Properties

Label 4840.2.a.ba.1.5
Level $4840$
Weight $2$
Character 4840.1
Self dual yes
Analytic conductor $38.648$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4840,2,Mod(1,4840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4840.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4840 = 2^{3} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3,0,-6,0,-7,0,5,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6475945783\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.25903625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 7x^{4} + 17x^{3} + 16x^{2} - 20x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.68797\) of defining polynomial
Character \(\chi\) \(=\) 4840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.68797 q^{3} -1.00000 q^{5} +0.193967 q^{7} -0.150741 q^{9} +0.495133 q^{13} -1.68797 q^{15} +4.98130 q^{17} -7.26172 q^{19} +0.327411 q^{21} -2.41321 q^{23} +1.00000 q^{25} -5.31837 q^{27} -2.10646 q^{29} -6.56591 q^{31} -0.193967 q^{35} +7.28844 q^{37} +0.835771 q^{39} -1.10864 q^{41} +5.46058 q^{43} +0.150741 q^{45} -5.50315 q^{47} -6.96238 q^{49} +8.40832 q^{51} -6.73973 q^{53} -12.2576 q^{57} -7.73492 q^{59} -13.1238 q^{61} -0.0292388 q^{63} -0.495133 q^{65} +4.49499 q^{67} -4.07343 q^{69} +0.379781 q^{71} +14.6213 q^{73} +1.68797 q^{75} -1.65379 q^{79} -8.52505 q^{81} +8.68029 q^{83} -4.98130 q^{85} -3.55564 q^{87} +1.83811 q^{89} +0.0960393 q^{91} -11.0831 q^{93} +7.26172 q^{95} -12.8755 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 6 q^{5} - 7 q^{7} + 5 q^{9} + q^{13} + 3 q^{15} + 6 q^{17} - 7 q^{19} + 14 q^{21} - 9 q^{23} + 6 q^{25} - 21 q^{27} + 10 q^{29} + q^{31} + 7 q^{35} + 3 q^{37} - q^{39} - 6 q^{41} + 18 q^{43}+ \cdots - 33 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.68797 0.974553 0.487276 0.873248i \(-0.337990\pi\)
0.487276 + 0.873248i \(0.337990\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.193967 0.0733126 0.0366563 0.999328i \(-0.488329\pi\)
0.0366563 + 0.999328i \(0.488329\pi\)
\(8\) 0 0
\(9\) −0.150741 −0.0502470
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0.495133 0.137325 0.0686625 0.997640i \(-0.478127\pi\)
0.0686625 + 0.997640i \(0.478127\pi\)
\(14\) 0 0
\(15\) −1.68797 −0.435833
\(16\) 0 0
\(17\) 4.98130 1.20814 0.604072 0.796930i \(-0.293544\pi\)
0.604072 + 0.796930i \(0.293544\pi\)
\(18\) 0 0
\(19\) −7.26172 −1.66595 −0.832977 0.553308i \(-0.813365\pi\)
−0.832977 + 0.553308i \(0.813365\pi\)
\(20\) 0 0
\(21\) 0.327411 0.0714470
\(22\) 0 0
\(23\) −2.41321 −0.503189 −0.251594 0.967833i \(-0.580955\pi\)
−0.251594 + 0.967833i \(0.580955\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.31837 −1.02352
\(28\) 0 0
\(29\) −2.10646 −0.391159 −0.195579 0.980688i \(-0.562659\pi\)
−0.195579 + 0.980688i \(0.562659\pi\)
\(30\) 0 0
\(31\) −6.56591 −1.17927 −0.589636 0.807669i \(-0.700729\pi\)
−0.589636 + 0.807669i \(0.700729\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.193967 −0.0327864
\(36\) 0 0
\(37\) 7.28844 1.19821 0.599106 0.800670i \(-0.295523\pi\)
0.599106 + 0.800670i \(0.295523\pi\)
\(38\) 0 0
\(39\) 0.835771 0.133831
\(40\) 0 0
\(41\) −1.10864 −0.173140 −0.0865702 0.996246i \(-0.527591\pi\)
−0.0865702 + 0.996246i \(0.527591\pi\)
\(42\) 0 0
\(43\) 5.46058 0.832731 0.416365 0.909197i \(-0.363304\pi\)
0.416365 + 0.909197i \(0.363304\pi\)
\(44\) 0 0
\(45\) 0.150741 0.0224712
\(46\) 0 0
\(47\) −5.50315 −0.802717 −0.401359 0.915921i \(-0.631462\pi\)
−0.401359 + 0.915921i \(0.631462\pi\)
\(48\) 0 0
\(49\) −6.96238 −0.994625
\(50\) 0 0
\(51\) 8.40832 1.17740
\(52\) 0 0
\(53\) −6.73973 −0.925773 −0.462887 0.886417i \(-0.653186\pi\)
−0.462887 + 0.886417i \(0.653186\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −12.2576 −1.62356
\(58\) 0 0
\(59\) −7.73492 −1.00700 −0.503500 0.863995i \(-0.667955\pi\)
−0.503500 + 0.863995i \(0.667955\pi\)
\(60\) 0 0
\(61\) −13.1238 −1.68034 −0.840168 0.542326i \(-0.817544\pi\)
−0.840168 + 0.542326i \(0.817544\pi\)
\(62\) 0 0
\(63\) −0.0292388 −0.00368374
\(64\) 0 0
\(65\) −0.495133 −0.0614136
\(66\) 0 0
\(67\) 4.49499 0.549151 0.274575 0.961566i \(-0.411463\pi\)
0.274575 + 0.961566i \(0.411463\pi\)
\(68\) 0 0
\(69\) −4.07343 −0.490384
\(70\) 0 0
\(71\) 0.379781 0.0450717 0.0225359 0.999746i \(-0.492826\pi\)
0.0225359 + 0.999746i \(0.492826\pi\)
\(72\) 0 0
\(73\) 14.6213 1.71129 0.855647 0.517560i \(-0.173159\pi\)
0.855647 + 0.517560i \(0.173159\pi\)
\(74\) 0 0
\(75\) 1.68797 0.194911
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.65379 −0.186066 −0.0930329 0.995663i \(-0.529656\pi\)
−0.0930329 + 0.995663i \(0.529656\pi\)
\(80\) 0 0
\(81\) −8.52505 −0.947228
\(82\) 0 0
\(83\) 8.68029 0.952785 0.476393 0.879233i \(-0.341944\pi\)
0.476393 + 0.879233i \(0.341944\pi\)
\(84\) 0 0
\(85\) −4.98130 −0.540298
\(86\) 0 0
\(87\) −3.55564 −0.381205
\(88\) 0 0
\(89\) 1.83811 0.194840 0.0974198 0.995243i \(-0.468941\pi\)
0.0974198 + 0.995243i \(0.468941\pi\)
\(90\) 0 0
\(91\) 0.0960393 0.0100677
\(92\) 0 0
\(93\) −11.0831 −1.14926
\(94\) 0 0
\(95\) 7.26172 0.745037
\(96\) 0 0
\(97\) −12.8755 −1.30730 −0.653652 0.756795i \(-0.726764\pi\)
−0.653652 + 0.756795i \(0.726764\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.998793 0.0993836 0.0496918 0.998765i \(-0.484176\pi\)
0.0496918 + 0.998765i \(0.484176\pi\)
\(102\) 0 0
\(103\) −9.19951 −0.906454 −0.453227 0.891395i \(-0.649727\pi\)
−0.453227 + 0.891395i \(0.649727\pi\)
\(104\) 0 0
\(105\) −0.327411 −0.0319521
\(106\) 0 0
\(107\) −2.84972 −0.275493 −0.137747 0.990468i \(-0.543986\pi\)
−0.137747 + 0.990468i \(0.543986\pi\)
\(108\) 0 0
\(109\) −1.23155 −0.117962 −0.0589808 0.998259i \(-0.518785\pi\)
−0.0589808 + 0.998259i \(0.518785\pi\)
\(110\) 0 0
\(111\) 12.3027 1.16772
\(112\) 0 0
\(113\) −9.61697 −0.904689 −0.452344 0.891843i \(-0.649412\pi\)
−0.452344 + 0.891843i \(0.649412\pi\)
\(114\) 0 0
\(115\) 2.41321 0.225033
\(116\) 0 0
\(117\) −0.0746368 −0.00690018
\(118\) 0 0
\(119\) 0.966208 0.0885722
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1.87136 −0.168735
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 17.0637 1.51416 0.757081 0.653321i \(-0.226625\pi\)
0.757081 + 0.653321i \(0.226625\pi\)
\(128\) 0 0
\(129\) 9.21732 0.811540
\(130\) 0 0
\(131\) 10.8561 0.948506 0.474253 0.880389i \(-0.342718\pi\)
0.474253 + 0.880389i \(0.342718\pi\)
\(132\) 0 0
\(133\) −1.40853 −0.122135
\(134\) 0 0
\(135\) 5.31837 0.457733
\(136\) 0 0
\(137\) −9.60844 −0.820905 −0.410452 0.911882i \(-0.634629\pi\)
−0.410452 + 0.911882i \(0.634629\pi\)
\(138\) 0 0
\(139\) −15.5588 −1.31968 −0.659839 0.751407i \(-0.729375\pi\)
−0.659839 + 0.751407i \(0.729375\pi\)
\(140\) 0 0
\(141\) −9.28918 −0.782290
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.10646 0.174932
\(146\) 0 0
\(147\) −11.7523 −0.969315
\(148\) 0 0
\(149\) 6.06239 0.496651 0.248325 0.968677i \(-0.420120\pi\)
0.248325 + 0.968677i \(0.420120\pi\)
\(150\) 0 0
\(151\) −17.4419 −1.41940 −0.709700 0.704504i \(-0.751170\pi\)
−0.709700 + 0.704504i \(0.751170\pi\)
\(152\) 0 0
\(153\) −0.750887 −0.0607057
\(154\) 0 0
\(155\) 6.56591 0.527387
\(156\) 0 0
\(157\) 19.0907 1.52361 0.761804 0.647808i \(-0.224314\pi\)
0.761804 + 0.647808i \(0.224314\pi\)
\(158\) 0 0
\(159\) −11.3765 −0.902215
\(160\) 0 0
\(161\) −0.468082 −0.0368901
\(162\) 0 0
\(163\) −0.100999 −0.00791089 −0.00395544 0.999992i \(-0.501259\pi\)
−0.00395544 + 0.999992i \(0.501259\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.2432 −0.870023 −0.435011 0.900425i \(-0.643256\pi\)
−0.435011 + 0.900425i \(0.643256\pi\)
\(168\) 0 0
\(169\) −12.7548 −0.981142
\(170\) 0 0
\(171\) 1.09464 0.0837092
\(172\) 0 0
\(173\) −8.11033 −0.616617 −0.308308 0.951286i \(-0.599763\pi\)
−0.308308 + 0.951286i \(0.599763\pi\)
\(174\) 0 0
\(175\) 0.193967 0.0146625
\(176\) 0 0
\(177\) −13.0563 −0.981375
\(178\) 0 0
\(179\) −21.2782 −1.59041 −0.795203 0.606343i \(-0.792636\pi\)
−0.795203 + 0.606343i \(0.792636\pi\)
\(180\) 0 0
\(181\) 8.62159 0.640838 0.320419 0.947276i \(-0.396176\pi\)
0.320419 + 0.947276i \(0.396176\pi\)
\(182\) 0 0
\(183\) −22.1527 −1.63758
\(184\) 0 0
\(185\) −7.28844 −0.535857
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.03159 −0.0750370
\(190\) 0 0
\(191\) −20.1441 −1.45758 −0.728789 0.684739i \(-0.759916\pi\)
−0.728789 + 0.684739i \(0.759916\pi\)
\(192\) 0 0
\(193\) −9.71381 −0.699216 −0.349608 0.936896i \(-0.613685\pi\)
−0.349608 + 0.936896i \(0.613685\pi\)
\(194\) 0 0
\(195\) −0.835771 −0.0598508
\(196\) 0 0
\(197\) 14.4934 1.03261 0.516304 0.856405i \(-0.327307\pi\)
0.516304 + 0.856405i \(0.327307\pi\)
\(198\) 0 0
\(199\) −20.8055 −1.47486 −0.737431 0.675423i \(-0.763961\pi\)
−0.737431 + 0.675423i \(0.763961\pi\)
\(200\) 0 0
\(201\) 7.58744 0.535176
\(202\) 0 0
\(203\) −0.408583 −0.0286769
\(204\) 0 0
\(205\) 1.10864 0.0774308
\(206\) 0 0
\(207\) 0.363770 0.0252837
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −8.57224 −0.590138 −0.295069 0.955476i \(-0.595343\pi\)
−0.295069 + 0.955476i \(0.595343\pi\)
\(212\) 0 0
\(213\) 0.641061 0.0439248
\(214\) 0 0
\(215\) −5.46058 −0.372409
\(216\) 0 0
\(217\) −1.27357 −0.0864555
\(218\) 0 0
\(219\) 24.6804 1.66775
\(220\) 0 0
\(221\) 2.46641 0.165908
\(222\) 0 0
\(223\) 0.347927 0.0232989 0.0116495 0.999932i \(-0.496292\pi\)
0.0116495 + 0.999932i \(0.496292\pi\)
\(224\) 0 0
\(225\) −0.150741 −0.0100494
\(226\) 0 0
\(227\) 15.1340 1.00448 0.502240 0.864728i \(-0.332509\pi\)
0.502240 + 0.864728i \(0.332509\pi\)
\(228\) 0 0
\(229\) −26.7980 −1.77086 −0.885430 0.464773i \(-0.846136\pi\)
−0.885430 + 0.464773i \(0.846136\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.842261 −0.0551783 −0.0275892 0.999619i \(-0.508783\pi\)
−0.0275892 + 0.999619i \(0.508783\pi\)
\(234\) 0 0
\(235\) 5.50315 0.358986
\(236\) 0 0
\(237\) −2.79155 −0.181331
\(238\) 0 0
\(239\) −5.82655 −0.376888 −0.188444 0.982084i \(-0.560344\pi\)
−0.188444 + 0.982084i \(0.560344\pi\)
\(240\) 0 0
\(241\) 26.5420 1.70972 0.854860 0.518860i \(-0.173643\pi\)
0.854860 + 0.518860i \(0.173643\pi\)
\(242\) 0 0
\(243\) 1.56504 0.100397
\(244\) 0 0
\(245\) 6.96238 0.444810
\(246\) 0 0
\(247\) −3.59552 −0.228777
\(248\) 0 0
\(249\) 14.6521 0.928539
\(250\) 0 0
\(251\) 21.3841 1.34975 0.674875 0.737932i \(-0.264198\pi\)
0.674875 + 0.737932i \(0.264198\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.40832 −0.526549
\(256\) 0 0
\(257\) 21.0242 1.31145 0.655727 0.754998i \(-0.272362\pi\)
0.655727 + 0.754998i \(0.272362\pi\)
\(258\) 0 0
\(259\) 1.41372 0.0878440
\(260\) 0 0
\(261\) 0.317529 0.0196546
\(262\) 0 0
\(263\) 1.64662 0.101535 0.0507675 0.998710i \(-0.483833\pi\)
0.0507675 + 0.998710i \(0.483833\pi\)
\(264\) 0 0
\(265\) 6.73973 0.414018
\(266\) 0 0
\(267\) 3.10269 0.189881
\(268\) 0 0
\(269\) 16.1548 0.984974 0.492487 0.870320i \(-0.336088\pi\)
0.492487 + 0.870320i \(0.336088\pi\)
\(270\) 0 0
\(271\) −4.90093 −0.297710 −0.148855 0.988859i \(-0.547559\pi\)
−0.148855 + 0.988859i \(0.547559\pi\)
\(272\) 0 0
\(273\) 0.162112 0.00981146
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.5435 −0.873836 −0.436918 0.899501i \(-0.643930\pi\)
−0.436918 + 0.899501i \(0.643930\pi\)
\(278\) 0 0
\(279\) 0.989753 0.0592550
\(280\) 0 0
\(281\) 3.46414 0.206653 0.103327 0.994647i \(-0.467051\pi\)
0.103327 + 0.994647i \(0.467051\pi\)
\(282\) 0 0
\(283\) −1.45530 −0.0865083 −0.0432542 0.999064i \(-0.513773\pi\)
−0.0432542 + 0.999064i \(0.513773\pi\)
\(284\) 0 0
\(285\) 12.2576 0.726078
\(286\) 0 0
\(287\) −0.215039 −0.0126934
\(288\) 0 0
\(289\) 7.81339 0.459611
\(290\) 0 0
\(291\) −21.7334 −1.27404
\(292\) 0 0
\(293\) −31.8597 −1.86126 −0.930631 0.365959i \(-0.880741\pi\)
−0.930631 + 0.365959i \(0.880741\pi\)
\(294\) 0 0
\(295\) 7.73492 0.450344
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.19486 −0.0691004
\(300\) 0 0
\(301\) 1.05917 0.0610497
\(302\) 0 0
\(303\) 1.68594 0.0968545
\(304\) 0 0
\(305\) 13.1238 0.751469
\(306\) 0 0
\(307\) −16.1632 −0.922480 −0.461240 0.887275i \(-0.652595\pi\)
−0.461240 + 0.887275i \(0.652595\pi\)
\(308\) 0 0
\(309\) −15.5285 −0.883387
\(310\) 0 0
\(311\) 22.5292 1.27751 0.638757 0.769408i \(-0.279449\pi\)
0.638757 + 0.769408i \(0.279449\pi\)
\(312\) 0 0
\(313\) 17.5467 0.991798 0.495899 0.868380i \(-0.334839\pi\)
0.495899 + 0.868380i \(0.334839\pi\)
\(314\) 0 0
\(315\) 0.0292388 0.00164742
\(316\) 0 0
\(317\) −28.1627 −1.58178 −0.790888 0.611961i \(-0.790381\pi\)
−0.790888 + 0.611961i \(0.790381\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −4.81026 −0.268483
\(322\) 0 0
\(323\) −36.1728 −2.01271
\(324\) 0 0
\(325\) 0.495133 0.0274650
\(326\) 0 0
\(327\) −2.07883 −0.114960
\(328\) 0 0
\(329\) −1.06743 −0.0588493
\(330\) 0 0
\(331\) 0.970270 0.0533309 0.0266654 0.999644i \(-0.491511\pi\)
0.0266654 + 0.999644i \(0.491511\pi\)
\(332\) 0 0
\(333\) −1.09867 −0.0602066
\(334\) 0 0
\(335\) −4.49499 −0.245588
\(336\) 0 0
\(337\) −5.55386 −0.302538 −0.151269 0.988493i \(-0.548336\pi\)
−0.151269 + 0.988493i \(0.548336\pi\)
\(338\) 0 0
\(339\) −16.2332 −0.881667
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −2.70824 −0.146231
\(344\) 0 0
\(345\) 4.07343 0.219306
\(346\) 0 0
\(347\) 16.6620 0.894465 0.447233 0.894418i \(-0.352410\pi\)
0.447233 + 0.894418i \(0.352410\pi\)
\(348\) 0 0
\(349\) 33.1078 1.77222 0.886110 0.463475i \(-0.153397\pi\)
0.886110 + 0.463475i \(0.153397\pi\)
\(350\) 0 0
\(351\) −2.63330 −0.140555
\(352\) 0 0
\(353\) −6.70224 −0.356724 −0.178362 0.983965i \(-0.557080\pi\)
−0.178362 + 0.983965i \(0.557080\pi\)
\(354\) 0 0
\(355\) −0.379781 −0.0201567
\(356\) 0 0
\(357\) 1.63094 0.0863182
\(358\) 0 0
\(359\) −24.0596 −1.26982 −0.634908 0.772588i \(-0.718962\pi\)
−0.634908 + 0.772588i \(0.718962\pi\)
\(360\) 0 0
\(361\) 33.7326 1.77540
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.6213 −0.765314
\(366\) 0 0
\(367\) −8.30379 −0.433454 −0.216727 0.976232i \(-0.569538\pi\)
−0.216727 + 0.976232i \(0.569538\pi\)
\(368\) 0 0
\(369\) 0.167118 0.00869980
\(370\) 0 0
\(371\) −1.30729 −0.0678709
\(372\) 0 0
\(373\) 16.0339 0.830202 0.415101 0.909775i \(-0.363746\pi\)
0.415101 + 0.909775i \(0.363746\pi\)
\(374\) 0 0
\(375\) −1.68797 −0.0871666
\(376\) 0 0
\(377\) −1.04297 −0.0537159
\(378\) 0 0
\(379\) 26.2598 1.34888 0.674439 0.738331i \(-0.264386\pi\)
0.674439 + 0.738331i \(0.264386\pi\)
\(380\) 0 0
\(381\) 28.8032 1.47563
\(382\) 0 0
\(383\) −13.6392 −0.696929 −0.348465 0.937322i \(-0.613297\pi\)
−0.348465 + 0.937322i \(0.613297\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.823134 −0.0418423
\(388\) 0 0
\(389\) −31.6588 −1.60517 −0.802583 0.596541i \(-0.796541\pi\)
−0.802583 + 0.596541i \(0.796541\pi\)
\(390\) 0 0
\(391\) −12.0209 −0.607924
\(392\) 0 0
\(393\) 18.3249 0.924369
\(394\) 0 0
\(395\) 1.65379 0.0832111
\(396\) 0 0
\(397\) 33.2898 1.67077 0.835383 0.549668i \(-0.185246\pi\)
0.835383 + 0.549668i \(0.185246\pi\)
\(398\) 0 0
\(399\) −2.37757 −0.119027
\(400\) 0 0
\(401\) −23.1007 −1.15359 −0.576797 0.816887i \(-0.695698\pi\)
−0.576797 + 0.816887i \(0.695698\pi\)
\(402\) 0 0
\(403\) −3.25100 −0.161944
\(404\) 0 0
\(405\) 8.52505 0.423613
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 30.8815 1.52699 0.763496 0.645813i \(-0.223481\pi\)
0.763496 + 0.645813i \(0.223481\pi\)
\(410\) 0 0
\(411\) −16.2188 −0.800015
\(412\) 0 0
\(413\) −1.50032 −0.0738258
\(414\) 0 0
\(415\) −8.68029 −0.426098
\(416\) 0 0
\(417\) −26.2628 −1.28610
\(418\) 0 0
\(419\) 11.9155 0.582109 0.291054 0.956707i \(-0.405994\pi\)
0.291054 + 0.956707i \(0.405994\pi\)
\(420\) 0 0
\(421\) −4.56495 −0.222482 −0.111241 0.993793i \(-0.535483\pi\)
−0.111241 + 0.993793i \(0.535483\pi\)
\(422\) 0 0
\(423\) 0.829551 0.0403342
\(424\) 0 0
\(425\) 4.98130 0.241629
\(426\) 0 0
\(427\) −2.54559 −0.123190
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.58188 0.365206 0.182603 0.983187i \(-0.441548\pi\)
0.182603 + 0.983187i \(0.441548\pi\)
\(432\) 0 0
\(433\) −10.5815 −0.508514 −0.254257 0.967137i \(-0.581831\pi\)
−0.254257 + 0.967137i \(0.581831\pi\)
\(434\) 0 0
\(435\) 3.55564 0.170480
\(436\) 0 0
\(437\) 17.5240 0.838289
\(438\) 0 0
\(439\) −7.04399 −0.336191 −0.168096 0.985771i \(-0.553762\pi\)
−0.168096 + 0.985771i \(0.553762\pi\)
\(440\) 0 0
\(441\) 1.04952 0.0499770
\(442\) 0 0
\(443\) 1.16448 0.0553259 0.0276630 0.999617i \(-0.491193\pi\)
0.0276630 + 0.999617i \(0.491193\pi\)
\(444\) 0 0
\(445\) −1.83811 −0.0871349
\(446\) 0 0
\(447\) 10.2332 0.484012
\(448\) 0 0
\(449\) 12.3659 0.583583 0.291791 0.956482i \(-0.405749\pi\)
0.291791 + 0.956482i \(0.405749\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −29.4415 −1.38328
\(454\) 0 0
\(455\) −0.0960393 −0.00450239
\(456\) 0 0
\(457\) 36.0429 1.68602 0.843009 0.537900i \(-0.180782\pi\)
0.843009 + 0.537900i \(0.180782\pi\)
\(458\) 0 0
\(459\) −26.4924 −1.23656
\(460\) 0 0
\(461\) 13.6603 0.636222 0.318111 0.948053i \(-0.396951\pi\)
0.318111 + 0.948053i \(0.396951\pi\)
\(462\) 0 0
\(463\) 29.3515 1.36408 0.682041 0.731314i \(-0.261093\pi\)
0.682041 + 0.731314i \(0.261093\pi\)
\(464\) 0 0
\(465\) 11.0831 0.513966
\(466\) 0 0
\(467\) 24.1479 1.11743 0.558717 0.829358i \(-0.311294\pi\)
0.558717 + 0.829358i \(0.311294\pi\)
\(468\) 0 0
\(469\) 0.871880 0.0402597
\(470\) 0 0
\(471\) 32.2247 1.48484
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −7.26172 −0.333191
\(476\) 0 0
\(477\) 1.01595 0.0465174
\(478\) 0 0
\(479\) −40.2629 −1.83966 −0.919829 0.392319i \(-0.871673\pi\)
−0.919829 + 0.392319i \(0.871673\pi\)
\(480\) 0 0
\(481\) 3.60874 0.164545
\(482\) 0 0
\(483\) −0.790111 −0.0359513
\(484\) 0 0
\(485\) 12.8755 0.584644
\(486\) 0 0
\(487\) 42.1964 1.91210 0.956051 0.293201i \(-0.0947207\pi\)
0.956051 + 0.293201i \(0.0947207\pi\)
\(488\) 0 0
\(489\) −0.170485 −0.00770958
\(490\) 0 0
\(491\) −36.2831 −1.63743 −0.818716 0.574198i \(-0.805314\pi\)
−0.818716 + 0.574198i \(0.805314\pi\)
\(492\) 0 0
\(493\) −10.4929 −0.472576
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.0736649 0.00330432
\(498\) 0 0
\(499\) 15.6747 0.701698 0.350849 0.936432i \(-0.385893\pi\)
0.350849 + 0.936432i \(0.385893\pi\)
\(500\) 0 0
\(501\) −18.9782 −0.847883
\(502\) 0 0
\(503\) −25.6886 −1.14540 −0.572698 0.819766i \(-0.694103\pi\)
−0.572698 + 0.819766i \(0.694103\pi\)
\(504\) 0 0
\(505\) −0.998793 −0.0444457
\(506\) 0 0
\(507\) −21.5299 −0.956174
\(508\) 0 0
\(509\) −21.8032 −0.966408 −0.483204 0.875508i \(-0.660527\pi\)
−0.483204 + 0.875508i \(0.660527\pi\)
\(510\) 0 0
\(511\) 2.83605 0.125459
\(512\) 0 0
\(513\) 38.6205 1.70514
\(514\) 0 0
\(515\) 9.19951 0.405379
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −13.6900 −0.600925
\(520\) 0 0
\(521\) 39.8455 1.74566 0.872832 0.488020i \(-0.162281\pi\)
0.872832 + 0.488020i \(0.162281\pi\)
\(522\) 0 0
\(523\) 11.4599 0.501106 0.250553 0.968103i \(-0.419388\pi\)
0.250553 + 0.968103i \(0.419388\pi\)
\(524\) 0 0
\(525\) 0.327411 0.0142894
\(526\) 0 0
\(527\) −32.7068 −1.42473
\(528\) 0 0
\(529\) −17.1764 −0.746801
\(530\) 0 0
\(531\) 1.16597 0.0505988
\(532\) 0 0
\(533\) −0.548924 −0.0237765
\(534\) 0 0
\(535\) 2.84972 0.123204
\(536\) 0 0
\(537\) −35.9170 −1.54993
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −43.5728 −1.87334 −0.936670 0.350212i \(-0.886110\pi\)
−0.936670 + 0.350212i \(0.886110\pi\)
\(542\) 0 0
\(543\) 14.5530 0.624530
\(544\) 0 0
\(545\) 1.23155 0.0527540
\(546\) 0 0
\(547\) −5.10019 −0.218068 −0.109034 0.994038i \(-0.534776\pi\)
−0.109034 + 0.994038i \(0.534776\pi\)
\(548\) 0 0
\(549\) 1.97830 0.0844319
\(550\) 0 0
\(551\) 15.2965 0.651652
\(552\) 0 0
\(553\) −0.320780 −0.0136410
\(554\) 0 0
\(555\) −12.3027 −0.522220
\(556\) 0 0
\(557\) 4.53850 0.192302 0.0961512 0.995367i \(-0.469347\pi\)
0.0961512 + 0.995367i \(0.469347\pi\)
\(558\) 0 0
\(559\) 2.70371 0.114355
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 29.4510 1.24121 0.620605 0.784123i \(-0.286887\pi\)
0.620605 + 0.784123i \(0.286887\pi\)
\(564\) 0 0
\(565\) 9.61697 0.404589
\(566\) 0 0
\(567\) −1.65358 −0.0694438
\(568\) 0 0
\(569\) −10.6590 −0.446849 −0.223424 0.974721i \(-0.571724\pi\)
−0.223424 + 0.974721i \(0.571724\pi\)
\(570\) 0 0
\(571\) 35.1373 1.47045 0.735224 0.677824i \(-0.237077\pi\)
0.735224 + 0.677824i \(0.237077\pi\)
\(572\) 0 0
\(573\) −34.0028 −1.42049
\(574\) 0 0
\(575\) −2.41321 −0.100638
\(576\) 0 0
\(577\) 34.7058 1.44482 0.722410 0.691465i \(-0.243034\pi\)
0.722410 + 0.691465i \(0.243034\pi\)
\(578\) 0 0
\(579\) −16.3967 −0.681422
\(580\) 0 0
\(581\) 1.68369 0.0698512
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0.0746368 0.00308585
\(586\) 0 0
\(587\) 28.4171 1.17290 0.586451 0.809985i \(-0.300525\pi\)
0.586451 + 0.809985i \(0.300525\pi\)
\(588\) 0 0
\(589\) 47.6798 1.96461
\(590\) 0 0
\(591\) 24.4644 1.00633
\(592\) 0 0
\(593\) 19.6141 0.805456 0.402728 0.915320i \(-0.368062\pi\)
0.402728 + 0.915320i \(0.368062\pi\)
\(594\) 0 0
\(595\) −0.966208 −0.0396107
\(596\) 0 0
\(597\) −35.1191 −1.43733
\(598\) 0 0
\(599\) −16.5958 −0.678087 −0.339044 0.940771i \(-0.610103\pi\)
−0.339044 + 0.940771i \(0.610103\pi\)
\(600\) 0 0
\(601\) 10.8128 0.441065 0.220532 0.975380i \(-0.429221\pi\)
0.220532 + 0.975380i \(0.429221\pi\)
\(602\) 0 0
\(603\) −0.677580 −0.0275932
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13.5733 0.550922 0.275461 0.961312i \(-0.411169\pi\)
0.275461 + 0.961312i \(0.411169\pi\)
\(608\) 0 0
\(609\) −0.689677 −0.0279471
\(610\) 0 0
\(611\) −2.72479 −0.110233
\(612\) 0 0
\(613\) 12.5331 0.506208 0.253104 0.967439i \(-0.418549\pi\)
0.253104 + 0.967439i \(0.418549\pi\)
\(614\) 0 0
\(615\) 1.87136 0.0754604
\(616\) 0 0
\(617\) −46.5587 −1.87438 −0.937191 0.348816i \(-0.886584\pi\)
−0.937191 + 0.348816i \(0.886584\pi\)
\(618\) 0 0
\(619\) −21.1339 −0.849444 −0.424722 0.905324i \(-0.639628\pi\)
−0.424722 + 0.905324i \(0.639628\pi\)
\(620\) 0 0
\(621\) 12.8343 0.515024
\(622\) 0 0
\(623\) 0.356533 0.0142842
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 36.3059 1.44761
\(630\) 0 0
\(631\) 11.6752 0.464783 0.232391 0.972622i \(-0.425345\pi\)
0.232391 + 0.972622i \(0.425345\pi\)
\(632\) 0 0
\(633\) −14.4697 −0.575120
\(634\) 0 0
\(635\) −17.0637 −0.677154
\(636\) 0 0
\(637\) −3.44730 −0.136587
\(638\) 0 0
\(639\) −0.0572486 −0.00226472
\(640\) 0 0
\(641\) 8.55924 0.338070 0.169035 0.985610i \(-0.445935\pi\)
0.169035 + 0.985610i \(0.445935\pi\)
\(642\) 0 0
\(643\) −35.0691 −1.38299 −0.691496 0.722380i \(-0.743048\pi\)
−0.691496 + 0.722380i \(0.743048\pi\)
\(644\) 0 0
\(645\) −9.21732 −0.362932
\(646\) 0 0
\(647\) −25.1028 −0.986892 −0.493446 0.869776i \(-0.664263\pi\)
−0.493446 + 0.869776i \(0.664263\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.14975 −0.0842555
\(652\) 0 0
\(653\) 47.4918 1.85850 0.929249 0.369455i \(-0.120456\pi\)
0.929249 + 0.369455i \(0.120456\pi\)
\(654\) 0 0
\(655\) −10.8561 −0.424185
\(656\) 0 0
\(657\) −2.20403 −0.0859875
\(658\) 0 0
\(659\) −41.5603 −1.61896 −0.809479 0.587148i \(-0.800251\pi\)
−0.809479 + 0.587148i \(0.800251\pi\)
\(660\) 0 0
\(661\) 38.3584 1.49197 0.745985 0.665963i \(-0.231979\pi\)
0.745985 + 0.665963i \(0.231979\pi\)
\(662\) 0 0
\(663\) 4.16323 0.161687
\(664\) 0 0
\(665\) 1.40853 0.0546206
\(666\) 0 0
\(667\) 5.08331 0.196827
\(668\) 0 0
\(669\) 0.587292 0.0227060
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 29.0562 1.12003 0.560017 0.828481i \(-0.310795\pi\)
0.560017 + 0.828481i \(0.310795\pi\)
\(674\) 0 0
\(675\) −5.31837 −0.204704
\(676\) 0 0
\(677\) −39.0099 −1.49927 −0.749635 0.661851i \(-0.769771\pi\)
−0.749635 + 0.661851i \(0.769771\pi\)
\(678\) 0 0
\(679\) −2.49741 −0.0958419
\(680\) 0 0
\(681\) 25.5458 0.978919
\(682\) 0 0
\(683\) −27.9569 −1.06974 −0.534871 0.844934i \(-0.679640\pi\)
−0.534871 + 0.844934i \(0.679640\pi\)
\(684\) 0 0
\(685\) 9.60844 0.367120
\(686\) 0 0
\(687\) −45.2343 −1.72580
\(688\) 0 0
\(689\) −3.33706 −0.127132
\(690\) 0 0
\(691\) 29.5794 1.12526 0.562628 0.826710i \(-0.309790\pi\)
0.562628 + 0.826710i \(0.309790\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15.5588 0.590178
\(696\) 0 0
\(697\) −5.52247 −0.209179
\(698\) 0 0
\(699\) −1.42171 −0.0537742
\(700\) 0 0
\(701\) −12.6712 −0.478584 −0.239292 0.970948i \(-0.576915\pi\)
−0.239292 + 0.970948i \(0.576915\pi\)
\(702\) 0 0
\(703\) −52.9266 −1.99617
\(704\) 0 0
\(705\) 9.28918 0.349851
\(706\) 0 0
\(707\) 0.193733 0.00728607
\(708\) 0 0
\(709\) −15.6326 −0.587093 −0.293547 0.955945i \(-0.594836\pi\)
−0.293547 + 0.955945i \(0.594836\pi\)
\(710\) 0 0
\(711\) 0.249294 0.00934925
\(712\) 0 0
\(713\) 15.8449 0.593396
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.83507 −0.367297
\(718\) 0 0
\(719\) −42.3705 −1.58015 −0.790077 0.613008i \(-0.789959\pi\)
−0.790077 + 0.613008i \(0.789959\pi\)
\(720\) 0 0
\(721\) −1.78440 −0.0664545
\(722\) 0 0
\(723\) 44.8022 1.66621
\(724\) 0 0
\(725\) −2.10646 −0.0782318
\(726\) 0 0
\(727\) −22.6871 −0.841417 −0.420709 0.907196i \(-0.638219\pi\)
−0.420709 + 0.907196i \(0.638219\pi\)
\(728\) 0 0
\(729\) 28.2169 1.04507
\(730\) 0 0
\(731\) 27.2008 1.00606
\(732\) 0 0
\(733\) 12.5379 0.463098 0.231549 0.972823i \(-0.425621\pi\)
0.231549 + 0.972823i \(0.425621\pi\)
\(734\) 0 0
\(735\) 11.7523 0.433491
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −14.5517 −0.535293 −0.267647 0.963517i \(-0.586246\pi\)
−0.267647 + 0.963517i \(0.586246\pi\)
\(740\) 0 0
\(741\) −6.06914 −0.222955
\(742\) 0 0
\(743\) −3.32326 −0.121919 −0.0609593 0.998140i \(-0.519416\pi\)
−0.0609593 + 0.998140i \(0.519416\pi\)
\(744\) 0 0
\(745\) −6.06239 −0.222109
\(746\) 0 0
\(747\) −1.30848 −0.0478746
\(748\) 0 0
\(749\) −0.552752 −0.0201971
\(750\) 0 0
\(751\) 22.3432 0.815315 0.407658 0.913135i \(-0.366346\pi\)
0.407658 + 0.913135i \(0.366346\pi\)
\(752\) 0 0
\(753\) 36.0957 1.31540
\(754\) 0 0
\(755\) 17.4419 0.634775
\(756\) 0 0
\(757\) −24.5701 −0.893016 −0.446508 0.894780i \(-0.647333\pi\)
−0.446508 + 0.894780i \(0.647333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 44.4186 1.61017 0.805086 0.593158i \(-0.202119\pi\)
0.805086 + 0.593158i \(0.202119\pi\)
\(762\) 0 0
\(763\) −0.238881 −0.00864807
\(764\) 0 0
\(765\) 0.750887 0.0271484
\(766\) 0 0
\(767\) −3.82981 −0.138286
\(768\) 0 0
\(769\) 7.95061 0.286706 0.143353 0.989672i \(-0.454212\pi\)
0.143353 + 0.989672i \(0.454212\pi\)
\(770\) 0 0
\(771\) 35.4883 1.27808
\(772\) 0 0
\(773\) −37.0953 −1.33422 −0.667112 0.744958i \(-0.732470\pi\)
−0.667112 + 0.744958i \(0.732470\pi\)
\(774\) 0 0
\(775\) −6.56591 −0.235855
\(776\) 0 0
\(777\) 2.38632 0.0856086
\(778\) 0 0
\(779\) 8.05064 0.288444
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 11.2029 0.400359
\(784\) 0 0
\(785\) −19.0907 −0.681378
\(786\) 0 0
\(787\) 39.7143 1.41566 0.707831 0.706382i \(-0.249674\pi\)
0.707831 + 0.706382i \(0.249674\pi\)
\(788\) 0 0
\(789\) 2.77945 0.0989512
\(790\) 0 0
\(791\) −1.86537 −0.0663251
\(792\) 0 0
\(793\) −6.49804 −0.230752
\(794\) 0 0
\(795\) 11.3765 0.403483
\(796\) 0 0
\(797\) 19.0325 0.674165 0.337083 0.941475i \(-0.390560\pi\)
0.337083 + 0.941475i \(0.390560\pi\)
\(798\) 0 0
\(799\) −27.4129 −0.969798
\(800\) 0 0
\(801\) −0.277079 −0.00979011
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0.468082 0.0164977
\(806\) 0 0
\(807\) 27.2688 0.959909
\(808\) 0 0
\(809\) 28.7883 1.01214 0.506072 0.862491i \(-0.331097\pi\)
0.506072 + 0.862491i \(0.331097\pi\)
\(810\) 0 0
\(811\) −29.9629 −1.05214 −0.526071 0.850441i \(-0.676335\pi\)
−0.526071 + 0.850441i \(0.676335\pi\)
\(812\) 0 0
\(813\) −8.27264 −0.290134
\(814\) 0 0
\(815\) 0.100999 0.00353786
\(816\) 0 0
\(817\) −39.6532 −1.38729
\(818\) 0 0
\(819\) −0.0144771 −0.000505870 0
\(820\) 0 0
\(821\) 14.5080 0.506332 0.253166 0.967423i \(-0.418528\pi\)
0.253166 + 0.967423i \(0.418528\pi\)
\(822\) 0 0
\(823\) 5.87388 0.204751 0.102375 0.994746i \(-0.467356\pi\)
0.102375 + 0.994746i \(0.467356\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.9979 0.904034 0.452017 0.892009i \(-0.350705\pi\)
0.452017 + 0.892009i \(0.350705\pi\)
\(828\) 0 0
\(829\) 38.0995 1.32325 0.661626 0.749834i \(-0.269867\pi\)
0.661626 + 0.749834i \(0.269867\pi\)
\(830\) 0 0
\(831\) −24.5491 −0.851599
\(832\) 0 0
\(833\) −34.6817 −1.20165
\(834\) 0 0
\(835\) 11.2432 0.389086
\(836\) 0 0
\(837\) 34.9200 1.20701
\(838\) 0 0
\(839\) −51.1449 −1.76572 −0.882858 0.469640i \(-0.844384\pi\)
−0.882858 + 0.469640i \(0.844384\pi\)
\(840\) 0 0
\(841\) −24.5628 −0.846995
\(842\) 0 0
\(843\) 5.84737 0.201394
\(844\) 0 0
\(845\) 12.7548 0.438780
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.45650 −0.0843069
\(850\) 0 0
\(851\) −17.5885 −0.602926
\(852\) 0 0
\(853\) 16.2720 0.557142 0.278571 0.960416i \(-0.410139\pi\)
0.278571 + 0.960416i \(0.410139\pi\)
\(854\) 0 0
\(855\) −1.09464 −0.0374359
\(856\) 0 0
\(857\) −14.0851 −0.481139 −0.240569 0.970632i \(-0.577334\pi\)
−0.240569 + 0.970632i \(0.577334\pi\)
\(858\) 0 0
\(859\) 15.4255 0.526312 0.263156 0.964753i \(-0.415237\pi\)
0.263156 + 0.964753i \(0.415237\pi\)
\(860\) 0 0
\(861\) −0.362981 −0.0123704
\(862\) 0 0
\(863\) −0.0688844 −0.00234485 −0.00117243 0.999999i \(-0.500373\pi\)
−0.00117243 + 0.999999i \(0.500373\pi\)
\(864\) 0 0
\(865\) 8.11033 0.275759
\(866\) 0 0
\(867\) 13.1888 0.447915
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 2.22562 0.0754122
\(872\) 0 0
\(873\) 1.94086 0.0656882
\(874\) 0 0
\(875\) −0.193967 −0.00655728
\(876\) 0 0
\(877\) 36.8625 1.24476 0.622379 0.782716i \(-0.286166\pi\)
0.622379 + 0.782716i \(0.286166\pi\)
\(878\) 0 0
\(879\) −53.7783 −1.81390
\(880\) 0 0
\(881\) 10.5610 0.355810 0.177905 0.984048i \(-0.443068\pi\)
0.177905 + 0.984048i \(0.443068\pi\)
\(882\) 0 0
\(883\) −23.2630 −0.782862 −0.391431 0.920207i \(-0.628020\pi\)
−0.391431 + 0.920207i \(0.628020\pi\)
\(884\) 0 0
\(885\) 13.0563 0.438884
\(886\) 0 0
\(887\) −39.4597 −1.32493 −0.662464 0.749094i \(-0.730489\pi\)
−0.662464 + 0.749094i \(0.730489\pi\)
\(888\) 0 0
\(889\) 3.30980 0.111007
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 39.9624 1.33729
\(894\) 0 0
\(895\) 21.2782 0.711251
\(896\) 0 0
\(897\) −2.01689 −0.0673420
\(898\) 0 0
\(899\) 13.8308 0.461283
\(900\) 0 0
\(901\) −33.5727 −1.11847
\(902\) 0 0
\(903\) 1.78786 0.0594961
\(904\) 0 0
\(905\) −8.62159 −0.286591
\(906\) 0 0
\(907\) −25.3952 −0.843233 −0.421616 0.906774i \(-0.638537\pi\)
−0.421616 + 0.906774i \(0.638537\pi\)
\(908\) 0 0
\(909\) −0.150559 −0.00499373
\(910\) 0 0
\(911\) 0.482847 0.0159974 0.00799871 0.999968i \(-0.497454\pi\)
0.00799871 + 0.999968i \(0.497454\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 22.1527 0.732346
\(916\) 0 0
\(917\) 2.10573 0.0695374
\(918\) 0 0
\(919\) −30.2756 −0.998699 −0.499349 0.866401i \(-0.666428\pi\)
−0.499349 + 0.866401i \(0.666428\pi\)
\(920\) 0 0
\(921\) −27.2830 −0.899006
\(922\) 0 0
\(923\) 0.188042 0.00618948
\(924\) 0 0
\(925\) 7.28844 0.239642
\(926\) 0 0
\(927\) 1.38674 0.0455466
\(928\) 0 0
\(929\) 9.58302 0.314409 0.157204 0.987566i \(-0.449752\pi\)
0.157204 + 0.987566i \(0.449752\pi\)
\(930\) 0 0
\(931\) 50.5588 1.65700
\(932\) 0 0
\(933\) 38.0288 1.24501
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22.7376 −0.742805 −0.371403 0.928472i \(-0.621123\pi\)
−0.371403 + 0.928472i \(0.621123\pi\)
\(938\) 0 0
\(939\) 29.6184 0.966560
\(940\) 0 0
\(941\) −59.4480 −1.93795 −0.968975 0.247160i \(-0.920503\pi\)
−0.968975 + 0.247160i \(0.920503\pi\)
\(942\) 0 0
\(943\) 2.67538 0.0871223
\(944\) 0 0
\(945\) 1.03159 0.0335576
\(946\) 0 0
\(947\) −21.0694 −0.684662 −0.342331 0.939579i \(-0.611216\pi\)
−0.342331 + 0.939579i \(0.611216\pi\)
\(948\) 0 0
\(949\) 7.23948 0.235004
\(950\) 0 0
\(951\) −47.5380 −1.54152
\(952\) 0 0
\(953\) 6.39354 0.207107 0.103554 0.994624i \(-0.466979\pi\)
0.103554 + 0.994624i \(0.466979\pi\)
\(954\) 0 0
\(955\) 20.1441 0.651848
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.86372 −0.0601827
\(960\) 0 0
\(961\) 12.1112 0.390684
\(962\) 0 0
\(963\) 0.429570 0.0138427
\(964\) 0 0
\(965\) 9.71381 0.312699
\(966\) 0 0
\(967\) −48.1138 −1.54724 −0.773618 0.633652i \(-0.781555\pi\)
−0.773618 + 0.633652i \(0.781555\pi\)
\(968\) 0 0
\(969\) −61.0589 −1.96149
\(970\) 0 0
\(971\) −28.6249 −0.918616 −0.459308 0.888277i \(-0.651903\pi\)
−0.459308 + 0.888277i \(0.651903\pi\)
\(972\) 0 0
\(973\) −3.01789 −0.0967490
\(974\) 0 0
\(975\) 0.835771 0.0267661
\(976\) 0 0
\(977\) −3.30958 −0.105883 −0.0529414 0.998598i \(-0.516860\pi\)
−0.0529414 + 0.998598i \(0.516860\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.185646 0.00592722
\(982\) 0 0
\(983\) 11.4847 0.366305 0.183152 0.983085i \(-0.441370\pi\)
0.183152 + 0.983085i \(0.441370\pi\)
\(984\) 0 0
\(985\) −14.4934 −0.461797
\(986\) 0 0
\(987\) −1.80179 −0.0573517
\(988\) 0 0
\(989\) −13.1775 −0.419021
\(990\) 0 0
\(991\) 28.8261 0.915693 0.457846 0.889031i \(-0.348621\pi\)
0.457846 + 0.889031i \(0.348621\pi\)
\(992\) 0 0
\(993\) 1.63779 0.0519737
\(994\) 0 0
\(995\) 20.8055 0.659578
\(996\) 0 0
\(997\) −25.2674 −0.800226 −0.400113 0.916466i \(-0.631029\pi\)
−0.400113 + 0.916466i \(0.631029\pi\)
\(998\) 0 0
\(999\) −38.7626 −1.22640
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4840.2.a.ba.1.5 6
4.3 odd 2 9680.2.a.dd.1.2 6
11.7 odd 10 440.2.y.c.401.1 yes 12
11.8 odd 10 440.2.y.c.361.1 12
11.10 odd 2 4840.2.a.bb.1.5 6
44.7 even 10 880.2.bo.i.401.3 12
44.19 even 10 880.2.bo.i.801.3 12
44.43 even 2 9680.2.a.dc.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.c.361.1 12 11.8 odd 10
440.2.y.c.401.1 yes 12 11.7 odd 10
880.2.bo.i.401.3 12 44.7 even 10
880.2.bo.i.801.3 12 44.19 even 10
4840.2.a.ba.1.5 6 1.1 even 1 trivial
4840.2.a.bb.1.5 6 11.10 odd 2
9680.2.a.dc.1.2 6 44.43 even 2
9680.2.a.dd.1.2 6 4.3 odd 2