3706 −1.55371 −0.776854 0.629681i \(-0.783185\pi\)
−0.776854 + 0.629681i \(0.783185\pi\)
\(710\) 0 0
\(711\) −13.9542 −0.523322
\(712\) 0 0
\(713\) 7.73292 0.289600
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −27.9893 −1.04528
\(718\) 0 0
\(719\) 2.88409 0.107558 0.0537792 0.998553i \(-0.482873\pi\)
0.0537792 + 0.998553i \(0.482873\pi\)
\(720\) 0 0
\(721\) 30.8382 1.14848
\(722\) 0 0
\(723\) 30.1054 1.11963
\(724\) 0 0
\(725\) −0.941551 −0.0349683
\(726\) 0 0
\(727\) −17.9716 −0.666530 −0.333265 0.942833i \(-0.608150\pi\)
−0.333265 + 0.942833i \(0.608150\pi\)
\(728\) 0 0
\(729\) −3.48598 −0.129110
\(730\) 0 0
\(731\) −29.0668 −1.07508
\(732\) 0 0
\(733\) 15.3188 0.565812 0.282906 0.959148i \(-0.408702\pi\)
0.282906 + 0.959148i \(0.408702\pi\)
\(734\) 0 0
\(735\) −0.700213 −0.0258277
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −6.38055 −0.234712 −0.117356 0.993090i \(-0.537442\pi\)
−0.117356 + 0.993090i \(0.537442\pi\)
\(740\) 0 0
\(741\) 1.21425 0.0446066
\(742\) 0 0
\(743\) −32.3860 −1.18813 −0.594064 0.804418i \(-0.702478\pi\)
−0.594064 + 0.804418i \(0.702478\pi\)
\(744\) 0 0
\(745\) 8.19423 0.300213
\(746\) 0 0
\(747\) −17.0396 −0.623447
\(748\) 0 0
\(749\) 29.5500 1.07973
\(750\) 0 0
\(751\) 32.5871 1.18912 0.594560 0.804051i \(-0.297326\pi\)
0.594560 + 0.804051i \(0.297326\pi\)
\(752\) 0 0
\(753\) −20.0530 −0.730772
\(754\) 0 0
\(755\) −3.64408 −0.132621
\(756\) 0 0
\(757\) 32.7857 1.19162 0.595808 0.803127i \(-0.296832\pi\)
0.595808 + 0.803127i \(0.296832\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −41.3176 −1.49776 −0.748881 0.662705i \(-0.769408\pi\)
−0.748881 + 0.662705i \(0.769408\pi\)
\(762\) 0 0
\(763\) 34.2582 1.24023
\(764\) 0 0
\(765\) −11.7213 −0.423786
\(766\) 0 0
\(767\) 12.9217 0.466575
\(768\) 0 0
\(769\) −20.4922 −0.738967 −0.369483 0.929237i \(-0.620465\pi\)
−0.369483 + 0.929237i \(0.620465\pi\)
\(770\) 0 0
\(771\) 51.0305 1.83782
\(772\) 0 0
\(773\) −1.88634 −0.0678470 −0.0339235 0.999424i \(-0.510800\pi\)
−0.0339235 + 0.999424i \(0.510800\pi\)
\(774\) 0 0
\(775\) 5.78263 0.207718
\(776\) 0 0
\(777\) 42.1298 1.51140
\(778\) 0 0
\(779\) 1.81709 0.0651039
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.41660 0.0863624
\(784\) 0 0
\(785\) −8.12289 −0.289918
\(786\) 0 0
\(787\) 20.6178 0.734946 0.367473 0.930034i \(-0.380223\pi\)
0.367473 + 0.930034i \(0.380223\pi\)
\(788\) 0 0
\(789\) 67.0502 2.38705
\(790\) 0 0
\(791\) −37.3719 −1.32879
\(792\) 0 0
\(793\) 6.48964 0.230454
\(794\) 0 0
\(795\) 14.4114 0.511121
\(796\) 0 0
\(797\) 5.96779 0.211390 0.105695 0.994399i \(-0.466293\pi\)
0.105695 + 0.994399i \(0.466293\pi\)
\(798\) 0 0
\(799\) 46.1576 1.63294
\(800\) 0 0
\(801\) −32.5534 −1.15022
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −3.45664 −0.121831
\(806\) 0 0
\(807\) −11.2874 −0.397336
\(808\) 0 0
\(809\) −27.3857 −0.962829 −0.481415 0.876493i \(-0.659877\pi\)
−0.481415 + 0.876493i \(0.659877\pi\)
\(810\) 0 0
\(811\) 10.5465 0.370336 0.185168 0.982707i \(-0.440717\pi\)
0.185168 + 0.982707i \(0.440717\pi\)
\(812\) 0 0
\(813\) −27.8915 −0.978199
\(814\) 0 0
\(815\) 12.1858 0.426849
\(816\) 0 0
\(817\) −1.50385 −0.0526130
\(818\) 0 0
\(819\) 7.90565 0.276246
\(820\) 0 0
\(821\) −41.0152 −1.43144 −0.715720 0.698387i \(-0.753901\pi\)
−0.715720 + 0.698387i \(0.753901\pi\)
\(822\) 0 0
\(823\) −26.8483 −0.935871 −0.467936 0.883763i \(-0.655002\pi\)
−0.467936 + 0.883763i \(0.655002\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.1904 0.423903 0.211951 0.977280i \(-0.432018\pi\)
0.211951 + 0.977280i \(0.432018\pi\)
\(828\) 0 0
\(829\) −34.5013 −1.19828 −0.599139 0.800645i \(-0.704490\pi\)
−0.599139 + 0.800645i \(0.704490\pi\)
\(830\) 0 0
\(831\) 27.0705 0.939064
\(832\) 0 0
\(833\) 2.03748 0.0705945
\(834\) 0 0
\(835\) 22.9941 0.795742
\(836\) 0 0
\(837\) −14.8418 −0.513008
\(838\) 0 0
\(839\) −13.3549 −0.461064 −0.230532 0.973065i \(-0.574047\pi\)
−0.230532 + 0.973065i \(0.574047\pi\)
\(840\) 0 0
\(841\) −28.1135 −0.969430
\(842\) 0 0
\(843\) −29.3989 −1.01255
\(844\) 0 0
\(845\) −10.2142 −0.351381
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 24.2845 0.833442
\(850\) 0 0
\(851\) −9.91489 −0.339878
\(852\) 0 0
\(853\) 39.5614 1.35456 0.677278 0.735727i \(-0.263160\pi\)
0.677278 + 0.735727i \(0.263160\pi\)
\(854\) 0 0
\(855\) −0.606434 −0.0207396
\(856\) 0 0
\(857\) −10.6805 −0.364838 −0.182419 0.983221i \(-0.558393\pi\)
−0.182419 + 0.983221i \(0.558393\pi\)
\(858\) 0 0
\(859\) 2.20217 0.0751369 0.0375685 0.999294i \(-0.488039\pi\)
0.0375685 + 0.999294i \(0.488039\pi\)
\(860\) 0 0
\(861\) 31.1991 1.06326
\(862\) 0 0
\(863\) 4.30423 0.146518 0.0732588 0.997313i \(-0.476660\pi\)
0.0732588 + 0.997313i \(0.476660\pi\)
\(864\) 0 0
\(865\) −13.0803 −0.444743
\(866\) 0 0
\(867\) 52.5741 1.78551
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −16.1688 −0.547858
\(872\) 0 0
\(873\) 7.39814 0.250389
\(874\) 0 0
\(875\) −2.58485 −0.0873840
\(876\) 0 0
\(877\) 41.8693 1.41383 0.706913 0.707300i \(-0.250087\pi\)
0.706913 + 0.707300i \(0.250087\pi\)
\(878\) 0 0
\(879\) −55.9666 −1.88770
\(880\) 0 0
\(881\) 55.2076 1.85999 0.929996 0.367570i \(-0.119810\pi\)
0.929996 + 0.367570i \(0.119810\pi\)
\(882\) 0 0
\(883\) 27.4993 0.925426 0.462713 0.886508i \(-0.346876\pi\)
0.462713 + 0.886508i \(0.346876\pi\)
\(884\) 0 0
\(885\) −17.0189 −0.572084
\(886\) 0 0
\(887\) 28.9410 0.971743 0.485871 0.874030i \(-0.338502\pi\)
0.485871 + 0.874030i \(0.338502\pi\)
\(888\) 0 0
\(889\) 46.4744 1.55870
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.38809 0.0799143
\(894\) 0 0
\(895\) 2.75740 0.0921698
\(896\) 0 0
\(897\) −4.90651 −0.163824
\(898\) 0 0
\(899\) −5.44464 −0.181589
\(900\) 0 0
\(901\) −41.9344 −1.39704
\(902\) 0 0
\(903\) −25.8208 −0.859263
\(904\) 0 0
\(905\) 3.38392 0.112485
\(906\) 0 0
\(907\) −55.6297 −1.84715 −0.923577 0.383412i \(-0.874749\pi\)
−0.923577 + 0.383412i \(0.874749\pi\)
\(908\) 0 0
\(909\) 18.1499 0.601994
\(910\) 0 0
\(911\) −49.2558 −1.63192 −0.815959 0.578110i \(-0.803790\pi\)
−0.815959 + 0.578110i \(0.803790\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −8.54737 −0.282567
\(916\) 0 0
\(917\) −25.0847 −0.828371
\(918\) 0 0
\(919\) −2.39222 −0.0789121 −0.0394560 0.999221i \(-0.512563\pi\)
−0.0394560 + 0.999221i \(0.512563\pi\)
\(920\) 0 0
\(921\) 66.2462 2.18289
\(922\) 0 0
\(923\) 19.1745 0.631137
\(924\) 0 0
\(925\) −7.41429 −0.243780
\(926\) 0 0
\(927\) −21.8617 −0.718032
\(928\) 0 0
\(929\) −36.1713 −1.18674 −0.593371 0.804929i \(-0.702203\pi\)
−0.593371 + 0.804929i \(0.702203\pi\)
\(930\) 0 0
\(931\) 0.105414 0.00345482
\(932\) 0 0
\(933\) 27.2377 0.891722
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −4.30586 −0.140666 −0.0703331 0.997524i \(-0.522406\pi\)
−0.0703331 + 0.997524i \(0.522406\pi\)
\(938\) 0 0
\(939\) 57.6072 1.87994
\(940\) 0 0
\(941\) −0.649571 −0.0211754 −0.0105877 0.999944i \(-0.503370\pi\)
−0.0105877 + 0.999944i \(0.503370\pi\)
\(942\) 0 0
\(943\) −7.34244 −0.239103
\(944\) 0 0
\(945\) 6.63434 0.215815
\(946\) 0 0
\(947\) 39.0346 1.26845 0.634226 0.773147i \(-0.281319\pi\)
0.634226 + 0.773147i \(0.281319\pi\)
\(948\) 0 0
\(949\) −20.2338 −0.656817
\(950\) 0 0
\(951\) −37.3228 −1.21027
\(952\) 0 0
\(953\) 11.1295 0.360521 0.180260 0.983619i \(-0.442306\pi\)
0.180260 + 0.983619i \(0.442306\pi\)
\(954\) 0 0
\(955\) −0.0917500 −0.00296896
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −50.2796 −1.62361
\(960\) 0 0
\(961\) 2.43880 0.0786709
\(962\) 0 0
\(963\) −20.9484 −0.675053
\(964\) 0 0
\(965\) 24.9932 0.804560
\(966\) 0 0
\(967\) −5.30703 −0.170663 −0.0853313 0.996353i \(-0.527195\pi\)
−0.0853313 + 0.996353i \(0.527195\pi\)
\(968\) 0 0
\(969\) 4.65354 0.149493
\(970\) 0 0
\(971\) −4.61394 −0.148068 −0.0740342 0.997256i \(-0.523587\pi\)
−0.0740342 + 0.997256i \(0.523587\pi\)
\(972\) 0 0
\(973\) 4.87133 0.156168
\(974\) 0 0
\(975\) −3.66906 −0.117504
\(976\) 0 0
\(977\) 55.8973 1.78831 0.894156 0.447756i \(-0.147777\pi\)
0.894156 + 0.447756i \(0.147777\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −24.2861 −0.775396
\(982\) 0 0
\(983\) 7.55085 0.240835 0.120417 0.992723i \(-0.461577\pi\)
0.120417 + 0.992723i \(0.461577\pi\)
\(984\) 0 0
\(985\) −18.6454 −0.594093
\(986\) 0 0
\(987\) 41.0031 1.30514
\(988\) 0 0
\(989\) 6.07672 0.193228
\(990\) 0 0
\(991\) −23.2874 −0.739749 −0.369874 0.929082i \(-0.620599\pi\)
−0.369874 + 0.929082i \(0.620599\pi\)
\(992\) 0 0
\(993\) −30.2224 −0.959077
\(994\) 0 0
\(995\) −21.9376 −0.695468
\(996\) 0 0
\(997\) 21.1584 0.670092 0.335046 0.942202i \(-0.391248\pi\)
0.335046 + 0.942202i \(0.391248\pi\)
\(998\) 0 0
\(999\) 19.0297 0.602072
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4840.2.a.bc.1.6 6
4.3 odd 2 9680.2.a.db.1.1 6
11.10 odd 2 4840.2.a.bd.1.6 yes 6
44.43 even 2 9680.2.a.da.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4840.2.a.bc.1.6 6 1.1 even 1 trivial
4840.2.a.bd.1.6 yes 6 11.10 odd 2
9680.2.a.da.1.1 6 44.43 even 2
9680.2.a.db.1.1 6 4.3 odd 2