Properties

Label 484.3.f.b.161.2
Level $484$
Weight $3$
Character 484.161
Analytic conductor $13.188$
Analytic rank $0$
Dimension $8$
CM discriminant -11
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [484,3,Mod(161,484)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("484.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(484, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 484.f (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-5,0,-1,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1880447950\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.18530015625.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 9x^{6} - 17x^{5} + 89x^{4} + 136x^{3} + 576x^{2} + 512x + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

Embedding invariants

Embedding label 161.2
Root \(-1.04209 + 3.20723i\) of defining polynomial
Character \(\chi\) \(=\) 484.161
Dual form 484.3.f.b.481.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.66013 - 5.10934i) q^{3} +(6.56666 - 4.77096i) q^{5} +(-16.0682 - 11.6742i) q^{9} +(-13.4750 - 41.4717i) q^{15} +8.35053 q^{23} +(12.6336 - 38.8822i) q^{25} +(-47.2066 + 34.2976i) q^{27} +(19.8891 + 14.4502i) q^{31} +(22.5020 + 69.2539i) q^{37} -161.212 q^{45} +(15.4508 - 47.5528i) q^{47} +(-39.6418 + 28.8015i) q^{49} +(56.6312 + 41.1450i) q^{53} +(-29.8462 - 91.8571i) q^{59} -129.519 q^{67} +(13.8629 - 42.6657i) q^{69} +(-18.9438 + 13.7635i) q^{71} +(-177.689 - 129.099i) q^{75} +(41.6316 + 128.129i) q^{81} +177.753 q^{89} +(106.850 - 77.6308i) q^{93} +(156.938 + 114.022i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{3} - q^{5} - 11 q^{9} + 47 q^{15} - 140 q^{23} - 99 q^{25} - 65 q^{27} - 37 q^{31} - 25 q^{37} - 968 q^{45} - 100 q^{47} - 98 q^{49} + 140 q^{53} + 107 q^{59} - 140 q^{67} - 61 q^{69} - 133 q^{71}+ \cdots + 95 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.66013 5.10934i 0.553375 1.70311i −0.146820 0.989163i \(-0.546904\pi\)
0.700195 0.713951i \(-0.253096\pi\)
\(4\) 0 0
\(5\) 6.56666 4.77096i 1.31333 0.954192i 0.313343 0.949640i \(-0.398551\pi\)
0.999990 0.00455232i \(-0.00144905\pi\)
\(6\) 0 0
\(7\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(8\) 0 0
\(9\) −16.0682 11.6742i −1.78536 1.29714i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(14\) 0 0
\(15\) −13.4750 41.4717i −0.898332 2.76478i
\(16\) 0 0
\(17\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(18\) 0 0
\(19\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.35053 0.363067 0.181533 0.983385i \(-0.441894\pi\)
0.181533 + 0.983385i \(0.441894\pi\)
\(24\) 0 0
\(25\) 12.6336 38.8822i 0.505344 1.55529i
\(26\) 0 0
\(27\) −47.2066 + 34.2976i −1.74839 + 1.27028i
\(28\) 0 0
\(29\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(30\) 0 0
\(31\) 19.8891 + 14.4502i 0.641582 + 0.466137i 0.860393 0.509630i \(-0.170218\pi\)
−0.218811 + 0.975767i \(0.570218\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 22.5020 + 69.2539i 0.608161 + 1.87173i 0.473393 + 0.880851i \(0.343029\pi\)
0.134768 + 0.990877i \(0.456971\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −161.212 −3.58249
\(46\) 0 0
\(47\) 15.4508 47.5528i 0.328741 1.01176i −0.640982 0.767556i \(-0.721473\pi\)
0.969723 0.244206i \(-0.0785274\pi\)
\(48\) 0 0
\(49\) −39.6418 + 28.8015i −0.809017 + 0.587785i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 56.6312 + 41.1450i 1.06851 + 0.776320i 0.975644 0.219358i \(-0.0703963\pi\)
0.0928686 + 0.995678i \(0.470396\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −29.8462 91.8571i −0.505867 1.55690i −0.799308 0.600922i \(-0.794800\pi\)
0.293441 0.955977i \(-0.405200\pi\)
\(60\) 0 0
\(61\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −129.519 −1.93312 −0.966559 0.256442i \(-0.917450\pi\)
−0.966559 + 0.256442i \(0.917450\pi\)
\(68\) 0 0
\(69\) 13.8629 42.6657i 0.200912 0.618344i
\(70\) 0 0
\(71\) −18.9438 + 13.7635i −0.266814 + 0.193851i −0.713145 0.701016i \(-0.752730\pi\)
0.446332 + 0.894868i \(0.352730\pi\)
\(72\) 0 0
\(73\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(74\) 0 0
\(75\) −177.689 129.099i −2.36919 1.72132i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(80\) 0 0
\(81\) 41.6316 + 128.129i 0.513971 + 1.58184i
\(82\) 0 0
\(83\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 177.753 1.99722 0.998610 0.0526989i \(-0.0167824\pi\)
0.998610 + 0.0526989i \(0.0167824\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 106.850 77.6308i 1.14892 0.834739i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 156.938 + 114.022i 1.61792 + 1.17549i 0.815933 + 0.578146i \(0.196224\pi\)
0.801987 + 0.597342i \(0.203776\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(102\) 0 0
\(103\) −58.7132 180.701i −0.570031 1.75438i −0.652507 0.757783i \(-0.726283\pi\)
0.0824753 0.996593i \(-0.473717\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 391.198 3.52431
\(112\) 0 0
\(113\) −14.5801 + 44.8728i −0.129027 + 0.397105i −0.994613 0.103655i \(-0.966946\pi\)
0.865586 + 0.500760i \(0.166946\pi\)
\(114\) 0 0
\(115\) 54.8351 39.8401i 0.476827 0.346435i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −39.8388 122.611i −0.318710 0.980890i
\(126\) 0 0
\(127\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −146.357 + 450.441i −1.08413 + 3.33660i
\(136\) 0 0
\(137\) −155.993 + 113.336i −1.13863 + 0.827267i −0.986928 0.161159i \(-0.948477\pi\)
−0.151706 + 0.988426i \(0.548477\pi\)
\(138\) 0 0
\(139\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(140\) 0 0
\(141\) −217.313 157.887i −1.54123 1.11977i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 81.3462 + 250.358i 0.553375 + 1.70311i
\(148\) 0 0
\(149\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(150\) 0 0
\(151\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 199.546 1.28740
\(156\) 0 0
\(157\) 28.0240 86.2489i 0.178497 0.549356i −0.821279 0.570526i \(-0.806739\pi\)
0.999776 + 0.0211705i \(0.00673928\pi\)
\(158\) 0 0
\(159\) 304.239 221.042i 1.91345 1.39020i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 56.6312 + 41.1450i 0.347431 + 0.252423i 0.747790 0.663935i \(-0.231115\pi\)
−0.400360 + 0.916358i \(0.631115\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(168\) 0 0
\(169\) 52.2239 + 160.729i 0.309017 + 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −518.878 −2.93151
\(178\) 0 0
\(179\) 80.3721 247.360i 0.449006 1.38190i −0.429024 0.903293i \(-0.641142\pi\)
0.878030 0.478606i \(-0.158858\pi\)
\(180\) 0 0
\(181\) 280.665 203.915i 1.55064 1.12660i 0.607440 0.794366i \(-0.292197\pi\)
0.943196 0.332237i \(-0.107803\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 478.171 + 347.411i 2.58471 + 1.87790i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 117.454 + 361.487i 0.614943 + 1.89260i 0.402470 + 0.915433i \(0.368152\pi\)
0.212473 + 0.977167i \(0.431848\pi\)
\(192\) 0 0
\(193\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 2.00000 0.0100503 0.00502513 0.999987i \(-0.498400\pi\)
0.00502513 + 0.999987i \(0.498400\pi\)
\(200\) 0 0
\(201\) −215.018 + 661.757i −1.06974 + 3.29232i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −134.178 97.4861i −0.648204 0.470947i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(212\) 0 0
\(213\) 38.8732 + 119.639i 0.182503 + 0.561687i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 76.7445 236.195i 0.344146 1.05917i −0.617894 0.786262i \(-0.712014\pi\)
0.962039 0.272910i \(-0.0879863\pi\)
\(224\) 0 0
\(225\) −656.919 + 477.280i −2.91964 + 2.12124i
\(226\) 0 0
\(227\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(228\) 0 0
\(229\) −279.720 203.228i −1.22148 0.887460i −0.225261 0.974298i \(-0.572324\pi\)
−0.996222 + 0.0868385i \(0.972324\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(234\) 0 0
\(235\) −125.412 385.979i −0.533669 1.64246i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 198.614 0.817342
\(244\) 0 0
\(245\) −122.904 + 378.259i −0.501649 + 1.54392i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 405.526 + 294.632i 1.61564 + 1.17383i 0.839768 + 0.542945i \(0.182691\pi\)
0.775874 + 0.630888i \(0.217309\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −58.7132 180.701i −0.228456 0.703116i −0.997922 0.0644282i \(-0.979478\pi\)
0.769466 0.638688i \(-0.220522\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 568.179 2.14407
\(266\) 0 0
\(267\) 295.092 908.199i 1.10521 3.40150i
\(268\) 0 0
\(269\) −292.864 + 212.778i −1.08871 + 0.790997i −0.979182 0.202986i \(-0.934935\pi\)
−0.109533 + 0.993983i \(0.534935\pi\)
\(270\) 0 0
\(271\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(278\) 0 0
\(279\) −150.886 464.379i −0.540810 1.66444i
\(280\) 0 0
\(281\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(282\) 0 0
\(283\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 89.3059 274.855i 0.309017 0.951057i
\(290\) 0 0
\(291\) 843.116 612.560i 2.89731 2.10502i
\(292\) 0 0
\(293\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(294\) 0 0
\(295\) −634.236 460.800i −2.14995 1.56203i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) −1020.73 −3.30334
\(310\) 0 0
\(311\) −147.710 + 454.605i −0.474952 + 1.46175i 0.371070 + 0.928605i \(0.378991\pi\)
−0.846022 + 0.533148i \(0.821009\pi\)
\(312\) 0 0
\(313\) 290.162 210.815i 0.927036 0.673531i −0.0182297 0.999834i \(-0.505803\pi\)
0.945265 + 0.326303i \(0.105803\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −400.756 291.166i −1.26421 0.918505i −0.265257 0.964178i \(-0.585457\pi\)
−0.998956 + 0.0456731i \(0.985457\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0895 0.0606935 0.0303467 0.999539i \(-0.490339\pi\)
0.0303467 + 0.999539i \(0.490339\pi\)
\(332\) 0 0
\(333\) 446.921 1375.48i 1.34210 4.13057i
\(334\) 0 0
\(335\) −850.508 + 617.930i −2.53883 + 1.84457i
\(336\) 0 0
\(337\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(338\) 0 0
\(339\) 205.066 + 148.989i 0.604914 + 0.439496i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −112.523 346.311i −0.326154 1.00380i
\(346\) 0 0
\(347\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(348\) 0 0
\(349\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.1441 0.0797285 0.0398642 0.999205i \(-0.487307\pi\)
0.0398642 + 0.999205i \(0.487307\pi\)
\(354\) 0 0
\(355\) −58.7325 + 180.760i −0.165444 + 0.509183i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(360\) 0 0
\(361\) −292.055 212.190i −0.809017 0.587785i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −196.635 605.179i −0.535789 1.64899i −0.741937 0.670469i \(-0.766093\pi\)
0.206148 0.978521i \(-0.433907\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −692.600 −1.84693
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −576.638 + 418.952i −1.52147 + 1.10541i −0.560719 + 0.828006i \(0.689475\pi\)
−0.960752 + 0.277407i \(0.910525\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 396.029 + 287.732i 1.03402 + 0.751259i 0.969109 0.246633i \(-0.0793241\pi\)
0.0649097 + 0.997891i \(0.479324\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 231.895 + 713.698i 0.596130 + 1.83470i 0.549020 + 0.835809i \(0.315001\pi\)
0.0471101 + 0.998890i \(0.484999\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −790.000 −1.98992 −0.994962 0.100251i \(-0.968036\pi\)
−0.994962 + 0.100251i \(0.968036\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −79.2837 + 57.6030i −0.197715 + 0.143648i −0.682238 0.731130i \(-0.738993\pi\)
0.484523 + 0.874778i \(0.338993\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 884.680 + 642.757i 2.18439 + 1.58706i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(410\) 0 0
\(411\) 320.102 + 985.173i 0.778837 + 2.39701i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −262.000 −0.625298 −0.312649 0.949869i \(-0.601216\pi\)
−0.312649 + 0.949869i \(0.601216\pi\)
\(420\) 0 0
\(421\) −229.291 + 705.684i −0.544633 + 1.67621i 0.177227 + 0.984170i \(0.443287\pi\)
−0.721860 + 0.692039i \(0.756713\pi\)
\(422\) 0 0
\(423\) −803.411 + 583.712i −1.89932 + 1.37993i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(432\) 0 0
\(433\) 235.522 + 724.862i 0.543931 + 1.67405i 0.723518 + 0.690305i \(0.242524\pi\)
−0.179588 + 0.983742i \(0.557476\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 973.209 2.20682
\(442\) 0 0
\(443\) −136.276 + 419.413i −0.307620 + 0.946756i 0.671067 + 0.741397i \(0.265836\pi\)
−0.978687 + 0.205359i \(0.934164\pi\)
\(444\) 0 0
\(445\) 1167.24 848.051i 2.62302 1.90573i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 705.135 + 512.311i 1.57046 + 1.14100i 0.926718 + 0.375759i \(0.122618\pi\)
0.643739 + 0.765245i \(0.277382\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −818.866 −1.76861 −0.884305 0.466910i \(-0.845367\pi\)
−0.884305 + 0.466910i \(0.845367\pi\)
\(464\) 0 0
\(465\) 331.272 1019.55i 0.712413 2.19258i
\(466\) 0 0
\(467\) −283.545 + 206.008i −0.607163 + 0.441130i −0.848414 0.529333i \(-0.822442\pi\)
0.241251 + 0.970463i \(0.422442\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −394.152 286.368i −0.836840 0.608000i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −429.626 1322.25i −0.900683 2.77202i
\(478\) 0 0
\(479\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1574.56 3.24651
\(486\) 0 0
\(487\) −20.6966 + 63.6977i −0.0424982 + 0.130796i −0.970054 0.242888i \(-0.921905\pi\)
0.927556 + 0.373684i \(0.121905\pi\)
\(488\) 0 0
\(489\) 304.239 221.042i 0.622165 0.452029i
\(490\) 0 0
\(491\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 186.028 + 572.536i 0.372802 + 1.14737i 0.944950 + 0.327216i \(0.106110\pi\)
−0.572147 + 0.820151i \(0.693890\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 907.916 1.79076
\(508\) 0 0
\(509\) −115.649 + 355.930i −0.227208 + 0.699274i 0.770852 + 0.637014i \(0.219831\pi\)
−0.998060 + 0.0622597i \(0.980169\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1247.67 906.483i −2.42265 1.76016i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −46.8454 144.175i −0.0899144 0.276728i 0.895981 0.444093i \(-0.146474\pi\)
−0.985895 + 0.167365i \(0.946474\pi\)
\(522\) 0 0
\(523\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −459.269 −0.868183
\(530\) 0 0
\(531\) −592.787 + 1824.41i −1.11636 + 3.43580i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1130.42 821.297i −2.10506 1.52942i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(542\) 0 0
\(543\) −575.933 1772.54i −1.06065 3.26434i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2568.87 1866.39i 4.62859 3.36287i
\(556\) 0 0
\(557\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(564\) 0 0
\(565\) 118.344 + 364.226i 0.209459 + 0.644647i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 2041.95 3.56361
\(574\) 0 0
\(575\) 105.497 324.687i 0.183473 0.564673i
\(576\) 0 0
\(577\) 99.1113 72.0086i 0.171770 0.124798i −0.498579 0.866844i \(-0.666145\pi\)
0.670349 + 0.742046i \(0.266145\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 349.189 + 1074.69i 0.594871 + 1.83082i 0.555368 + 0.831605i \(0.312577\pi\)
0.0395031 + 0.999219i \(0.487423\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.32025 10.2187i 0.00556156 0.0171167i
\(598\) 0 0
\(599\) −79.2837 + 57.6030i −0.132360 + 0.0961652i −0.651995 0.758223i \(-0.726068\pi\)
0.519635 + 0.854388i \(0.326068\pi\)
\(600\) 0 0
\(601\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(602\) 0 0
\(603\) 2081.14 + 1512.04i 3.45131 + 2.50752i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 530.000 0.858995 0.429498 0.903068i \(-0.358691\pi\)
0.429498 + 0.903068i \(0.358691\pi\)
\(618\) 0 0
\(619\) 177.813 547.253i 0.287259 0.884092i −0.698454 0.715655i \(-0.746128\pi\)
0.985712 0.168437i \(-0.0538719\pi\)
\(620\) 0 0
\(621\) −394.200 + 286.403i −0.634783 + 0.461197i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −19.7024 14.3147i −0.0315239 0.0229034i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 280.615 + 863.644i 0.444715 + 1.36869i 0.882796 + 0.469756i \(0.155658\pi\)
−0.438081 + 0.898935i \(0.644342\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 465.070 0.727810
\(640\) 0 0
\(641\) −394.389 + 1213.80i −0.615271 + 1.89361i −0.217806 + 0.975992i \(0.569890\pi\)
−0.397465 + 0.917617i \(0.630110\pi\)
\(642\) 0 0
\(643\) −697.673 + 506.889i −1.08503 + 0.788319i −0.978553 0.205996i \(-0.933957\pi\)
−0.106476 + 0.994315i \(0.533957\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 587.080 + 426.539i 0.907388 + 0.659256i 0.940353 0.340201i \(-0.110495\pi\)
−0.0329650 + 0.999457i \(0.510495\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −245.355 755.126i −0.375735 1.15639i −0.942981 0.332846i \(-0.891991\pi\)
0.567246 0.823549i \(-0.308009\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 16.4051 0.0248187 0.0124093 0.999923i \(-0.496050\pi\)
0.0124093 + 0.999923i \(0.496050\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1079.40 784.228i −1.61345 1.17224i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(674\) 0 0
\(675\) 737.177 + 2268.80i 1.09211 + 3.36118i
\(676\) 0 0
\(677\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −790.000 −1.15666 −0.578331 0.815802i \(-0.696296\pi\)
−0.578331 + 0.815802i \(0.696296\pi\)
\(684\) 0 0
\(685\) −483.634 + 1488.47i −0.706035 + 2.17295i
\(686\) 0 0
\(687\) −1502.73 + 1091.80i −2.18738 + 1.58923i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 150.422 + 109.288i 0.217687 + 0.158159i 0.691285 0.722582i \(-0.257045\pi\)
−0.473598 + 0.880741i \(0.657045\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −2180.30 −3.09262
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1089.83 + 791.806i −1.53713 + 1.11679i −0.585031 + 0.811011i \(0.698918\pi\)
−0.952102 + 0.305781i \(0.901082\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 166.084 + 120.667i 0.232937 + 0.169239i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −406.027 1249.62i −0.564711 1.73800i −0.668808 0.743435i \(-0.733195\pi\)
0.104097 0.994567i \(-0.466805\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1134.19 −1.56010 −0.780050 0.625717i \(-0.784806\pi\)
−0.780050 + 0.625717i \(0.784806\pi\)
\(728\) 0 0
\(729\) −44.9603 + 138.374i −0.0616740 + 0.189813i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(734\) 0 0
\(735\) 1728.62 + 1255.92i 2.35186 + 1.70873i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 456.553 1405.13i 0.607927 1.87101i 0.132669 0.991160i \(-0.457645\pi\)
0.475258 0.879846i \(-0.342355\pi\)
\(752\) 0 0
\(753\) 2178.60 1582.85i 2.89323 2.10205i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 56.6312 + 41.1450i 0.0748100 + 0.0543527i 0.624562 0.780975i \(-0.285278\pi\)
−0.549752 + 0.835328i \(0.685278\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −1020.73 −1.32391
\(772\) 0 0
\(773\) 423.353 1302.95i 0.547676 1.68557i −0.166866 0.985980i \(-0.553365\pi\)
0.714542 0.699593i \(-0.246635\pi\)
\(774\) 0 0
\(775\) 813.127 590.771i 1.04920 0.762286i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −227.466 700.068i −0.289766 0.891807i
\(786\) 0 0
\(787\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 943.249 2903.02i 1.18648 3.65160i
\(796\) 0 0
\(797\) −522.636 + 379.717i −0.655754 + 0.476433i −0.865226 0.501381i \(-0.832825\pi\)
0.209472 + 0.977815i \(0.432825\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −2856.17 2075.13i −3.56575 2.59067i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 600.966 + 1849.58i 0.744691 + 2.29192i
\(808\) 0 0
\(809\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(810\) 0 0
\(811\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 568.179 0.697152
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(822\) 0 0
\(823\) −719.359 522.645i −0.874069 0.635048i 0.0576069 0.998339i \(-0.481653\pi\)
−0.931676 + 0.363291i \(0.881653\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(828\) 0 0
\(829\) −259.865 799.784i −0.313469 0.964757i −0.976380 0.216060i \(-0.930679\pi\)
0.662912 0.748698i \(-0.269321\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1434.50 −1.71386
\(838\) 0 0
\(839\) −492.968 + 1517.20i −0.587567 + 1.80834i 0.00114272 + 0.999999i \(0.499636\pi\)
−0.588709 + 0.808345i \(0.700364\pi\)
\(840\) 0 0
\(841\) −680.383 + 494.327i −0.809017 + 0.587785i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1109.77 + 806.292i 1.31333 + 0.954192i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 187.903 + 578.307i 0.220803 + 0.679562i
\(852\) 0 0
\(853\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1714.11 1.99547 0.997736 0.0672491i \(-0.0214222\pi\)
0.997736 + 0.0672491i \(0.0214222\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 347.877 252.748i 0.403102 0.292871i −0.367701 0.929944i \(-0.619855\pi\)
0.770803 + 0.637073i \(0.219855\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1256.07 912.589i −1.44876 1.05258i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1190.59 3664.27i −1.36380 4.19733i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 75.1002 0.0852442 0.0426221 0.999091i \(-0.486429\pi\)
0.0426221 + 0.999091i \(0.486429\pi\)
\(882\) 0 0
\(883\) 423.353 1302.95i 0.479449 1.47559i −0.360414 0.932793i \(-0.617364\pi\)
0.839863 0.542799i \(-0.182636\pi\)
\(884\) 0 0
\(885\) −3407.30 + 2475.54i −3.85005 + 2.79723i
\(886\) 0 0
\(887\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −652.368 2007.78i −0.728902 2.24333i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 870.162 2678.08i 0.961505 2.95921i
\(906\) 0 0
\(907\) 1415.78 1028.62i 1.56095 1.13410i 0.625721 0.780047i \(-0.284805\pi\)
0.935227 0.354048i \(-0.115195\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1438.43 1045.08i −1.57896 1.14718i −0.917875 0.396870i \(-0.870096\pi\)
−0.661085 0.750311i \(-0.729904\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 2977.03 3.21841
\(926\) 0 0
\(927\) −1166.13 + 3588.97i −1.25796 + 3.87160i
\(928\) 0 0
\(929\) 775.038 563.098i 0.834272 0.606134i −0.0864930 0.996252i \(-0.527566\pi\)
0.920765 + 0.390119i \(0.127566\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2077.52 + 1509.40i 2.22670 + 1.61780i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(938\) 0 0
\(939\) −595.421 1832.52i −0.634101 1.95156i
\(940\) 0 0
\(941\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1823.54 −1.92560 −0.962798 0.270221i \(-0.912903\pi\)
−0.962798 + 0.270221i \(0.912903\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −2152.97 + 1564.23i −2.26390 + 1.64482i
\(952\) 0 0
\(953\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(954\) 0 0
\(955\) 2495.92 + 1813.39i 2.61353 + 1.89884i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −110.200 339.162i −0.114673 0.352926i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 506.412 1558.58i 0.521537 1.60513i −0.249527 0.968368i \(-0.580275\pi\)
0.771064 0.636758i \(-0.219725\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 571.067 + 414.904i 0.584510 + 0.424672i 0.840347 0.542048i \(-0.182351\pi\)
−0.255837 + 0.966720i \(0.582351\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 399.822 + 1230.52i 0.406736 + 1.25180i 0.919437 + 0.393238i \(0.128645\pi\)
−0.512701 + 0.858567i \(0.671355\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1582.00 −1.59637 −0.798184 0.602414i \(-0.794206\pi\)
−0.798184 + 0.602414i \(0.794206\pi\)
\(992\) 0 0
\(993\) 33.3512 102.644i 0.0335863 0.103368i
\(994\) 0 0
\(995\) 13.1333 9.54192i 0.0131993 0.00958987i
\(996\) 0 0
\(997\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(998\) 0 0
\(999\) −3437.48 2497.48i −3.44092 2.49998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.3.f.b.161.2 8
11.2 odd 10 inner 484.3.f.b.457.1 8
11.3 even 5 inner 484.3.f.b.481.2 8
11.4 even 5 inner 484.3.f.b.233.1 8
11.5 even 5 44.3.d.a.21.2 2
11.6 odd 10 44.3.d.a.21.2 2
11.7 odd 10 inner 484.3.f.b.233.1 8
11.8 odd 10 inner 484.3.f.b.481.2 8
11.9 even 5 inner 484.3.f.b.457.1 8
11.10 odd 2 CM 484.3.f.b.161.2 8
33.5 odd 10 396.3.f.a.109.2 2
33.17 even 10 396.3.f.a.109.2 2
44.27 odd 10 176.3.h.b.65.1 2
44.39 even 10 176.3.h.b.65.1 2
55.17 even 20 1100.3.e.a.549.1 4
55.27 odd 20 1100.3.e.a.549.1 4
55.28 even 20 1100.3.e.a.549.4 4
55.38 odd 20 1100.3.e.a.549.4 4
55.39 odd 10 1100.3.f.a.901.1 2
55.49 even 10 1100.3.f.a.901.1 2
77.6 even 10 2156.3.h.a.197.1 2
77.27 odd 10 2156.3.h.a.197.1 2
88.5 even 10 704.3.h.c.65.1 2
88.27 odd 10 704.3.h.f.65.2 2
88.61 odd 10 704.3.h.c.65.1 2
88.83 even 10 704.3.h.f.65.2 2
132.71 even 10 1584.3.j.c.1297.2 2
132.83 odd 10 1584.3.j.c.1297.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.3.d.a.21.2 2 11.5 even 5
44.3.d.a.21.2 2 11.6 odd 10
176.3.h.b.65.1 2 44.27 odd 10
176.3.h.b.65.1 2 44.39 even 10
396.3.f.a.109.2 2 33.5 odd 10
396.3.f.a.109.2 2 33.17 even 10
484.3.f.b.161.2 8 1.1 even 1 trivial
484.3.f.b.161.2 8 11.10 odd 2 CM
484.3.f.b.233.1 8 11.4 even 5 inner
484.3.f.b.233.1 8 11.7 odd 10 inner
484.3.f.b.457.1 8 11.2 odd 10 inner
484.3.f.b.457.1 8 11.9 even 5 inner
484.3.f.b.481.2 8 11.3 even 5 inner
484.3.f.b.481.2 8 11.8 odd 10 inner
704.3.h.c.65.1 2 88.5 even 10
704.3.h.c.65.1 2 88.61 odd 10
704.3.h.f.65.2 2 88.27 odd 10
704.3.h.f.65.2 2 88.83 even 10
1100.3.e.a.549.1 4 55.17 even 20
1100.3.e.a.549.1 4 55.27 odd 20
1100.3.e.a.549.4 4 55.28 even 20
1100.3.e.a.549.4 4 55.38 odd 20
1100.3.f.a.901.1 2 55.39 odd 10
1100.3.f.a.901.1 2 55.49 even 10
1584.3.j.c.1297.2 2 132.71 even 10
1584.3.j.c.1297.2 2 132.83 odd 10
2156.3.h.a.197.1 2 77.6 even 10
2156.3.h.a.197.1 2 77.27 odd 10