Properties

Label 484.3.f.e.481.2
Level $484$
Weight $3$
Character 484.481
Analytic conductor $13.188$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [484,3,Mod(161,484)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("484.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(484, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 484.f (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,5,0,-6,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1880447950\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 19x^{6} - 37x^{5} + 229x^{4} + 196x^{3} + 1496x^{2} + 2952x + 26896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 481.2
Root \(1.06155 - 3.26710i\) of defining polynomial
Character \(\chi\) \(=\) 484.481
Dual form 484.3.f.e.161.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.56155 + 4.80594i) q^{3} +(-3.83565 - 2.78676i) q^{5} +(6.34071 + 2.06022i) q^{7} +(-13.3775 + 9.71933i) q^{9} +(8.85202 + 12.1838i) q^{13} +(7.40348 - 22.7856i) q^{15} +(-10.5051 + 14.4591i) q^{17} +(-30.7829 + 10.0020i) q^{19} +33.6902i q^{21} -3.58879 q^{23} +(-0.779257 - 2.39831i) q^{25} +(-30.8066 - 22.3823i) q^{27} +(12.1438 + 3.94576i) q^{29} +(-17.7103 + 12.8673i) q^{31} +(-18.5794 - 25.5723i) q^{35} +(-8.56561 + 26.3622i) q^{37} +(-44.7316 + 61.5678i) q^{39} +(47.1286 - 15.3130i) q^{41} +16.8760i q^{43} +78.3970 q^{45} +(-24.0957 - 74.1591i) q^{47} +(-3.68176 - 2.67495i) q^{49} +(-85.8936 - 27.9085i) q^{51} +(-8.01232 + 5.82129i) q^{53} +(-96.1378 - 132.322i) q^{57} +(11.3299 - 34.8698i) q^{59} +(-16.6357 + 22.8971i) q^{61} +(-104.847 + 34.0668i) q^{63} -71.4011i q^{65} -30.7234 q^{67} +(-5.60406 - 17.2475i) q^{69} +(33.2060 + 24.1255i) q^{71} +(58.7348 + 19.0841i) q^{73} +(10.3093 - 7.49013i) q^{75} +(73.0540 + 100.550i) q^{79} +(13.4743 - 41.4696i) q^{81} +(-1.81914 + 2.50384i) q^{83} +(80.5879 - 26.1846i) q^{85} +64.5240i q^{87} +60.4914 q^{89} +(31.0268 + 95.4908i) q^{91} +(-89.4948 - 65.0218i) q^{93} +(145.946 + 47.4206i) q^{95} +(-38.8061 + 28.1943i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{3} - 6 q^{5} + 20 q^{7} - 21 q^{9} + 10 q^{13} + 77 q^{15} - 55 q^{17} - 110 q^{19} + 100 q^{23} - 34 q^{25} - 130 q^{27} + 90 q^{29} - 122 q^{31} + 115 q^{35} + 180 q^{37} - 245 q^{39} - 105 q^{41}+ \cdots + 200 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56155 + 4.80594i 0.520515 + 1.60198i 0.773017 + 0.634385i \(0.218747\pi\)
−0.252502 + 0.967596i \(0.581253\pi\)
\(4\) 0 0
\(5\) −3.83565 2.78676i −0.767130 0.557353i 0.133959 0.990987i \(-0.457231\pi\)
−0.901089 + 0.433634i \(0.857231\pi\)
\(6\) 0 0
\(7\) 6.34071 + 2.06022i 0.905816 + 0.294317i 0.724635 0.689133i \(-0.242008\pi\)
0.181180 + 0.983450i \(0.442008\pi\)
\(8\) 0 0
\(9\) −13.3775 + 9.71933i −1.48639 + 1.07993i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 8.85202 + 12.1838i 0.680924 + 0.937212i 0.999944 0.0105359i \(-0.00335374\pi\)
−0.319020 + 0.947748i \(0.603354\pi\)
\(14\) 0 0
\(15\) 7.40348 22.7856i 0.493566 1.51904i
\(16\) 0 0
\(17\) −10.5051 + 14.4591i −0.617948 + 0.850532i −0.997202 0.0747604i \(-0.976181\pi\)
0.379254 + 0.925293i \(0.376181\pi\)
\(18\) 0 0
\(19\) −30.7829 + 10.0020i −1.62015 + 0.526419i −0.971978 0.235072i \(-0.924467\pi\)
−0.648175 + 0.761492i \(0.724467\pi\)
\(20\) 0 0
\(21\) 33.6902i 1.60430i
\(22\) 0 0
\(23\) −3.58879 −0.156034 −0.0780171 0.996952i \(-0.524859\pi\)
−0.0780171 + 0.996952i \(0.524859\pi\)
\(24\) 0 0
\(25\) −0.779257 2.39831i −0.0311703 0.0959323i
\(26\) 0 0
\(27\) −30.8066 22.3823i −1.14098 0.828973i
\(28\) 0 0
\(29\) 12.1438 + 3.94576i 0.418752 + 0.136061i 0.510812 0.859693i \(-0.329345\pi\)
−0.0920594 + 0.995754i \(0.529345\pi\)
\(30\) 0 0
\(31\) −17.7103 + 12.8673i −0.571300 + 0.415073i −0.835577 0.549373i \(-0.814867\pi\)
0.264277 + 0.964447i \(0.414867\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −18.5794 25.5723i −0.530840 0.730638i
\(36\) 0 0
\(37\) −8.56561 + 26.3622i −0.231503 + 0.712492i 0.766063 + 0.642765i \(0.222213\pi\)
−0.997566 + 0.0697273i \(0.977787\pi\)
\(38\) 0 0
\(39\) −44.7316 + 61.5678i −1.14696 + 1.57866i
\(40\) 0 0
\(41\) 47.1286 15.3130i 1.14948 0.373488i 0.328531 0.944493i \(-0.393447\pi\)
0.820946 + 0.571006i \(0.193447\pi\)
\(42\) 0 0
\(43\) 16.8760i 0.392466i 0.980557 + 0.196233i \(0.0628708\pi\)
−0.980557 + 0.196233i \(0.937129\pi\)
\(44\) 0 0
\(45\) 78.3970 1.74215
\(46\) 0 0
\(47\) −24.0957 74.1591i −0.512675 1.57785i −0.787472 0.616350i \(-0.788611\pi\)
0.274797 0.961502i \(-0.411389\pi\)
\(48\) 0 0
\(49\) −3.68176 2.67495i −0.0751379 0.0545909i
\(50\) 0 0
\(51\) −85.8936 27.9085i −1.68419 0.547226i
\(52\) 0 0
\(53\) −8.01232 + 5.82129i −0.151176 + 0.109836i −0.660802 0.750560i \(-0.729784\pi\)
0.509626 + 0.860396i \(0.329784\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −96.1378 132.322i −1.68663 2.32144i
\(58\) 0 0
\(59\) 11.3299 34.8698i 0.192032 0.591014i −0.807966 0.589229i \(-0.799432\pi\)
0.999998 0.00178528i \(-0.000568273\pi\)
\(60\) 0 0
\(61\) −16.6357 + 22.8971i −0.272716 + 0.375362i −0.923304 0.384069i \(-0.874522\pi\)
0.650588 + 0.759431i \(0.274522\pi\)
\(62\) 0 0
\(63\) −104.847 + 34.0668i −1.66424 + 0.540743i
\(64\) 0 0
\(65\) 71.4011i 1.09848i
\(66\) 0 0
\(67\) −30.7234 −0.458558 −0.229279 0.973361i \(-0.573637\pi\)
−0.229279 + 0.973361i \(0.573637\pi\)
\(68\) 0 0
\(69\) −5.60406 17.2475i −0.0812182 0.249964i
\(70\) 0 0
\(71\) 33.2060 + 24.1255i 0.467689 + 0.339796i 0.796540 0.604586i \(-0.206661\pi\)
−0.328851 + 0.944382i \(0.606661\pi\)
\(72\) 0 0
\(73\) 58.7348 + 19.0841i 0.804586 + 0.261426i 0.682303 0.731070i \(-0.260979\pi\)
0.122283 + 0.992495i \(0.460979\pi\)
\(74\) 0 0
\(75\) 10.3093 7.49013i 0.137457 0.0998684i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 73.0540 + 100.550i 0.924734 + 1.27279i 0.961878 + 0.273477i \(0.0881739\pi\)
−0.0371444 + 0.999310i \(0.511826\pi\)
\(80\) 0 0
\(81\) 13.4743 41.4696i 0.166349 0.511970i
\(82\) 0 0
\(83\) −1.81914 + 2.50384i −0.0219174 + 0.0301667i −0.819835 0.572600i \(-0.805935\pi\)
0.797918 + 0.602766i \(0.205935\pi\)
\(84\) 0 0
\(85\) 80.5879 26.1846i 0.948093 0.308054i
\(86\) 0 0
\(87\) 64.5240i 0.741655i
\(88\) 0 0
\(89\) 60.4914 0.679678 0.339839 0.940484i \(-0.389627\pi\)
0.339839 + 0.940484i \(0.389627\pi\)
\(90\) 0 0
\(91\) 31.0268 + 95.4908i 0.340954 + 1.04935i
\(92\) 0 0
\(93\) −89.4948 65.0218i −0.962310 0.699159i
\(94\) 0 0
\(95\) 145.946 + 47.4206i 1.53627 + 0.499164i
\(96\) 0 0
\(97\) −38.8061 + 28.1943i −0.400063 + 0.290663i −0.769567 0.638566i \(-0.779528\pi\)
0.369504 + 0.929229i \(0.379528\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 51.7134 + 71.1774i 0.512014 + 0.704727i 0.984257 0.176741i \(-0.0565556\pi\)
−0.472243 + 0.881468i \(0.656556\pi\)
\(102\) 0 0
\(103\) −3.84144 + 11.8227i −0.0372955 + 0.114784i −0.967971 0.251062i \(-0.919220\pi\)
0.930676 + 0.365846i \(0.119220\pi\)
\(104\) 0 0
\(105\) 93.8867 129.224i 0.894159 1.23070i
\(106\) 0 0
\(107\) −1.13078 + 0.367413i −0.0105681 + 0.00343377i −0.314296 0.949325i \(-0.601769\pi\)
0.303728 + 0.952759i \(0.401769\pi\)
\(108\) 0 0
\(109\) 145.212i 1.33222i 0.745855 + 0.666108i \(0.232041\pi\)
−0.745855 + 0.666108i \(0.767959\pi\)
\(110\) 0 0
\(111\) −140.071 −1.26190
\(112\) 0 0
\(113\) 17.9878 + 55.3607i 0.159184 + 0.489918i 0.998561 0.0536323i \(-0.0170799\pi\)
−0.839377 + 0.543550i \(0.817080\pi\)
\(114\) 0 0
\(115\) 13.7653 + 10.0011i 0.119699 + 0.0869661i
\(116\) 0 0
\(117\) −236.836 76.9527i −2.02424 0.657715i
\(118\) 0 0
\(119\) −96.3987 + 70.0378i −0.810073 + 0.588553i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 147.187 + 202.585i 1.19664 + 1.64703i
\(124\) 0 0
\(125\) −40.3218 + 124.098i −0.322574 + 0.992781i
\(126\) 0 0
\(127\) −23.2499 + 32.0007i −0.183070 + 0.251974i −0.890682 0.454627i \(-0.849772\pi\)
0.707612 + 0.706601i \(0.249772\pi\)
\(128\) 0 0
\(129\) −81.1052 + 26.3527i −0.628723 + 0.204284i
\(130\) 0 0
\(131\) 130.281i 0.994510i −0.867605 0.497255i \(-0.834341\pi\)
0.867605 0.497255i \(-0.165659\pi\)
\(132\) 0 0
\(133\) −215.792 −1.62249
\(134\) 0 0
\(135\) 55.7891 + 171.701i 0.413253 + 1.27186i
\(136\) 0 0
\(137\) 166.701 + 121.115i 1.21679 + 0.884053i 0.995830 0.0912289i \(-0.0290795\pi\)
0.220965 + 0.975282i \(0.429079\pi\)
\(138\) 0 0
\(139\) 203.713 + 66.1903i 1.46556 + 0.476189i 0.929763 0.368159i \(-0.120012\pi\)
0.535796 + 0.844347i \(0.320012\pi\)
\(140\) 0 0
\(141\) 318.778 231.606i 2.26083 1.64259i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −35.5835 48.9765i −0.245404 0.337769i
\(146\) 0 0
\(147\) 7.10644 21.8714i 0.0483432 0.148785i
\(148\) 0 0
\(149\) 35.3034 48.5909i 0.236935 0.326114i −0.673947 0.738780i \(-0.735402\pi\)
0.910882 + 0.412666i \(0.135402\pi\)
\(150\) 0 0
\(151\) 122.735 39.8790i 0.812815 0.264100i 0.127025 0.991899i \(-0.459457\pi\)
0.685789 + 0.727800i \(0.259457\pi\)
\(152\) 0 0
\(153\) 295.529i 1.93156i
\(154\) 0 0
\(155\) 103.789 0.669604
\(156\) 0 0
\(157\) −84.3134 259.490i −0.537028 1.65280i −0.739226 0.673457i \(-0.764809\pi\)
0.202199 0.979345i \(-0.435191\pi\)
\(158\) 0 0
\(159\) −40.4884 29.4165i −0.254644 0.185010i
\(160\) 0 0
\(161\) −22.7555 7.39370i −0.141338 0.0459236i
\(162\) 0 0
\(163\) 11.6539 8.46708i 0.0714966 0.0519453i −0.551463 0.834199i \(-0.685930\pi\)
0.622959 + 0.782254i \(0.285930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −95.5676 131.538i −0.572261 0.787650i 0.420559 0.907265i \(-0.361834\pi\)
−0.992820 + 0.119615i \(0.961834\pi\)
\(168\) 0 0
\(169\) −17.8618 + 54.9731i −0.105691 + 0.325285i
\(170\) 0 0
\(171\) 314.586 432.991i 1.83969 2.53211i
\(172\) 0 0
\(173\) 106.539 34.6167i 0.615833 0.200096i 0.0155436 0.999879i \(-0.495052\pi\)
0.600289 + 0.799783i \(0.295052\pi\)
\(174\) 0 0
\(175\) 16.8124i 0.0960709i
\(176\) 0 0
\(177\) 185.275 1.04675
\(178\) 0 0
\(179\) 48.5633 + 149.462i 0.271303 + 0.834986i 0.990174 + 0.139842i \(0.0446594\pi\)
−0.718871 + 0.695144i \(0.755341\pi\)
\(180\) 0 0
\(181\) 275.606 + 200.240i 1.52269 + 1.10630i 0.960136 + 0.279532i \(0.0901794\pi\)
0.562549 + 0.826764i \(0.309821\pi\)
\(182\) 0 0
\(183\) −136.019 44.1954i −0.743275 0.241505i
\(184\) 0 0
\(185\) 106.320 77.2460i 0.574702 0.417546i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −149.223 205.388i −0.789540 1.08671i
\(190\) 0 0
\(191\) 9.61642 29.5963i 0.0503477 0.154954i −0.922722 0.385467i \(-0.874040\pi\)
0.973069 + 0.230513i \(0.0740403\pi\)
\(192\) 0 0
\(193\) −29.4802 + 40.5760i −0.152747 + 0.210238i −0.878532 0.477683i \(-0.841477\pi\)
0.725785 + 0.687921i \(0.241477\pi\)
\(194\) 0 0
\(195\) 343.150 111.496i 1.75974 0.571775i
\(196\) 0 0
\(197\) 225.831i 1.14635i −0.819432 0.573176i \(-0.805711\pi\)
0.819432 0.573176i \(-0.194289\pi\)
\(198\) 0 0
\(199\) 46.4242 0.233287 0.116644 0.993174i \(-0.462786\pi\)
0.116644 + 0.993174i \(0.462786\pi\)
\(200\) 0 0
\(201\) −47.9760 147.655i −0.238687 0.734602i
\(202\) 0 0
\(203\) 68.8712 + 50.0379i 0.339267 + 0.246492i
\(204\) 0 0
\(205\) −223.442 72.6008i −1.08996 0.354150i
\(206\) 0 0
\(207\) 48.0091 34.8806i 0.231928 0.168505i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 62.7649 + 86.3885i 0.297464 + 0.409424i 0.931421 0.363944i \(-0.118570\pi\)
−0.633957 + 0.773369i \(0.718570\pi\)
\(212\) 0 0
\(213\) −64.0934 + 197.259i −0.300908 + 0.926099i
\(214\) 0 0
\(215\) 47.0295 64.7305i 0.218742 0.301072i
\(216\) 0 0
\(217\) −138.805 + 45.1005i −0.639655 + 0.207837i
\(218\) 0 0
\(219\) 312.077i 1.42501i
\(220\) 0 0
\(221\) −269.157 −1.21791
\(222\) 0 0
\(223\) −41.2976 127.101i −0.185191 0.569959i 0.814761 0.579797i \(-0.196868\pi\)
−0.999952 + 0.00983830i \(0.996868\pi\)
\(224\) 0 0
\(225\) 33.7345 + 24.5095i 0.149931 + 0.108931i
\(226\) 0 0
\(227\) 172.678 + 56.1066i 0.760697 + 0.247165i 0.663578 0.748107i \(-0.269037\pi\)
0.0971193 + 0.995273i \(0.469037\pi\)
\(228\) 0 0
\(229\) 212.790 154.601i 0.929214 0.675113i −0.0165863 0.999862i \(-0.505280\pi\)
0.945800 + 0.324749i \(0.105280\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −97.0017 133.511i −0.416316 0.573010i 0.548428 0.836198i \(-0.315226\pi\)
−0.964745 + 0.263187i \(0.915226\pi\)
\(234\) 0 0
\(235\) −114.241 + 351.597i −0.486132 + 1.49616i
\(236\) 0 0
\(237\) −369.161 + 508.107i −1.55764 + 2.14391i
\(238\) 0 0
\(239\) −288.179 + 93.6350i −1.20577 + 0.391778i −0.841880 0.539664i \(-0.818551\pi\)
−0.363889 + 0.931442i \(0.618551\pi\)
\(240\) 0 0
\(241\) 289.642i 1.20183i −0.799311 0.600917i \(-0.794802\pi\)
0.799311 0.600917i \(-0.205198\pi\)
\(242\) 0 0
\(243\) −122.370 −0.503579
\(244\) 0 0
\(245\) 6.66748 + 20.5204i 0.0272142 + 0.0837567i
\(246\) 0 0
\(247\) −394.352 286.514i −1.59657 1.15997i
\(248\) 0 0
\(249\) −14.8740 4.83285i −0.0597349 0.0194090i
\(250\) 0 0
\(251\) −217.867 + 158.290i −0.867997 + 0.630637i −0.930049 0.367436i \(-0.880236\pi\)
0.0620517 + 0.998073i \(0.480236\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 251.683 + 346.413i 0.986994 + 1.35848i
\(256\) 0 0
\(257\) 155.437 478.387i 0.604815 1.86143i 0.106758 0.994285i \(-0.465953\pi\)
0.498057 0.867144i \(-0.334047\pi\)
\(258\) 0 0
\(259\) −108.624 + 149.508i −0.419398 + 0.577251i
\(260\) 0 0
\(261\) −200.804 + 65.2453i −0.769365 + 0.249982i
\(262\) 0 0
\(263\) 178.603i 0.679099i 0.940588 + 0.339550i \(0.110275\pi\)
−0.940588 + 0.339550i \(0.889725\pi\)
\(264\) 0 0
\(265\) 46.9550 0.177189
\(266\) 0 0
\(267\) 94.4600 + 290.718i 0.353783 + 1.08883i
\(268\) 0 0
\(269\) −85.3325 61.9977i −0.317221 0.230475i 0.417768 0.908554i \(-0.362813\pi\)
−0.734989 + 0.678079i \(0.762813\pi\)
\(270\) 0 0
\(271\) −139.685 45.3862i −0.515441 0.167477i 0.0397343 0.999210i \(-0.487349\pi\)
−0.555175 + 0.831733i \(0.687349\pi\)
\(272\) 0 0
\(273\) −410.473 + 298.226i −1.50357 + 1.09240i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 152.951 + 210.519i 0.552171 + 0.759998i 0.990305 0.138912i \(-0.0443605\pi\)
−0.438134 + 0.898910i \(0.644360\pi\)
\(278\) 0 0
\(279\) 111.858 344.264i 0.400926 1.23392i
\(280\) 0 0
\(281\) 301.056 414.369i 1.07137 1.47462i 0.202699 0.979241i \(-0.435029\pi\)
0.868676 0.495380i \(-0.164971\pi\)
\(282\) 0 0
\(283\) 170.144 55.2832i 0.601216 0.195347i 0.00743336 0.999972i \(-0.497634\pi\)
0.593783 + 0.804625i \(0.297634\pi\)
\(284\) 0 0
\(285\) 775.456i 2.72090i
\(286\) 0 0
\(287\) 330.377 1.15114
\(288\) 0 0
\(289\) −9.40080 28.9327i −0.0325287 0.100113i
\(290\) 0 0
\(291\) −196.098 142.473i −0.673875 0.489599i
\(292\) 0 0
\(293\) 494.623 + 160.713i 1.68813 + 0.548508i 0.986462 0.163992i \(-0.0524372\pi\)
0.701672 + 0.712500i \(0.252437\pi\)
\(294\) 0 0
\(295\) −140.631 + 102.175i −0.476717 + 0.346355i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −31.7680 43.7249i −0.106248 0.146237i
\(300\) 0 0
\(301\) −34.7683 + 107.006i −0.115509 + 0.355501i
\(302\) 0 0
\(303\) −261.322 + 359.679i −0.862448 + 1.18706i
\(304\) 0 0
\(305\) 127.617 41.4654i 0.418418 0.135952i
\(306\) 0 0
\(307\) 453.784i 1.47812i 0.673638 + 0.739061i \(0.264731\pi\)
−0.673638 + 0.739061i \(0.735269\pi\)
\(308\) 0 0
\(309\) −62.8180 −0.203294
\(310\) 0 0
\(311\) 125.374 + 385.862i 0.403132 + 1.24071i 0.922445 + 0.386129i \(0.126188\pi\)
−0.519313 + 0.854584i \(0.673812\pi\)
\(312\) 0 0
\(313\) −13.5100 9.81556i −0.0431628 0.0313596i 0.565995 0.824409i \(-0.308492\pi\)
−0.609157 + 0.793049i \(0.708492\pi\)
\(314\) 0 0
\(315\) 497.092 + 161.515i 1.57807 + 0.512746i
\(316\) 0 0
\(317\) −455.110 + 330.656i −1.43568 + 1.04308i −0.446753 + 0.894657i \(0.647420\pi\)
−0.988924 + 0.148423i \(0.952580\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −3.53153 4.86074i −0.0110017 0.0151425i
\(322\) 0 0
\(323\) 178.759 550.163i 0.553433 1.70329i
\(324\) 0 0
\(325\) 22.3224 30.7241i 0.0686843 0.0945358i
\(326\) 0 0
\(327\) −697.879 + 226.755i −2.13419 + 0.693439i
\(328\) 0 0
\(329\) 519.864i 1.58013i
\(330\) 0 0
\(331\) 167.684 0.506597 0.253298 0.967388i \(-0.418485\pi\)
0.253298 + 0.967388i \(0.418485\pi\)
\(332\) 0 0
\(333\) −141.637 435.913i −0.425336 1.30905i
\(334\) 0 0
\(335\) 117.844 + 85.6188i 0.351774 + 0.255579i
\(336\) 0 0
\(337\) −167.110 54.2973i −0.495875 0.161119i 0.0503940 0.998729i \(-0.483952\pi\)
−0.546269 + 0.837610i \(0.683952\pi\)
\(338\) 0 0
\(339\) −237.972 + 172.896i −0.701981 + 0.510019i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −209.854 288.839i −0.611819 0.842096i
\(344\) 0 0
\(345\) −26.5695 + 81.7726i −0.0770131 + 0.237022i
\(346\) 0 0
\(347\) −284.107 + 391.040i −0.818752 + 1.12692i 0.171162 + 0.985243i \(0.445248\pi\)
−0.989914 + 0.141673i \(0.954752\pi\)
\(348\) 0 0
\(349\) −153.162 + 49.7653i −0.438859 + 0.142594i −0.520109 0.854100i \(-0.674109\pi\)
0.0812500 + 0.996694i \(0.474109\pi\)
\(350\) 0 0
\(351\) 573.468i 1.63381i
\(352\) 0 0
\(353\) 522.647 1.48059 0.740294 0.672284i \(-0.234687\pi\)
0.740294 + 0.672284i \(0.234687\pi\)
\(354\) 0 0
\(355\) −60.1343 185.074i −0.169392 0.521336i
\(356\) 0 0
\(357\) −487.129 353.920i −1.36451 0.991372i
\(358\) 0 0
\(359\) −544.263 176.842i −1.51605 0.492595i −0.571401 0.820671i \(-0.693600\pi\)
−0.944651 + 0.328076i \(0.893600\pi\)
\(360\) 0 0
\(361\) 555.492 403.589i 1.53876 1.11797i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −172.103 236.880i −0.471516 0.648986i
\(366\) 0 0
\(367\) 52.0404 160.164i 0.141799 0.436414i −0.854786 0.518980i \(-0.826312\pi\)
0.996586 + 0.0825667i \(0.0263117\pi\)
\(368\) 0 0
\(369\) −481.631 + 662.908i −1.30523 + 1.79650i
\(370\) 0 0
\(371\) −62.7969 + 20.4040i −0.169264 + 0.0549972i
\(372\) 0 0
\(373\) 500.543i 1.34194i 0.741486 + 0.670969i \(0.234122\pi\)
−0.741486 + 0.670969i \(0.765878\pi\)
\(374\) 0 0
\(375\) −659.370 −1.75832
\(376\) 0 0
\(377\) 59.4230 + 182.885i 0.157621 + 0.485107i
\(378\) 0 0
\(379\) −42.1894 30.6524i −0.111318 0.0808769i 0.530734 0.847539i \(-0.321916\pi\)
−0.642051 + 0.766662i \(0.721916\pi\)
\(380\) 0 0
\(381\) −190.099 61.7670i −0.498948 0.162118i
\(382\) 0 0
\(383\) 199.922 145.251i 0.521988 0.379247i −0.295364 0.955385i \(-0.595441\pi\)
0.817352 + 0.576138i \(0.195441\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −164.024 225.759i −0.423834 0.583357i
\(388\) 0 0
\(389\) −76.1520 + 234.372i −0.195763 + 0.602498i 0.804203 + 0.594354i \(0.202592\pi\)
−0.999967 + 0.00814375i \(0.997408\pi\)
\(390\) 0 0
\(391\) 37.7006 51.8905i 0.0964210 0.132712i
\(392\) 0 0
\(393\) 626.122 203.439i 1.59319 0.517658i
\(394\) 0 0
\(395\) 589.260i 1.49180i
\(396\) 0 0
\(397\) 50.7517 0.127838 0.0639191 0.997955i \(-0.479640\pi\)
0.0639191 + 0.997955i \(0.479640\pi\)
\(398\) 0 0
\(399\) −336.969 1037.08i −0.844533 2.59920i
\(400\) 0 0
\(401\) −38.8963 28.2598i −0.0969983 0.0704734i 0.538229 0.842799i \(-0.319094\pi\)
−0.635227 + 0.772325i \(0.719094\pi\)
\(402\) 0 0
\(403\) −313.544 101.876i −0.778024 0.252795i
\(404\) 0 0
\(405\) −167.249 + 121.513i −0.412960 + 0.300033i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −300.638 413.792i −0.735055 1.01172i −0.998888 0.0471485i \(-0.984987\pi\)
0.263832 0.964569i \(-0.415013\pi\)
\(410\) 0 0
\(411\) −321.762 + 990.282i −0.782876 + 2.40944i
\(412\) 0 0
\(413\) 143.679 197.757i 0.347891 0.478831i
\(414\) 0 0
\(415\) 13.9552 4.53432i 0.0336270 0.0109261i
\(416\) 0 0
\(417\) 1082.39i 2.59566i
\(418\) 0 0
\(419\) 790.955 1.88772 0.943860 0.330345i \(-0.107165\pi\)
0.943860 + 0.330345i \(0.107165\pi\)
\(420\) 0 0
\(421\) 127.247 + 391.625i 0.302249 + 0.930225i 0.980690 + 0.195571i \(0.0626559\pi\)
−0.678441 + 0.734655i \(0.737344\pi\)
\(422\) 0 0
\(423\) 1043.12 + 757.870i 2.46600 + 1.79165i
\(424\) 0 0
\(425\) 42.8634 + 13.9272i 0.100855 + 0.0327698i
\(426\) 0 0
\(427\) −152.655 + 110.910i −0.357506 + 0.259743i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −165.842 228.262i −0.384785 0.529611i 0.572059 0.820212i \(-0.306145\pi\)
−0.956844 + 0.290601i \(0.906145\pi\)
\(432\) 0 0
\(433\) −17.1508 + 52.7846i −0.0396091 + 0.121904i −0.968906 0.247430i \(-0.920414\pi\)
0.929297 + 0.369334i \(0.120414\pi\)
\(434\) 0 0
\(435\) 179.813 247.491i 0.413363 0.568946i
\(436\) 0 0
\(437\) 110.473 35.8949i 0.252799 0.0821394i
\(438\) 0 0
\(439\) 232.914i 0.530556i 0.964172 + 0.265278i \(0.0854638\pi\)
−0.964172 + 0.265278i \(0.914536\pi\)
\(440\) 0 0
\(441\) 75.2516 0.170638
\(442\) 0 0
\(443\) −131.473 404.633i −0.296780 0.913394i −0.982618 0.185640i \(-0.940564\pi\)
0.685838 0.727754i \(-0.259436\pi\)
\(444\) 0 0
\(445\) −232.024 168.575i −0.521402 0.378820i
\(446\) 0 0
\(447\) 288.653 + 93.7890i 0.645756 + 0.209819i
\(448\) 0 0
\(449\) −37.3765 + 27.1556i −0.0832440 + 0.0604803i −0.628629 0.777705i \(-0.716384\pi\)
0.545385 + 0.838186i \(0.316384\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 383.313 + 527.585i 0.846165 + 1.16465i
\(454\) 0 0
\(455\) 147.102 452.734i 0.323301 0.995019i
\(456\) 0 0
\(457\) 90.9191 125.139i 0.198948 0.273828i −0.697874 0.716221i \(-0.745870\pi\)
0.896821 + 0.442393i \(0.145870\pi\)
\(458\) 0 0
\(459\) 647.253 210.305i 1.41014 0.458181i
\(460\) 0 0
\(461\) 775.943i 1.68317i −0.540123 0.841586i \(-0.681622\pi\)
0.540123 0.841586i \(-0.318378\pi\)
\(462\) 0 0
\(463\) −829.285 −1.79111 −0.895557 0.444948i \(-0.853222\pi\)
−0.895557 + 0.444948i \(0.853222\pi\)
\(464\) 0 0
\(465\) 162.071 + 498.802i 0.348539 + 1.07269i
\(466\) 0 0
\(467\) −632.973 459.882i −1.35540 0.984757i −0.998723 0.0505306i \(-0.983909\pi\)
−0.356680 0.934227i \(-0.616091\pi\)
\(468\) 0 0
\(469\) −194.808 63.2970i −0.415369 0.134962i
\(470\) 0 0
\(471\) 1115.43 810.410i 2.36823 1.72062i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 47.9756 + 66.0327i 0.101001 + 0.139016i
\(476\) 0 0
\(477\) 50.6058 155.749i 0.106092 0.326517i
\(478\) 0 0
\(479\) 47.7186 65.6790i 0.0996213 0.137117i −0.756296 0.654229i \(-0.772993\pi\)
0.855917 + 0.517112i \(0.172993\pi\)
\(480\) 0 0
\(481\) −397.014 + 128.998i −0.825393 + 0.268186i
\(482\) 0 0
\(483\) 120.907i 0.250325i
\(484\) 0 0
\(485\) 227.418 0.468902
\(486\) 0 0
\(487\) −90.0200 277.053i −0.184846 0.568897i 0.815100 0.579321i \(-0.196682\pi\)
−0.999946 + 0.0104234i \(0.996682\pi\)
\(488\) 0 0
\(489\) 58.8905 + 42.7864i 0.120430 + 0.0874978i
\(490\) 0 0
\(491\) −285.590 92.7938i −0.581649 0.188989i 0.00339000 0.999994i \(-0.498921\pi\)
−0.585039 + 0.811005i \(0.698921\pi\)
\(492\) 0 0
\(493\) −184.624 + 134.137i −0.374491 + 0.272084i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 160.845 + 221.385i 0.323632 + 0.445442i
\(498\) 0 0
\(499\) 95.0706 292.597i 0.190522 0.586367i −0.809478 0.587151i \(-0.800250\pi\)
1.00000 0.000783928i \(0.000249532\pi\)
\(500\) 0 0
\(501\) 482.929 664.694i 0.963930 1.32674i
\(502\) 0 0
\(503\) −762.072 + 247.612i −1.51505 + 0.492271i −0.944366 0.328897i \(-0.893323\pi\)
−0.570687 + 0.821167i \(0.693323\pi\)
\(504\) 0 0
\(505\) 417.125i 0.825990i
\(506\) 0 0
\(507\) −292.090 −0.576114
\(508\) 0 0
\(509\) 167.385 + 515.157i 0.328850 + 1.01210i 0.969673 + 0.244408i \(0.0785935\pi\)
−0.640822 + 0.767689i \(0.721407\pi\)
\(510\) 0 0
\(511\) 333.103 + 242.013i 0.651864 + 0.473607i
\(512\) 0 0
\(513\) 1172.18 + 380.865i 2.28495 + 0.742427i
\(514\) 0 0
\(515\) 47.6816 34.6427i 0.0925856 0.0672674i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 332.731 + 457.965i 0.641101 + 0.882400i
\(520\) 0 0
\(521\) 220.495 678.613i 0.423215 1.30252i −0.481479 0.876458i \(-0.659900\pi\)
0.904693 0.426063i \(-0.140100\pi\)
\(522\) 0 0
\(523\) −267.311 + 367.922i −0.511110 + 0.703483i −0.984106 0.177582i \(-0.943173\pi\)
0.472996 + 0.881065i \(0.343173\pi\)
\(524\) 0 0
\(525\) 80.7995 26.2533i 0.153904 0.0500064i
\(526\) 0 0
\(527\) 391.246i 0.742403i
\(528\) 0 0
\(529\) −516.121 −0.975653
\(530\) 0 0
\(531\) 187.346 + 576.591i 0.352817 + 1.08586i
\(532\) 0 0
\(533\) 603.753 + 438.652i 1.13274 + 0.822987i
\(534\) 0 0
\(535\) 5.36118 + 1.74195i 0.0100209 + 0.00325599i
\(536\) 0 0
\(537\) −642.474 + 466.785i −1.19641 + 0.869246i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 474.904 + 653.649i 0.877826 + 1.20822i 0.977018 + 0.213156i \(0.0683741\pi\)
−0.0991922 + 0.995068i \(0.531626\pi\)
\(542\) 0 0
\(543\) −531.969 + 1637.23i −0.979684 + 3.01516i
\(544\) 0 0
\(545\) 404.670 556.981i 0.742515 1.02198i
\(546\) 0 0
\(547\) −162.421 + 52.7739i −0.296931 + 0.0964788i −0.453694 0.891157i \(-0.649894\pi\)
0.156763 + 0.987636i \(0.449894\pi\)
\(548\) 0 0
\(549\) 467.994i 0.852447i
\(550\) 0 0
\(551\) −413.287 −0.750067
\(552\) 0 0
\(553\) 256.058 + 788.067i 0.463035 + 1.42508i
\(554\) 0 0
\(555\) 537.263 + 390.345i 0.968042 + 0.703324i
\(556\) 0 0
\(557\) 22.5907 + 7.34016i 0.0405578 + 0.0131780i 0.329226 0.944251i \(-0.393212\pi\)
−0.288668 + 0.957429i \(0.593212\pi\)
\(558\) 0 0
\(559\) −205.613 + 149.387i −0.367824 + 0.267239i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −351.344 483.584i −0.624057 0.858941i 0.373583 0.927597i \(-0.378129\pi\)
−0.997640 + 0.0686553i \(0.978129\pi\)
\(564\) 0 0
\(565\) 85.2823 262.472i 0.150942 0.464552i
\(566\) 0 0
\(567\) 170.873 235.187i 0.301363 0.414791i
\(568\) 0 0
\(569\) 387.480 125.900i 0.680984 0.221265i 0.0519577 0.998649i \(-0.483454\pi\)
0.629026 + 0.777384i \(0.283454\pi\)
\(570\) 0 0
\(571\) 1036.11i 1.81456i 0.420530 + 0.907279i \(0.361844\pi\)
−0.420530 + 0.907279i \(0.638156\pi\)
\(572\) 0 0
\(573\) 157.255 0.274441
\(574\) 0 0
\(575\) 2.79659 + 8.60701i 0.00486363 + 0.0149687i
\(576\) 0 0
\(577\) −556.716 404.478i −0.964845 0.701001i −0.0105741 0.999944i \(-0.503366\pi\)
−0.954271 + 0.298943i \(0.903366\pi\)
\(578\) 0 0
\(579\) −241.040 78.3188i −0.416305 0.135266i
\(580\) 0 0
\(581\) −16.6931 + 12.1283i −0.0287317 + 0.0208748i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 693.971 + 955.170i 1.18628 + 1.63277i
\(586\) 0 0
\(587\) 185.459 570.785i 0.315944 0.972376i −0.659420 0.751775i \(-0.729198\pi\)
0.975364 0.220601i \(-0.0708019\pi\)
\(588\) 0 0
\(589\) 416.476 573.230i 0.707090 0.973226i
\(590\) 0 0
\(591\) 1085.33 352.646i 1.83643 0.596694i
\(592\) 0 0
\(593\) 468.857i 0.790652i 0.918541 + 0.395326i \(0.129368\pi\)
−0.918541 + 0.395326i \(0.870632\pi\)
\(594\) 0 0
\(595\) 564.931 0.949463
\(596\) 0 0
\(597\) 72.4935 + 223.112i 0.121430 + 0.373722i
\(598\) 0 0
\(599\) −414.897 301.440i −0.692650 0.503239i 0.184880 0.982761i \(-0.440810\pi\)
−0.877530 + 0.479522i \(0.840810\pi\)
\(600\) 0 0
\(601\) −482.357 156.727i −0.802591 0.260778i −0.121134 0.992636i \(-0.538653\pi\)
−0.681457 + 0.731859i \(0.738653\pi\)
\(602\) 0 0
\(603\) 411.003 298.611i 0.681597 0.495209i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 198.249 + 272.867i 0.326605 + 0.449534i 0.940470 0.339878i \(-0.110386\pi\)
−0.613864 + 0.789412i \(0.710386\pi\)
\(608\) 0 0
\(609\) −132.934 + 409.128i −0.218282 + 0.671802i
\(610\) 0 0
\(611\) 690.240 950.034i 1.12969 1.55488i
\(612\) 0 0
\(613\) 320.720 104.208i 0.523197 0.169997i −0.0354989 0.999370i \(-0.511302\pi\)
0.558696 + 0.829373i \(0.311302\pi\)
\(614\) 0 0
\(615\) 1187.22i 1.93044i
\(616\) 0 0
\(617\) −269.856 −0.437369 −0.218684 0.975796i \(-0.570177\pi\)
−0.218684 + 0.975796i \(0.570177\pi\)
\(618\) 0 0
\(619\) 168.029 + 517.140i 0.271452 + 0.835444i 0.990136 + 0.140107i \(0.0447447\pi\)
−0.718684 + 0.695337i \(0.755255\pi\)
\(620\) 0 0
\(621\) 110.558 + 80.3252i 0.178032 + 0.129348i
\(622\) 0 0
\(623\) 383.558 + 124.626i 0.615663 + 0.200041i
\(624\) 0 0
\(625\) 449.488 326.572i 0.719181 0.522515i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −291.190 400.789i −0.462941 0.637184i
\(630\) 0 0
\(631\) 34.9768 107.647i 0.0554307 0.170598i −0.919508 0.393071i \(-0.871413\pi\)
0.974939 + 0.222473i \(0.0714128\pi\)
\(632\) 0 0
\(633\) −317.168 + 436.544i −0.501055 + 0.689643i
\(634\) 0 0
\(635\) 178.357 57.9516i 0.280877 0.0912624i
\(636\) 0 0
\(637\) 68.5364i 0.107592i
\(638\) 0 0
\(639\) −678.697 −1.06212
\(640\) 0 0
\(641\) −163.020 501.723i −0.254321 0.782719i −0.993963 0.109718i \(-0.965005\pi\)
0.739642 0.673001i \(-0.234995\pi\)
\(642\) 0 0
\(643\) −237.173 172.317i −0.368854 0.267988i 0.387881 0.921709i \(-0.373207\pi\)
−0.756736 + 0.653721i \(0.773207\pi\)
\(644\) 0 0
\(645\) 384.530 + 124.941i 0.596170 + 0.193708i
\(646\) 0 0
\(647\) 537.037 390.180i 0.830042 0.603061i −0.0895290 0.995984i \(-0.528536\pi\)
0.919571 + 0.392923i \(0.128536\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −433.501 596.663i −0.665901 0.916534i
\(652\) 0 0
\(653\) −245.388 + 755.228i −0.375786 + 1.15655i 0.567160 + 0.823607i \(0.308042\pi\)
−0.942947 + 0.332944i \(0.891958\pi\)
\(654\) 0 0
\(655\) −363.062 + 499.712i −0.554293 + 0.762918i
\(656\) 0 0
\(657\) −971.210 + 315.565i −1.47825 + 0.480312i
\(658\) 0 0
\(659\) 187.489i 0.284505i −0.989830 0.142253i \(-0.954565\pi\)
0.989830 0.142253i \(-0.0454346\pi\)
\(660\) 0 0
\(661\) 74.1929 0.112243 0.0561217 0.998424i \(-0.482127\pi\)
0.0561217 + 0.998424i \(0.482127\pi\)
\(662\) 0 0
\(663\) −420.301 1293.55i −0.633938 1.95106i
\(664\) 0 0
\(665\) 827.701 + 601.360i 1.24466 + 0.904301i
\(666\) 0 0
\(667\) −43.5816 14.1605i −0.0653397 0.0212301i
\(668\) 0 0
\(669\) 546.352 396.948i 0.816669 0.593345i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 555.249 + 764.235i 0.825036 + 1.13556i 0.988827 + 0.149069i \(0.0476278\pi\)
−0.163791 + 0.986495i \(0.552372\pi\)
\(674\) 0 0
\(675\) −29.6733 + 91.3251i −0.0439605 + 0.135296i
\(676\) 0 0
\(677\) −425.480 + 585.623i −0.628479 + 0.865027i −0.997936 0.0642211i \(-0.979544\pi\)
0.369457 + 0.929248i \(0.379544\pi\)
\(678\) 0 0
\(679\) −304.145 + 98.8226i −0.447930 + 0.145541i
\(680\) 0 0
\(681\) 917.495i 1.34728i
\(682\) 0 0
\(683\) 660.998 0.967787 0.483893 0.875127i \(-0.339222\pi\)
0.483893 + 0.875127i \(0.339222\pi\)
\(684\) 0 0
\(685\) −301.887 929.112i −0.440711 1.35637i
\(686\) 0 0
\(687\) 1075.28 + 781.240i 1.56519 + 1.13718i
\(688\) 0 0
\(689\) −141.850 46.0900i −0.205879 0.0668940i
\(690\) 0 0
\(691\) 326.986 237.569i 0.473207 0.343805i −0.325483 0.945548i \(-0.605527\pi\)
0.798690 + 0.601743i \(0.205527\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −596.914 821.582i −0.858869 1.18213i
\(696\) 0 0
\(697\) −273.680 + 842.299i −0.392654 + 1.20846i
\(698\) 0 0
\(699\) 490.176 674.669i 0.701253 0.965192i
\(700\) 0 0
\(701\) −377.389 + 122.621i −0.538359 + 0.174923i −0.565561 0.824707i \(-0.691340\pi\)
0.0272022 + 0.999630i \(0.491340\pi\)
\(702\) 0 0
\(703\) 897.178i 1.27621i
\(704\) 0 0
\(705\) −1868.15 −2.64986
\(706\) 0 0
\(707\) 181.259 + 557.857i 0.256377 + 0.789047i
\(708\) 0 0
\(709\) 11.1279 + 8.08489i 0.0156952 + 0.0114032i 0.595605 0.803277i \(-0.296912\pi\)
−0.579910 + 0.814681i \(0.696912\pi\)
\(710\) 0 0
\(711\) −1954.56 635.076i −2.74903 0.893215i
\(712\) 0 0
\(713\) 63.5585 46.1779i 0.0891423 0.0647657i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −900.009 1238.76i −1.25524 1.72769i
\(718\) 0 0
\(719\) 32.0897 98.7618i 0.0446310 0.137360i −0.926258 0.376890i \(-0.876993\pi\)
0.970889 + 0.239530i \(0.0769934\pi\)
\(720\) 0 0
\(721\) −48.7149 + 67.0503i −0.0675657 + 0.0929962i
\(722\) 0 0
\(723\) 1392.00 452.289i 1.92532 0.625573i
\(724\) 0 0
\(725\) 32.1994i 0.0444129i
\(726\) 0 0
\(727\) 1381.61 1.90043 0.950214 0.311599i \(-0.100864\pi\)
0.950214 + 0.311599i \(0.100864\pi\)
\(728\) 0 0
\(729\) −312.354 961.328i −0.428470 1.31869i
\(730\) 0 0
\(731\) −244.011 177.285i −0.333805 0.242523i
\(732\) 0 0
\(733\) 676.750 + 219.889i 0.923260 + 0.299985i 0.731804 0.681516i \(-0.238679\pi\)
0.191457 + 0.981501i \(0.438679\pi\)
\(734\) 0 0
\(735\) −88.2082 + 64.0870i −0.120011 + 0.0871932i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −209.516 288.374i −0.283513 0.390223i 0.643380 0.765547i \(-0.277531\pi\)
−0.926894 + 0.375324i \(0.877531\pi\)
\(740\) 0 0
\(741\) 761.170 2342.64i 1.02722 3.16146i
\(742\) 0 0
\(743\) −126.543 + 174.171i −0.170313 + 0.234416i −0.885638 0.464376i \(-0.846279\pi\)
0.715325 + 0.698792i \(0.246279\pi\)
\(744\) 0 0
\(745\) −270.823 + 87.9957i −0.363521 + 0.118115i
\(746\) 0 0
\(747\) 51.1760i 0.0685087i
\(748\) 0 0
\(749\) −7.92691 −0.0105833
\(750\) 0 0
\(751\) 5.74512 + 17.6817i 0.00764997 + 0.0235442i 0.954809 0.297221i \(-0.0960599\pi\)
−0.947159 + 0.320765i \(0.896060\pi\)
\(752\) 0 0
\(753\) −1100.94 799.881i −1.46207 1.06226i
\(754\) 0 0
\(755\) −581.902 189.071i −0.770731 0.250426i
\(756\) 0 0
\(757\) −259.291 + 188.386i −0.342524 + 0.248858i −0.745726 0.666253i \(-0.767897\pi\)
0.403202 + 0.915111i \(0.367897\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.83191 6.65055i −0.00634942 0.00873923i 0.805830 0.592146i \(-0.201719\pi\)
−0.812180 + 0.583407i \(0.801719\pi\)
\(762\) 0 0
\(763\) −299.168 + 920.745i −0.392094 + 1.20674i
\(764\) 0 0
\(765\) −823.569 + 1133.55i −1.07656 + 1.48176i
\(766\) 0 0
\(767\) 525.138 170.628i 0.684665 0.222461i
\(768\) 0 0
\(769\) 32.0029i 0.0416162i −0.999783 0.0208081i \(-0.993376\pi\)
0.999783 0.0208081i \(-0.00662391\pi\)
\(770\) 0 0
\(771\) 2541.83 3.29679
\(772\) 0 0
\(773\) 278.940 + 858.489i 0.360854 + 1.11059i 0.952537 + 0.304423i \(0.0984637\pi\)
−0.591683 + 0.806171i \(0.701536\pi\)
\(774\) 0 0
\(775\) 44.6606 + 32.4478i 0.0576265 + 0.0418681i
\(776\) 0 0
\(777\) −888.149 288.577i −1.14305 0.371399i
\(778\) 0 0
\(779\) −1297.59 + 942.757i −1.66572 + 1.21021i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −285.794 393.362i −0.364999 0.502377i
\(784\) 0 0
\(785\) −399.740 + 1230.27i −0.509223 + 1.56723i
\(786\) 0 0
\(787\) 496.500 683.374i 0.630877 0.868327i −0.367211 0.930138i \(-0.619687\pi\)
0.998088 + 0.0618102i \(0.0196873\pi\)
\(788\) 0 0
\(789\) −858.356 + 278.897i −1.08790 + 0.353481i
\(790\) 0 0
\(791\) 388.085i 0.490626i
\(792\) 0 0
\(793\) −426.232 −0.537493
\(794\) 0 0
\(795\) 73.3224 + 225.663i 0.0922294 + 0.283853i
\(796\) 0 0
\(797\) 346.108 + 251.462i 0.434264 + 0.315511i 0.783352 0.621579i \(-0.213508\pi\)
−0.349088 + 0.937090i \(0.613508\pi\)
\(798\) 0 0
\(799\) 1325.40 + 430.648i 1.65882 + 0.538984i
\(800\) 0 0
\(801\) −809.224 + 587.936i −1.01027 + 0.734002i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 66.6775 + 91.7737i 0.0828292 + 0.114005i
\(806\) 0 0
\(807\) 164.707 506.915i 0.204098 0.628148i
\(808\) 0 0
\(809\) −391.323 + 538.609i −0.483712 + 0.665772i −0.979213 0.202835i \(-0.934984\pi\)
0.495501 + 0.868607i \(0.334984\pi\)
\(810\) 0 0
\(811\) 618.897 201.092i 0.763129 0.247956i 0.0985078 0.995136i \(-0.468593\pi\)
0.664621 + 0.747181i \(0.268593\pi\)
\(812\) 0 0
\(813\) 742.189i 0.912901i
\(814\) 0 0
\(815\) −68.2962 −0.0837990
\(816\) 0 0
\(817\) −168.793 519.493i −0.206602 0.635854i
\(818\) 0 0
\(819\) −1343.17 975.869i −1.64001 1.19154i
\(820\) 0 0
\(821\) 1174.46 + 381.605i 1.43052 + 0.464805i 0.918929 0.394422i \(-0.129055\pi\)
0.511594 + 0.859227i \(0.329055\pi\)
\(822\) 0 0
\(823\) −551.803 + 400.908i −0.670477 + 0.487130i −0.870185 0.492725i \(-0.836001\pi\)
0.199708 + 0.979856i \(0.436001\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 128.263 + 176.539i 0.155094 + 0.213469i 0.879492 0.475913i \(-0.157882\pi\)
−0.724398 + 0.689382i \(0.757882\pi\)
\(828\) 0 0
\(829\) 392.047 1206.60i 0.472916 1.45549i −0.375832 0.926688i \(-0.622643\pi\)
0.848748 0.528798i \(-0.177357\pi\)
\(830\) 0 0
\(831\) −772.904 + 1063.81i −0.930089 + 1.28016i
\(832\) 0 0
\(833\) 77.3546 25.1340i 0.0928627 0.0301729i
\(834\) 0 0
\(835\) 770.856i 0.923181i
\(836\) 0 0
\(837\) 833.592 0.995928
\(838\) 0 0
\(839\) 280.558 + 863.468i 0.334395 + 1.02916i 0.967019 + 0.254704i \(0.0819779\pi\)
−0.632624 + 0.774459i \(0.718022\pi\)
\(840\) 0 0
\(841\) −548.480 398.494i −0.652176 0.473834i
\(842\) 0 0
\(843\) 2461.55 + 799.804i 2.91998 + 0.948760i
\(844\) 0 0
\(845\) 221.709 161.081i 0.262377 0.190628i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 531.376 + 731.376i 0.625884 + 0.861456i
\(850\) 0 0
\(851\) 30.7401 94.6084i 0.0361224 0.111173i
\(852\) 0 0
\(853\) 11.2278 15.4537i 0.0131627 0.0181169i −0.802385 0.596807i \(-0.796436\pi\)
0.815548 + 0.578690i \(0.196436\pi\)
\(854\) 0 0
\(855\) −2413.29 + 784.124i −2.82256 + 0.917104i
\(856\) 0 0
\(857\) 488.737i 0.570289i 0.958485 + 0.285144i \(0.0920415\pi\)
−0.958485 + 0.285144i \(0.907958\pi\)
\(858\) 0 0
\(859\) −1449.51 −1.68744 −0.843721 0.536782i \(-0.819640\pi\)
−0.843721 + 0.536782i \(0.819640\pi\)
\(860\) 0 0
\(861\) 515.898 + 1587.77i 0.599185 + 1.84410i
\(862\) 0 0
\(863\) −26.2857 19.0977i −0.0304586 0.0221294i 0.572452 0.819938i \(-0.305992\pi\)
−0.602910 + 0.797809i \(0.705992\pi\)
\(864\) 0 0
\(865\) −505.115 164.122i −0.583948 0.189736i
\(866\) 0 0
\(867\) 124.369 90.3594i 0.143448 0.104221i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −271.964 374.326i −0.312243 0.429766i
\(872\) 0 0
\(873\) 245.100 754.339i 0.280756 0.864077i
\(874\) 0 0
\(875\) −511.337 + 703.795i −0.584385 + 0.804337i
\(876\) 0 0
\(877\) 116.087 37.7191i 0.132369 0.0430092i −0.242083 0.970255i \(-0.577831\pi\)
0.374452 + 0.927246i \(0.377831\pi\)
\(878\) 0 0
\(879\) 2628.09i 2.98986i
\(880\) 0 0
\(881\) −545.388 −0.619055 −0.309528 0.950890i \(-0.600171\pi\)
−0.309528 + 0.950890i \(0.600171\pi\)
\(882\) 0 0
\(883\) −314.489 967.897i −0.356159 1.09615i −0.955334 0.295528i \(-0.904505\pi\)
0.599175 0.800618i \(-0.295495\pi\)
\(884\) 0 0
\(885\) −710.648 516.316i −0.802993 0.583408i
\(886\) 0 0
\(887\) −1447.77 470.407i −1.63220 0.530335i −0.657427 0.753518i \(-0.728355\pi\)
−0.974777 + 0.223183i \(0.928355\pi\)
\(888\) 0 0
\(889\) −213.349 + 155.007i −0.239988 + 0.174361i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1483.47 + 2041.83i 1.66122 + 2.28648i
\(894\) 0 0
\(895\) 230.245 708.620i 0.257257 0.791754i
\(896\) 0 0
\(897\) 160.532 220.954i 0.178966 0.246325i
\(898\) 0 0
\(899\) −265.842 + 86.3772i −0.295708 + 0.0960814i
\(900\) 0 0
\(901\) 177.004i 0.196453i
\(902\) 0 0
\(903\) −568.557 −0.629631
\(904\) 0 0
\(905\) −499.109 1536.10i −0.551501 1.69735i
\(906\) 0 0
\(907\) 507.814 + 368.948i 0.559883 + 0.406779i 0.831416 0.555650i \(-0.187531\pi\)
−0.271533 + 0.962429i \(0.587531\pi\)
\(908\) 0 0
\(909\) −1383.59 449.557i −1.52211 0.494562i
\(910\) 0 0
\(911\) −580.440 + 421.715i −0.637146 + 0.462914i −0.858869 0.512196i \(-0.828832\pi\)
0.221722 + 0.975110i \(0.428832\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 398.561 + 548.572i 0.435586 + 0.599532i
\(916\) 0 0
\(917\) 268.407 826.072i 0.292701 0.900842i
\(918\) 0 0
\(919\) −523.551 + 720.606i −0.569697 + 0.784120i −0.992519 0.122093i \(-0.961040\pi\)
0.422822 + 0.906213i \(0.361040\pi\)
\(920\) 0 0
\(921\) −2180.86 + 708.604i −2.36792 + 0.769385i
\(922\) 0 0
\(923\) 618.133i 0.669700i
\(924\) 0 0
\(925\) 69.8995 0.0755670
\(926\) 0 0
\(927\) −63.5202 195.495i −0.0685223 0.210890i
\(928\) 0 0
\(929\) 656.164 + 476.731i 0.706312 + 0.513166i 0.881982 0.471283i \(-0.156209\pi\)
−0.175670 + 0.984449i \(0.556209\pi\)
\(930\) 0 0
\(931\) 140.090 + 45.5180i 0.150473 + 0.0488915i
\(932\) 0 0
\(933\) −1658.65 + 1205.08i −1.77776 + 1.29162i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −864.878 1190.40i −0.923029 1.27044i −0.962517 0.271221i \(-0.912573\pi\)
0.0394880 0.999220i \(-0.487427\pi\)
\(938\) 0 0
\(939\) 26.0766 80.2556i 0.0277706 0.0854692i
\(940\) 0 0
\(941\) −80.5218 + 110.829i −0.0855705 + 0.117778i −0.849656 0.527337i \(-0.823190\pi\)
0.764086 + 0.645115i \(0.223190\pi\)
\(942\) 0 0
\(943\) −169.134 + 54.9551i −0.179358 + 0.0582769i
\(944\) 0 0
\(945\) 1203.65i 1.27370i
\(946\) 0 0
\(947\) −862.357 −0.910620 −0.455310 0.890333i \(-0.650472\pi\)
−0.455310 + 0.890333i \(0.650472\pi\)
\(948\) 0 0
\(949\) 287.405 + 884.543i 0.302851 + 0.932079i
\(950\) 0 0
\(951\) −2299.79 1670.90i −2.41829 1.75699i
\(952\) 0 0
\(953\) 1416.96 + 460.397i 1.48684 + 0.483103i 0.936147 0.351608i \(-0.114365\pi\)
0.550689 + 0.834710i \(0.314365\pi\)
\(954\) 0 0
\(955\) −119.363 + 86.7224i −0.124988 + 0.0908088i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 807.477 + 1111.40i 0.841999 + 1.15891i
\(960\) 0 0
\(961\) −148.878 + 458.199i −0.154920 + 0.476794i
\(962\) 0 0
\(963\) 11.5560 15.9055i 0.0120000 0.0165166i
\(964\) 0 0
\(965\) 226.151 73.4810i 0.234354 0.0761461i
\(966\) 0 0
\(967\) 961.962i 0.994790i −0.867524 0.497395i \(-0.834290\pi\)
0.867524 0.497395i \(-0.165710\pi\)
\(968\) 0 0
\(969\) 2923.19 3.01671
\(970\) 0 0
\(971\) −316.015 972.593i −0.325453 1.00164i −0.971236 0.238119i \(-0.923469\pi\)
0.645783 0.763521i \(-0.276531\pi\)
\(972\) 0 0
\(973\) 1155.32 + 839.386i 1.18738 + 0.862679i
\(974\) 0 0
\(975\) 182.516 + 59.3030i 0.187196 + 0.0608236i
\(976\) 0 0
\(977\) 952.451 691.996i 0.974873 0.708286i 0.0183158 0.999832i \(-0.494170\pi\)
0.956557 + 0.291546i \(0.0941696\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1411.36 1942.57i −1.43870 1.98019i
\(982\) 0 0
\(983\) −109.991 + 338.519i −0.111894 + 0.344373i −0.991286 0.131724i \(-0.957949\pi\)
0.879393 + 0.476097i \(0.157949\pi\)
\(984\) 0 0
\(985\) −629.339 + 866.211i −0.638923 + 0.879402i
\(986\) 0 0
\(987\) 2498.43 811.791i 2.53134 0.822483i
\(988\) 0 0
\(989\) 60.5645i 0.0612381i
\(990\) 0 0
\(991\) −370.283 −0.373646 −0.186823 0.982394i \(-0.559819\pi\)
−0.186823 + 0.982394i \(0.559819\pi\)
\(992\) 0 0
\(993\) 261.846 + 805.878i 0.263691 + 0.811559i
\(994\) 0 0
\(995\) −178.067 129.373i −0.178962 0.130023i
\(996\) 0 0
\(997\) −26.5969 8.64186i −0.0266769 0.00866786i 0.295648 0.955297i \(-0.404464\pi\)
−0.322325 + 0.946629i \(0.604464\pi\)
\(998\) 0 0
\(999\) 853.923 620.412i 0.854778 0.621033i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.3.f.e.481.2 8
11.2 odd 10 484.3.d.c.241.7 8
11.3 even 5 44.3.f.a.17.1 yes 8
11.4 even 5 484.3.f.d.161.2 8
11.5 even 5 484.3.f.a.233.1 8
11.6 odd 10 44.3.f.a.13.1 8
11.7 odd 10 inner 484.3.f.e.161.2 8
11.8 odd 10 484.3.f.a.457.1 8
11.9 even 5 484.3.d.c.241.8 8
11.10 odd 2 484.3.f.d.481.2 8
33.2 even 10 4356.3.f.g.1693.3 8
33.14 odd 10 396.3.t.a.325.1 8
33.17 even 10 396.3.t.a.145.1 8
33.20 odd 10 4356.3.f.g.1693.4 8
44.3 odd 10 176.3.n.c.17.2 8
44.39 even 10 176.3.n.c.145.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.3.f.a.13.1 8 11.6 odd 10
44.3.f.a.17.1 yes 8 11.3 even 5
176.3.n.c.17.2 8 44.3 odd 10
176.3.n.c.145.2 8 44.39 even 10
396.3.t.a.145.1 8 33.17 even 10
396.3.t.a.325.1 8 33.14 odd 10
484.3.d.c.241.7 8 11.2 odd 10
484.3.d.c.241.8 8 11.9 even 5
484.3.f.a.233.1 8 11.5 even 5
484.3.f.a.457.1 8 11.8 odd 10
484.3.f.d.161.2 8 11.4 even 5
484.3.f.d.481.2 8 11.10 odd 2
484.3.f.e.161.2 8 11.7 odd 10 inner
484.3.f.e.481.2 8 1.1 even 1 trivial
4356.3.f.g.1693.3 8 33.2 even 10
4356.3.f.g.1693.4 8 33.20 odd 10