Properties

Label 4840.2.a.ba
Level $4840$
Weight $2$
Character orbit 4840.a
Self dual yes
Analytic conductor $38.648$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4840,2,Mod(1,4840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4840.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4840 = 2^{3} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6475945783\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.25903625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 7x^{4} + 17x^{3} + 16x^{2} - 20x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - q^{5} + (\beta_{5} - \beta_{3} + \beta_{2} - 1) q^{7} + (\beta_{3} - \beta_{2} + \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{3} - q^{5} + (\beta_{5} - \beta_{3} + \beta_{2} - 1) q^{7} + (\beta_{3} - \beta_{2} + \beta_1) q^{9} + (\beta_{5} - 2 \beta_{2} - 1) q^{13} + \beta_1 q^{15} + ( - \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} - \beta_1 + 1) q^{17} + ( - 2 \beta_{5} + \beta_{4} - \beta_1) q^{19} + (\beta_{3} + 2 \beta_{2} + 3 \beta_1 + 2) q^{21} + (\beta_{5} - 2 \beta_{3} + 3 \beta_{2} + \beta_1 - 1) q^{23} + q^{25} + ( - \beta_{5} - \beta_{4} - 2 \beta_{3} + 2 \beta_{2} - 3) q^{27} + ( - 2 \beta_{5} + \beta_{4} + \beta_{3} - \beta_1 + 3) q^{29} + ( - \beta_{5} + 2 \beta_{4} - 2 \beta_{2} - 2 \beta_1 + 1) q^{31} + ( - \beta_{5} + \beta_{3} - \beta_{2} + 1) q^{35} + (\beta_{5} - \beta_{4} - \beta_{2} - \beta_1) q^{37} + ( - 3 \beta_{5} - \beta_{4} + 3 \beta_{2} - \beta_1 + 2) q^{39} + ( - \beta_{5} + 2 \beta_{3} + \beta_1 - 1) q^{41} + (\beta_{5} - \beta_{4} + \beta_{2} + 2 \beta_1 + 2) q^{43} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{45} + (\beta_{5} + \beta_{4} - \beta_{3} + 4 \beta_{2} + 3 \beta_1) q^{47} + ( - 3 \beta_{5} + \beta_{3} - 2 \beta_{2} + \beta_1 + 2) q^{49} + (\beta_{5} + \beta_{3} - 3 \beta_{2} - 2 \beta_1 + 2) q^{51} + ( - \beta_{5} - 2 \beta_{4} - \beta_{3} + 2 \beta_{2} + 3 \beta_1 - 5) q^{53} + (\beta_{5} + 2 \beta_{4} - 7 \beta_{2} + \beta_1 - 2) q^{57} + (\beta_{5} - 5 \beta_{2} + 2 \beta_1 - 4) q^{59} + (2 \beta_{4} - \beta_{3} - \beta_{2} + 2 \beta_1) q^{61} + ( - \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} - 4 \beta_1 - 6) q^{63} + ( - \beta_{5} + 2 \beta_{2} + 1) q^{65} + (3 \beta_{5} + \beta_{4} + 2 \beta_{3} + 3 \beta_{2} + 2 \beta_1 - 3) q^{67} + (2 \beta_{5} + \beta_{4} + \beta_{3} + 2 \beta_{2} + 5 \beta_1 - 1) q^{69} + (\beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} + 2 \beta_1 - 4) q^{71} + (\beta_{5} - 4 \beta_{4} - \beta_{3} + 4 \beta_{2} + 2 \beta_1 + 1) q^{73} - \beta_1 q^{75} + (2 \beta_{5} + \beta_{4} + \beta_{3} - 4 \beta_{2} - \beta_1 - 5) q^{79} + (4 \beta_{5} + 3 \beta_{4} - 2 \beta_{2} + 4 \beta_1 - 1) q^{81} + (3 \beta_{5} + 2 \beta_{4} + \beta_{3} + \beta_{2} - \beta_1 + 3) q^{83} + (\beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} + \beta_1 - 1) q^{85} + (\beta_{5} + \beta_{4} - \beta_{3} - 6 \beta_{2} - 3 \beta_1 - 2) q^{87} + ( - 2 \beta_{5} - 2 \beta_{4} + 3 \beta_{3} + 2 \beta_{2} + 2 \beta_1 - 4) q^{89} + ( - 4 \beta_{5} - 3 \beta_{4} - \beta_{3} + 5 \beta_{2} + 2 \beta_1 + 3) q^{91} + ( - 3 \beta_{5} + \beta_{4} - 5 \beta_{2} - \beta_1 + 2) q^{93} + (2 \beta_{5} - \beta_{4} + \beta_1) q^{95} + ( - 2 \beta_{5} + \beta_{3} - 8 \beta_{2} - 2 \beta_1 - 8) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 6 q^{5} - 7 q^{7} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{3} - 6 q^{5} - 7 q^{7} + 5 q^{9} + q^{13} + 3 q^{15} + 6 q^{17} - 7 q^{19} + 14 q^{21} - 9 q^{23} + 6 q^{25} - 21 q^{27} + 10 q^{29} + q^{31} + 7 q^{35} + 3 q^{37} - q^{39} - 6 q^{41} + 18 q^{43} - 5 q^{45} - 3 q^{47} + 17 q^{49} + 15 q^{51} - 23 q^{53} + 9 q^{57} - 2 q^{59} + 6 q^{61} - 49 q^{63} - q^{65} - 22 q^{67} + 2 q^{69} - 13 q^{71} + 10 q^{73} - 3 q^{75} - 22 q^{79} + 10 q^{81} + 10 q^{83} - 6 q^{85} - 3 q^{87} - 25 q^{89} + 12 q^{91} + 19 q^{93} + 7 q^{95} - 33 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 7x^{4} + 17x^{3} + 16x^{2} - 20x - 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - 5\nu^{4} + 2\nu^{3} + 16\nu^{2} - 13\nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 5\nu^{4} + 2\nu^{3} + 17\nu^{2} - 14\nu - 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -2\nu^{5} + 9\nu^{4} - 31\nu^{2} + 14\nu + 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 2\nu^{5} - 9\nu^{4} + \nu^{3} + 29\nu^{2} - 18\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} + 2\beta_{3} - 2\beta_{2} + 6\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{5} + 3\beta_{4} + 9\beta_{3} - 11\beta_{2} + 13\beta _1 + 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 18\beta_{5} + 13\beta_{4} + 25\beta_{3} - 34\beta_{2} + 50\beta _1 + 34 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.29288
2.29082
1.03795
−0.220878
−1.68797
−1.71280
0 −3.29288 0 −1.00000 0 −3.51508 0 7.84307 0
1.2 0 −2.29082 0 −1.00000 0 −4.66366 0 2.24785 0
1.3 0 −1.03795 0 −1.00000 0 2.60210 0 −1.92266 0
1.4 0 0.220878 0 −1.00000 0 2.08772 0 −2.95121 0
1.5 0 1.68797 0 −1.00000 0 0.193967 0 −0.150741 0
1.6 0 1.71280 0 −1.00000 0 −3.70505 0 −0.0663151 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4840.2.a.ba 6
4.b odd 2 1 9680.2.a.dd 6
11.b odd 2 1 4840.2.a.bb 6
11.d odd 10 2 440.2.y.c 12
44.c even 2 1 9680.2.a.dc 6
44.g even 10 2 880.2.bo.i 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.y.c 12 11.d odd 10 2
880.2.bo.i 12 44.g even 10 2
4840.2.a.ba 6 1.a even 1 1 trivial
4840.2.a.bb 6 11.b odd 2 1
9680.2.a.dc 6 44.c even 2 1
9680.2.a.dd 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4840))\):

\( T_{3}^{6} + 3T_{3}^{5} - 7T_{3}^{4} - 17T_{3}^{3} + 16T_{3}^{2} + 20T_{3} - 5 \) Copy content Toggle raw display
\( T_{7}^{6} + 7T_{7}^{5} - 5T_{7}^{4} - 93T_{7}^{3} - 13T_{7}^{2} + 336T_{7} - 64 \) Copy content Toggle raw display
\( T_{13}^{6} - T_{13}^{5} - 33T_{13}^{4} + 71T_{13}^{3} + 91T_{13}^{2} - 220T_{13} + 80 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 3 T^{5} - 7 T^{4} - 17 T^{3} + \cdots - 5 \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 7 T^{5} - 5 T^{4} - 93 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - T^{5} - 33 T^{4} + 71 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$17$ \( T^{6} - 6 T^{5} - 30 T^{4} + 197 T^{3} + \cdots - 605 \) Copy content Toggle raw display
$19$ \( T^{6} + 7 T^{5} - 51 T^{4} + \cdots - 9791 \) Copy content Toggle raw display
$23$ \( T^{6} + 9 T^{5} - 48 T^{4} + \cdots + 5956 \) Copy content Toggle raw display
$29$ \( T^{6} - 10 T^{5} - 36 T^{4} + \cdots + 1100 \) Copy content Toggle raw display
$31$ \( T^{6} - T^{5} - 95 T^{4} - 101 T^{3} + \cdots + 3596 \) Copy content Toggle raw display
$37$ \( T^{6} - 3 T^{5} - 56 T^{4} + \cdots - 1900 \) Copy content Toggle raw display
$41$ \( T^{6} + 6 T^{5} - 86 T^{4} + \cdots + 3775 \) Copy content Toggle raw display
$43$ \( T^{6} - 18 T^{5} + 85 T^{4} + \cdots + 3751 \) Copy content Toggle raw display
$47$ \( T^{6} + 3 T^{5} - 139 T^{4} + \cdots - 9284 \) Copy content Toggle raw display
$53$ \( T^{6} + 23 T^{5} + 53 T^{4} + \cdots + 199804 \) Copy content Toggle raw display
$59$ \( T^{6} + 2 T^{5} - 177 T^{4} + \cdots + 11759 \) Copy content Toggle raw display
$61$ \( T^{6} - 6 T^{5} - 145 T^{4} + \cdots + 6620 \) Copy content Toggle raw display
$67$ \( T^{6} + 22 T^{5} - 104 T^{4} + \cdots + 126475 \) Copy content Toggle raw display
$71$ \( T^{6} + 13 T^{5} - 22 T^{4} + \cdots + 620 \) Copy content Toggle raw display
$73$ \( T^{6} - 10 T^{5} - 280 T^{4} + \cdots - 832031 \) Copy content Toggle raw display
$79$ \( T^{6} + 22 T^{5} + 32 T^{4} + \cdots + 6724 \) Copy content Toggle raw display
$83$ \( T^{6} - 10 T^{5} - 185 T^{4} + \cdots - 1375 \) Copy content Toggle raw display
$89$ \( T^{6} + 25 T^{5} - 59 T^{4} + \cdots - 22429 \) Copy content Toggle raw display
$97$ \( T^{6} + 33 T^{5} + 235 T^{4} + \cdots - 164695 \) Copy content Toggle raw display
show more
show less