Properties

Label 484.3.f.a.457.1
Level $484$
Weight $3$
Character 484.457
Analytic conductor $13.188$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [484,3,Mod(161,484)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("484.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(484, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 484.f (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-5,0,-1,0,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1880447950\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 19x^{6} - 37x^{5} + 229x^{4} + 196x^{3} + 1496x^{2} + 2952x + 26896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 457.1
Root \(-1.37056 + 4.21816i\) of defining polynomial
Character \(\chi\) \(=\) 484.457
Dual form 484.3.f.a.233.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.08818 - 2.97024i) q^{3} +(1.46509 - 4.50908i) q^{5} +(3.91877 + 5.39373i) q^{7} +(5.10976 + 15.7262i) q^{9} +(-14.3229 + 4.65378i) q^{13} +(-19.3826 + 14.0823i) q^{15} +(16.9976 + 5.52287i) q^{17} +(-19.0249 + 26.1855i) q^{19} -33.6902i q^{21} -3.58879 q^{23} +(2.04012 + 1.48224i) q^{25} +(11.7671 - 36.2153i) q^{27} +(7.50529 + 10.3301i) q^{29} +(6.76473 + 20.8197i) q^{31} +(30.0621 - 9.76777i) q^{35} +(22.4250 - 16.2927i) q^{37} +(72.3773 + 23.5168i) q^{39} +(29.1270 - 40.0899i) q^{41} -16.8760i q^{43} +78.3970 q^{45} +(63.0835 + 45.8328i) q^{47} +(1.40631 - 4.32817i) q^{49} +(-53.0852 - 73.0655i) q^{51} +(3.06043 + 9.41904i) q^{53} +(155.554 - 50.5426i) q^{57} +(-29.6620 + 21.5507i) q^{59} +(26.9171 + 8.74590i) q^{61} +(-64.7990 + 89.1881i) q^{63} +71.4011i q^{65} -30.7234 q^{67} +(14.6716 + 10.6595i) q^{69} +(-12.6835 + 39.0359i) q^{71} +(36.3001 + 49.9628i) q^{73} +(-3.93780 - 12.1193i) q^{75} +(-118.204 + 38.4068i) q^{79} +(-35.2762 + 25.6296i) q^{81} +(2.94344 + 0.956381i) q^{83} +(49.8061 - 68.5522i) q^{85} -64.5240i q^{87} +60.4914 q^{89} +(-81.2293 - 59.0165i) q^{91} +(34.1840 - 105.207i) q^{93} +(90.1993 + 124.149i) q^{95} +(14.8226 + 45.6193i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{3} - q^{5} - 15 q^{7} - q^{9} + 15 q^{13} - 63 q^{15} + 75 q^{17} + 30 q^{19} + 100 q^{23} + 51 q^{25} + 100 q^{27} - 125 q^{29} + 73 q^{31} + 155 q^{35} - 75 q^{37} + 185 q^{39} + 155 q^{41}+ \cdots - 90 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.08818 2.97024i −1.36273 0.990079i −0.998266 0.0588599i \(-0.981253\pi\)
−0.364460 0.931219i \(-0.618747\pi\)
\(4\) 0 0
\(5\) 1.46509 4.50908i 0.293018 0.901816i −0.690862 0.722986i \(-0.742769\pi\)
0.983880 0.178829i \(-0.0572310\pi\)
\(6\) 0 0
\(7\) 3.91877 + 5.39373i 0.559825 + 0.770533i 0.991304 0.131590i \(-0.0420083\pi\)
−0.431479 + 0.902123i \(0.642008\pi\)
\(8\) 0 0
\(9\) 5.10976 + 15.7262i 0.567751 + 1.74736i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −14.3229 + 4.65378i −1.10176 + 0.357983i −0.802779 0.596276i \(-0.796646\pi\)
−0.298980 + 0.954260i \(0.596646\pi\)
\(14\) 0 0
\(15\) −19.3826 + 14.0823i −1.29217 + 0.938818i
\(16\) 0 0
\(17\) 16.9976 + 5.52287i 0.999861 + 0.324874i 0.762810 0.646623i \(-0.223819\pi\)
0.237051 + 0.971497i \(0.423819\pi\)
\(18\) 0 0
\(19\) −19.0249 + 26.1855i −1.00131 + 1.37818i −0.0767906 + 0.997047i \(0.524467\pi\)
−0.924519 + 0.381137i \(0.875533\pi\)
\(20\) 0 0
\(21\) 33.6902i 1.60430i
\(22\) 0 0
\(23\) −3.58879 −0.156034 −0.0780171 0.996952i \(-0.524859\pi\)
−0.0780171 + 0.996952i \(0.524859\pi\)
\(24\) 0 0
\(25\) 2.04012 + 1.48224i 0.0816049 + 0.0592894i
\(26\) 0 0
\(27\) 11.7671 36.2153i 0.435817 1.34131i
\(28\) 0 0
\(29\) 7.50529 + 10.3301i 0.258803 + 0.356212i 0.918570 0.395258i \(-0.129345\pi\)
−0.659767 + 0.751470i \(0.729345\pi\)
\(30\) 0 0
\(31\) 6.76473 + 20.8197i 0.218217 + 0.671603i 0.998910 + 0.0466876i \(0.0148665\pi\)
−0.780692 + 0.624915i \(0.785133\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 30.0621 9.76777i 0.858917 0.279079i
\(36\) 0 0
\(37\) 22.4250 16.2927i 0.606082 0.440345i −0.241950 0.970289i \(-0.577787\pi\)
0.848033 + 0.529944i \(0.177787\pi\)
\(38\) 0 0
\(39\) 72.3773 + 23.5168i 1.85583 + 0.602995i
\(40\) 0 0
\(41\) 29.1270 40.0899i 0.710416 0.977803i −0.289372 0.957217i \(-0.593447\pi\)
0.999788 0.0205868i \(-0.00655345\pi\)
\(42\) 0 0
\(43\) 16.8760i 0.392466i −0.980557 0.196233i \(-0.937129\pi\)
0.980557 0.196233i \(-0.0628708\pi\)
\(44\) 0 0
\(45\) 78.3970 1.74215
\(46\) 0 0
\(47\) 63.0835 + 45.8328i 1.34220 + 0.975166i 0.999360 + 0.0357732i \(0.0113894\pi\)
0.342842 + 0.939393i \(0.388611\pi\)
\(48\) 0 0
\(49\) 1.40631 4.32817i 0.0287001 0.0883299i
\(50\) 0 0
\(51\) −53.0852 73.0655i −1.04089 1.43266i
\(52\) 0 0
\(53\) 3.06043 + 9.41904i 0.0577440 + 0.177718i 0.975768 0.218806i \(-0.0702163\pi\)
−0.918024 + 0.396524i \(0.870216\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 155.554 50.5426i 2.72902 0.886713i
\(58\) 0 0
\(59\) −29.6620 + 21.5507i −0.502746 + 0.365267i −0.810065 0.586340i \(-0.800568\pi\)
0.307319 + 0.951607i \(0.400568\pi\)
\(60\) 0 0
\(61\) 26.9171 + 8.74590i 0.441264 + 0.143375i 0.521219 0.853423i \(-0.325478\pi\)
−0.0799547 + 0.996799i \(0.525478\pi\)
\(62\) 0 0
\(63\) −64.7990 + 89.1881i −1.02855 + 1.41568i
\(64\) 0 0
\(65\) 71.4011i 1.09848i
\(66\) 0 0
\(67\) −30.7234 −0.458558 −0.229279 0.973361i \(-0.573637\pi\)
−0.229279 + 0.973361i \(0.573637\pi\)
\(68\) 0 0
\(69\) 14.6716 + 10.6595i 0.212632 + 0.154486i
\(70\) 0 0
\(71\) −12.6835 + 39.0359i −0.178641 + 0.549802i −0.999781 0.0209255i \(-0.993339\pi\)
0.821140 + 0.570727i \(0.193339\pi\)
\(72\) 0 0
\(73\) 36.3001 + 49.9628i 0.497261 + 0.684422i 0.981707 0.190400i \(-0.0609785\pi\)
−0.484445 + 0.874822i \(0.660979\pi\)
\(74\) 0 0
\(75\) −3.93780 12.1193i −0.0525039 0.161591i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −118.204 + 38.4068i −1.49625 + 0.486161i −0.938922 0.344130i \(-0.888174\pi\)
−0.557329 + 0.830292i \(0.688174\pi\)
\(80\) 0 0
\(81\) −35.2762 + 25.6296i −0.435508 + 0.316415i
\(82\) 0 0
\(83\) 2.94344 + 0.956381i 0.0354631 + 0.0115227i 0.326695 0.945130i \(-0.394065\pi\)
−0.291232 + 0.956653i \(0.594065\pi\)
\(84\) 0 0
\(85\) 49.8061 68.5522i 0.585954 0.806496i
\(86\) 0 0
\(87\) 64.5240i 0.741655i
\(88\) 0 0
\(89\) 60.4914 0.679678 0.339839 0.940484i \(-0.389627\pi\)
0.339839 + 0.940484i \(0.389627\pi\)
\(90\) 0 0
\(91\) −81.2293 59.0165i −0.892630 0.648533i
\(92\) 0 0
\(93\) 34.1840 105.207i 0.367570 1.13126i
\(94\) 0 0
\(95\) 90.1993 + 124.149i 0.949467 + 1.30683i
\(96\) 0 0
\(97\) 14.8226 + 45.6193i 0.152810 + 0.470302i 0.997932 0.0642712i \(-0.0204723\pi\)
−0.845122 + 0.534574i \(0.820472\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −83.6741 + 27.1874i −0.828456 + 0.269182i −0.692395 0.721519i \(-0.743444\pi\)
−0.136061 + 0.990700i \(0.543444\pi\)
\(102\) 0 0
\(103\) 10.0570 7.30685i 0.0976409 0.0709403i −0.537894 0.843013i \(-0.680780\pi\)
0.635535 + 0.772072i \(0.280780\pi\)
\(104\) 0 0
\(105\) −151.912 49.3591i −1.44678 0.470087i
\(106\) 0 0
\(107\) −0.698862 + 0.961900i −0.00653142 + 0.00898972i −0.812270 0.583281i \(-0.801769\pi\)
0.805739 + 0.592271i \(0.201769\pi\)
\(108\) 0 0
\(109\) 145.212i 1.33222i −0.745855 0.666108i \(-0.767959\pi\)
0.745855 0.666108i \(-0.232041\pi\)
\(110\) 0 0
\(111\) −140.071 −1.26190
\(112\) 0 0
\(113\) −47.0926 34.2148i −0.416749 0.302786i 0.359580 0.933114i \(-0.382920\pi\)
−0.776328 + 0.630329i \(0.782920\pi\)
\(114\) 0 0
\(115\) −5.25789 + 16.1821i −0.0457208 + 0.140714i
\(116\) 0 0
\(117\) −146.373 201.465i −1.25105 1.72192i
\(118\) 0 0
\(119\) 36.8210 + 113.323i 0.309420 + 0.952298i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −238.153 + 77.3807i −1.93620 + 0.629111i
\(124\) 0 0
\(125\) 105.564 76.6966i 0.844510 0.613572i
\(126\) 0 0
\(127\) 37.6191 + 12.2232i 0.296213 + 0.0962455i 0.453353 0.891331i \(-0.350228\pi\)
−0.157140 + 0.987576i \(0.550228\pi\)
\(128\) 0 0
\(129\) −50.1258 + 68.9922i −0.388572 + 0.534823i
\(130\) 0 0
\(131\) 130.281i 0.994510i 0.867605 + 0.497255i \(0.165659\pi\)
−0.867605 + 0.497255i \(0.834341\pi\)
\(132\) 0 0
\(133\) −215.792 −1.62249
\(134\) 0 0
\(135\) −146.058 106.117i −1.08191 0.786053i
\(136\) 0 0
\(137\) −63.6741 + 195.969i −0.464774 + 1.43043i 0.394492 + 0.918899i \(0.370921\pi\)
−0.859266 + 0.511528i \(0.829079\pi\)
\(138\) 0 0
\(139\) 125.901 + 173.288i 0.905765 + 1.24668i 0.968592 + 0.248655i \(0.0799884\pi\)
−0.0628270 + 0.998024i \(0.520012\pi\)
\(140\) 0 0
\(141\) −121.762 374.746i −0.863562 2.65777i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 57.5753 18.7074i 0.397071 0.129016i
\(146\) 0 0
\(147\) −18.6049 + 13.5173i −0.126564 + 0.0919542i
\(148\) 0 0
\(149\) −57.1220 18.5601i −0.383369 0.124564i 0.110991 0.993821i \(-0.464598\pi\)
−0.494360 + 0.869257i \(0.664598\pi\)
\(150\) 0 0
\(151\) 75.8544 104.405i 0.502347 0.691422i −0.480258 0.877127i \(-0.659457\pi\)
0.982605 + 0.185706i \(0.0594571\pi\)
\(152\) 0 0
\(153\) 295.529i 1.93156i
\(154\) 0 0
\(155\) 103.789 0.669604
\(156\) 0 0
\(157\) 220.735 + 160.374i 1.40596 + 1.02149i 0.993895 + 0.110332i \(0.0351913\pi\)
0.412062 + 0.911156i \(0.364809\pi\)
\(158\) 0 0
\(159\) 15.4652 47.5969i 0.0972653 0.299352i
\(160\) 0 0
\(161\) −14.0636 19.3569i −0.0873518 0.120229i
\(162\) 0 0
\(163\) −4.45141 13.7000i −0.0273093 0.0840492i 0.936473 0.350740i \(-0.114070\pi\)
−0.963782 + 0.266691i \(0.914070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 154.632 50.2429i 0.925938 0.300855i 0.193037 0.981191i \(-0.438166\pi\)
0.732900 + 0.680336i \(0.238166\pi\)
\(168\) 0 0
\(169\) 46.7629 33.9752i 0.276704 0.201037i
\(170\) 0 0
\(171\) −509.011 165.388i −2.97667 0.967180i
\(172\) 0 0
\(173\) 65.8448 90.6276i 0.380606 0.523859i −0.575139 0.818056i \(-0.695052\pi\)
0.955745 + 0.294197i \(0.0950521\pi\)
\(174\) 0 0
\(175\) 16.8124i 0.0960709i
\(176\) 0 0
\(177\) 185.275 1.04675
\(178\) 0 0
\(179\) −127.140 92.3729i −0.710281 0.516050i 0.172983 0.984925i \(-0.444659\pi\)
−0.883264 + 0.468875i \(0.844659\pi\)
\(180\) 0 0
\(181\) −105.272 + 323.994i −0.581614 + 1.79002i 0.0308474 + 0.999524i \(0.490179\pi\)
−0.612462 + 0.790500i \(0.709821\pi\)
\(182\) 0 0
\(183\) −84.0646 115.705i −0.459369 0.632268i
\(184\) 0 0
\(185\) −40.6106 124.987i −0.219517 0.675603i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 241.448 78.4512i 1.27750 0.415085i
\(190\) 0 0
\(191\) −25.1761 + 18.2915i −0.131812 + 0.0957671i −0.651738 0.758444i \(-0.725960\pi\)
0.519926 + 0.854212i \(0.325960\pi\)
\(192\) 0 0
\(193\) 47.6999 + 15.4986i 0.247150 + 0.0803038i 0.429972 0.902842i \(-0.358523\pi\)
−0.182822 + 0.983146i \(0.558523\pi\)
\(194\) 0 0
\(195\) 212.078 291.901i 1.08758 1.49693i
\(196\) 0 0
\(197\) 225.831i 1.14635i 0.819432 + 0.573176i \(0.194289\pi\)
−0.819432 + 0.573176i \(0.805711\pi\)
\(198\) 0 0
\(199\) 46.4242 0.233287 0.116644 0.993174i \(-0.462786\pi\)
0.116644 + 0.993174i \(0.462786\pi\)
\(200\) 0 0
\(201\) 125.603 + 91.2558i 0.624889 + 0.454009i
\(202\) 0 0
\(203\) −26.3065 + 80.9630i −0.129589 + 0.398832i
\(204\) 0 0
\(205\) −138.095 190.071i −0.673634 0.927178i
\(206\) 0 0
\(207\) −18.3378 56.4380i −0.0885885 0.272648i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −101.556 + 32.9975i −0.481307 + 0.156386i −0.539614 0.841913i \(-0.681430\pi\)
0.0583069 + 0.998299i \(0.481430\pi\)
\(212\) 0 0
\(213\) 167.799 121.913i 0.787787 0.572361i
\(214\) 0 0
\(215\) −76.0953 24.7249i −0.353932 0.114999i
\(216\) 0 0
\(217\) −85.7863 + 118.075i −0.395329 + 0.544123i
\(218\) 0 0
\(219\) 312.077i 1.42501i
\(220\) 0 0
\(221\) −269.157 −1.21791
\(222\) 0 0
\(223\) 108.118 + 78.5527i 0.484836 + 0.352254i 0.803195 0.595716i \(-0.203132\pi\)
−0.318359 + 0.947970i \(0.603132\pi\)
\(224\) 0 0
\(225\) −12.8854 + 39.6573i −0.0572685 + 0.176254i
\(226\) 0 0
\(227\) 106.721 + 146.889i 0.470137 + 0.647088i 0.976572 0.215190i \(-0.0690372\pi\)
−0.506436 + 0.862278i \(0.669037\pi\)
\(228\) 0 0
\(229\) −81.2785 250.150i −0.354928 1.09236i −0.956051 0.293200i \(-0.905280\pi\)
0.601123 0.799156i \(-0.294720\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 156.952 50.9968i 0.673614 0.218870i 0.0478167 0.998856i \(-0.484774\pi\)
0.625797 + 0.779986i \(0.284774\pi\)
\(234\) 0 0
\(235\) 299.087 217.299i 1.27271 0.924677i
\(236\) 0 0
\(237\) 597.316 + 194.080i 2.52032 + 0.818901i
\(238\) 0 0
\(239\) −178.104 + 245.140i −0.745207 + 1.02569i 0.253096 + 0.967441i \(0.418551\pi\)
−0.998302 + 0.0582476i \(0.981449\pi\)
\(240\) 0 0
\(241\) 289.642i 1.20183i 0.799311 + 0.600917i \(0.205198\pi\)
−0.799311 + 0.600917i \(0.794802\pi\)
\(242\) 0 0
\(243\) −122.370 −0.503579
\(244\) 0 0
\(245\) −17.4557 12.6823i −0.0712477 0.0517645i
\(246\) 0 0
\(247\) 150.629 463.589i 0.609835 1.87688i
\(248\) 0 0
\(249\) −9.19263 12.6526i −0.0369182 0.0508135i
\(250\) 0 0
\(251\) 83.2179 + 256.118i 0.331545 + 1.02039i 0.968399 + 0.249407i \(0.0802356\pi\)
−0.636853 + 0.770985i \(0.719764\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −407.232 + 132.318i −1.59699 + 0.518893i
\(256\) 0 0
\(257\) −406.941 + 295.660i −1.58343 + 1.15043i −0.670795 + 0.741643i \(0.734047\pi\)
−0.912631 + 0.408784i \(0.865953\pi\)
\(258\) 0 0
\(259\) 175.757 + 57.1070i 0.678600 + 0.220490i
\(260\) 0 0
\(261\) −124.104 + 170.814i −0.475494 + 0.654461i
\(262\) 0 0
\(263\) 178.603i 0.679099i −0.940588 0.339550i \(-0.889725\pi\)
0.940588 0.339550i \(-0.110275\pi\)
\(264\) 0 0
\(265\) 46.9550 0.177189
\(266\) 0 0
\(267\) −247.300 179.674i −0.926215 0.672935i
\(268\) 0 0
\(269\) 32.5941 100.314i 0.121168 0.372916i −0.872016 0.489478i \(-0.837187\pi\)
0.993183 + 0.116562i \(0.0371874\pi\)
\(270\) 0 0
\(271\) −86.3298 118.823i −0.318560 0.438460i 0.619467 0.785023i \(-0.287349\pi\)
−0.938027 + 0.346563i \(0.887349\pi\)
\(272\) 0 0
\(273\) 156.787 + 482.540i 0.574311 + 1.76755i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −247.480 + 80.4113i −0.893431 + 0.290293i −0.719523 0.694469i \(-0.755640\pi\)
−0.173908 + 0.984762i \(0.555640\pi\)
\(278\) 0 0
\(279\) −292.849 + 212.767i −1.04964 + 0.762606i
\(280\) 0 0
\(281\) −487.119 158.275i −1.73352 0.563255i −0.739570 0.673080i \(-0.764971\pi\)
−0.993951 + 0.109824i \(0.964971\pi\)
\(282\) 0 0
\(283\) 105.155 144.733i 0.371572 0.511425i −0.581755 0.813364i \(-0.697634\pi\)
0.953327 + 0.301939i \(0.0976339\pi\)
\(284\) 0 0
\(285\) 775.456i 2.72090i
\(286\) 0 0
\(287\) 330.377 1.15114
\(288\) 0 0
\(289\) 24.6116 + 17.8814i 0.0851613 + 0.0618733i
\(290\) 0 0
\(291\) 74.9027 230.527i 0.257397 0.792188i
\(292\) 0 0
\(293\) 305.694 + 420.752i 1.04332 + 1.43601i 0.894456 + 0.447155i \(0.147563\pi\)
0.148867 + 0.988857i \(0.452437\pi\)
\(294\) 0 0
\(295\) 53.7164 + 165.322i 0.182090 + 0.560414i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 51.4017 16.7014i 0.171912 0.0558576i
\(300\) 0 0
\(301\) 91.0247 66.1333i 0.302408 0.219712i
\(302\) 0 0
\(303\) 422.828 + 137.385i 1.39547 + 0.453416i
\(304\) 0 0
\(305\) 78.8719 108.558i 0.258596 0.355927i
\(306\) 0 0
\(307\) 453.784i 1.47812i −0.673638 0.739061i \(-0.735269\pi\)
0.673638 0.739061i \(-0.264731\pi\)
\(308\) 0 0
\(309\) −62.8180 −0.203294
\(310\) 0 0
\(311\) −328.234 238.476i −1.05541 0.766803i −0.0821789 0.996618i \(-0.526188\pi\)
−0.973234 + 0.229815i \(0.926188\pi\)
\(312\) 0 0
\(313\) 5.16035 15.8819i 0.0164867 0.0507409i −0.942475 0.334277i \(-0.891508\pi\)
0.958961 + 0.283537i \(0.0915077\pi\)
\(314\) 0 0
\(315\) 307.220 + 422.852i 0.975301 + 1.34239i
\(316\) 0 0
\(317\) 173.836 + 535.013i 0.548380 + 1.68774i 0.712815 + 0.701352i \(0.247420\pi\)
−0.164436 + 0.986388i \(0.552580\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 5.71414 1.85664i 0.0178011 0.00578392i
\(322\) 0 0
\(323\) −467.997 + 340.020i −1.44891 + 1.05269i
\(324\) 0 0
\(325\) −36.1184 11.7356i −0.111134 0.0361095i
\(326\) 0 0
\(327\) −431.313 + 593.651i −1.31900 + 1.81545i
\(328\) 0 0
\(329\) 519.864i 1.58013i
\(330\) 0 0
\(331\) 167.684 0.506597 0.253298 0.967388i \(-0.418485\pi\)
0.253298 + 0.967388i \(0.418485\pi\)
\(332\) 0 0
\(333\) 370.810 + 269.409i 1.11354 + 0.809036i
\(334\) 0 0
\(335\) −45.0125 + 138.534i −0.134366 + 0.413535i
\(336\) 0 0
\(337\) −103.280 142.152i −0.306467 0.421816i 0.627808 0.778368i \(-0.283952\pi\)
−0.934276 + 0.356552i \(0.883952\pi\)
\(338\) 0 0
\(339\) 90.8971 + 279.752i 0.268133 + 0.825228i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 339.551 110.327i 0.989944 0.321652i
\(344\) 0 0
\(345\) 69.5599 50.5382i 0.201623 0.146488i
\(346\) 0 0
\(347\) 459.695 + 149.364i 1.32477 + 0.430443i 0.884130 0.467241i \(-0.154752\pi\)
0.440639 + 0.897685i \(0.354752\pi\)
\(348\) 0 0
\(349\) −94.6593 + 130.287i −0.271230 + 0.373316i −0.922804 0.385269i \(-0.874109\pi\)
0.651574 + 0.758585i \(0.274109\pi\)
\(350\) 0 0
\(351\) 573.468i 1.63381i
\(352\) 0 0
\(353\) 522.647 1.48059 0.740294 0.672284i \(-0.234687\pi\)
0.740294 + 0.672284i \(0.234687\pi\)
\(354\) 0 0
\(355\) 157.434 + 114.382i 0.443475 + 0.322203i
\(356\) 0 0
\(357\) 186.067 572.654i 0.521195 1.60407i
\(358\) 0 0
\(359\) −336.373 462.978i −0.936972 1.28963i −0.957077 0.289833i \(-0.906400\pi\)
0.0201051 0.999798i \(-0.493600\pi\)
\(360\) 0 0
\(361\) −212.179 653.020i −0.587754 1.80892i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 278.469 90.4800i 0.762928 0.247890i
\(366\) 0 0
\(367\) −136.244 + 98.9867i −0.371236 + 0.269719i −0.757723 0.652576i \(-0.773688\pi\)
0.386487 + 0.922295i \(0.373688\pi\)
\(368\) 0 0
\(369\) 779.295 + 253.208i 2.11191 + 0.686201i
\(370\) 0 0
\(371\) −38.8106 + 53.4182i −0.104611 + 0.143984i
\(372\) 0 0
\(373\) 500.543i 1.34194i −0.741486 0.670969i \(-0.765878\pi\)
0.741486 0.670969i \(-0.234122\pi\)
\(374\) 0 0
\(375\) −659.370 −1.75832
\(376\) 0 0
\(377\) −155.571 113.029i −0.412656 0.299812i
\(378\) 0 0
\(379\) 16.1149 49.5966i 0.0425195 0.130862i −0.927543 0.373716i \(-0.878084\pi\)
0.970063 + 0.242854i \(0.0780836\pi\)
\(380\) 0 0
\(381\) −117.488 161.708i −0.308367 0.424431i
\(382\) 0 0
\(383\) −76.3632 235.022i −0.199382 0.613634i −0.999897 0.0143222i \(-0.995441\pi\)
0.800516 0.599312i \(-0.204559\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 265.396 86.2324i 0.685778 0.222823i
\(388\) 0 0
\(389\) 199.368 144.850i 0.512515 0.372364i −0.301262 0.953542i \(-0.597408\pi\)
0.813777 + 0.581177i \(0.197408\pi\)
\(390\) 0 0
\(391\) −61.0009 19.8204i −0.156013 0.0506915i
\(392\) 0 0
\(393\) 386.965 532.611i 0.984643 1.35524i
\(394\) 0 0
\(395\) 589.260i 1.49180i
\(396\) 0 0
\(397\) 50.7517 0.127838 0.0639191 0.997955i \(-0.479640\pi\)
0.0639191 + 0.997955i \(0.479640\pi\)
\(398\) 0 0
\(399\) 882.195 + 640.952i 2.21102 + 1.60640i
\(400\) 0 0
\(401\) 14.8571 45.7254i 0.0370501 0.114028i −0.930821 0.365475i \(-0.880906\pi\)
0.967871 + 0.251447i \(0.0809064\pi\)
\(402\) 0 0
\(403\) −193.781 266.716i −0.480845 0.661827i
\(404\) 0 0
\(405\) 63.8833 + 196.613i 0.157737 + 0.485463i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 486.442 158.055i 1.18934 0.386441i 0.353514 0.935429i \(-0.384987\pi\)
0.835830 + 0.548988i \(0.184987\pi\)
\(410\) 0 0
\(411\) 842.384 612.028i 2.04960 1.48912i
\(412\) 0 0
\(413\) −232.478 75.5366i −0.562900 0.182897i
\(414\) 0 0
\(415\) 8.62479 11.8710i 0.0207826 0.0286048i
\(416\) 0 0
\(417\) 1082.39i 2.59566i
\(418\) 0 0
\(419\) 790.955 1.88772 0.943860 0.330345i \(-0.107165\pi\)
0.943860 + 0.330345i \(0.107165\pi\)
\(420\) 0 0
\(421\) −333.136 242.038i −0.791297 0.574911i 0.117051 0.993126i \(-0.462656\pi\)
−0.908348 + 0.418215i \(0.862656\pi\)
\(422\) 0 0
\(423\) −398.436 + 1226.26i −0.941928 + 2.89896i
\(424\) 0 0
\(425\) 26.4911 + 36.4618i 0.0623319 + 0.0857925i
\(426\) 0 0
\(427\) 58.3090 + 179.457i 0.136555 + 0.420274i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 268.338 87.1884i 0.622595 0.202293i 0.0193028 0.999814i \(-0.493855\pi\)
0.603292 + 0.797520i \(0.293855\pi\)
\(432\) 0 0
\(433\) 44.9013 32.6227i 0.103698 0.0753411i −0.534728 0.845024i \(-0.679586\pi\)
0.638426 + 0.769683i \(0.279586\pi\)
\(434\) 0 0
\(435\) −290.944 94.5333i −0.668836 0.217318i
\(436\) 0 0
\(437\) 68.2762 93.9742i 0.156239 0.215044i
\(438\) 0 0
\(439\) 232.914i 0.530556i −0.964172 0.265278i \(-0.914536\pi\)
0.964172 0.265278i \(-0.0854638\pi\)
\(440\) 0 0
\(441\) 75.2516 0.170638
\(442\) 0 0
\(443\) 344.202 + 250.077i 0.776979 + 0.564508i 0.904071 0.427383i \(-0.140564\pi\)
−0.127092 + 0.991891i \(0.540564\pi\)
\(444\) 0 0
\(445\) 88.6252 272.760i 0.199158 0.612944i
\(446\) 0 0
\(447\) 178.397 + 245.543i 0.399099 + 0.549313i
\(448\) 0 0
\(449\) 14.2766 + 43.9388i 0.0317964 + 0.0978592i 0.965695 0.259678i \(-0.0836165\pi\)
−0.933899 + 0.357537i \(0.883616\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −620.213 + 201.519i −1.36912 + 0.444855i
\(454\) 0 0
\(455\) −385.118 + 279.805i −0.846414 + 0.614956i
\(456\) 0 0
\(457\) −147.110 47.7990i −0.321904 0.104593i 0.143608 0.989635i \(-0.454130\pi\)
−0.465512 + 0.885042i \(0.654130\pi\)
\(458\) 0 0
\(459\) 400.024 550.586i 0.871513 1.19953i
\(460\) 0 0
\(461\) 775.943i 1.68317i 0.540123 + 0.841586i \(0.318378\pi\)
−0.540123 + 0.841586i \(0.681622\pi\)
\(462\) 0 0
\(463\) −829.285 −1.79111 −0.895557 0.444948i \(-0.853222\pi\)
−0.895557 + 0.444948i \(0.853222\pi\)
\(464\) 0 0
\(465\) −424.306 308.277i −0.912487 0.662960i
\(466\) 0 0
\(467\) 241.774 744.104i 0.517718 1.59337i −0.260565 0.965456i \(-0.583909\pi\)
0.778282 0.627914i \(-0.216091\pi\)
\(468\) 0 0
\(469\) −120.398 165.714i −0.256712 0.353334i
\(470\) 0 0
\(471\) −426.058 1311.27i −0.904582 2.78402i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −77.6261 + 25.2223i −0.163423 + 0.0530995i
\(476\) 0 0
\(477\) −132.488 + 96.2580i −0.277752 + 0.201799i
\(478\) 0 0
\(479\) −77.2103 25.0872i −0.161191 0.0523740i 0.227310 0.973822i \(-0.427007\pi\)
−0.388501 + 0.921448i \(0.627007\pi\)
\(480\) 0 0
\(481\) −245.368 + 337.720i −0.510121 + 0.702121i
\(482\) 0 0
\(483\) 120.907i 0.250325i
\(484\) 0 0
\(485\) 227.418 0.468902
\(486\) 0 0
\(487\) 235.675 + 171.228i 0.483933 + 0.351598i 0.802846 0.596186i \(-0.203318\pi\)
−0.318913 + 0.947784i \(0.603318\pi\)
\(488\) 0 0
\(489\) −22.4942 + 69.2299i −0.0460003 + 0.141574i
\(490\) 0 0
\(491\) −176.504 242.937i −0.359479 0.494780i 0.590524 0.807020i \(-0.298921\pi\)
−0.950003 + 0.312239i \(0.898921\pi\)
\(492\) 0 0
\(493\) 70.5202 + 217.039i 0.143043 + 0.440241i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −260.253 + 84.5614i −0.523648 + 0.170144i
\(498\) 0 0
\(499\) −248.898 + 180.835i −0.498794 + 0.362395i −0.808556 0.588419i \(-0.799750\pi\)
0.309762 + 0.950814i \(0.399750\pi\)
\(500\) 0 0
\(501\) −781.395 253.891i −1.55967 0.506768i
\(502\) 0 0
\(503\) −470.986 + 648.257i −0.936354 + 1.28878i 0.0209742 + 0.999780i \(0.493323\pi\)
−0.957329 + 0.289001i \(0.906677\pi\)
\(504\) 0 0
\(505\) 417.125i 0.825990i
\(506\) 0 0
\(507\) −292.090 −0.576114
\(508\) 0 0
\(509\) −438.219 318.385i −0.860941 0.625510i 0.0671999 0.997740i \(-0.478593\pi\)
−0.928141 + 0.372229i \(0.878593\pi\)
\(510\) 0 0
\(511\) −127.234 + 391.586i −0.248990 + 0.766312i
\(512\) 0 0
\(513\) 724.448 + 997.117i 1.41218 + 1.94370i
\(514\) 0 0
\(515\) −18.2127 56.0531i −0.0353645 0.108841i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −538.371 + 174.927i −1.03732 + 0.337047i
\(520\) 0 0
\(521\) −577.263 + 419.406i −1.10799 + 0.805002i −0.982346 0.187073i \(-0.940100\pi\)
−0.125644 + 0.992075i \(0.540100\pi\)
\(522\) 0 0
\(523\) 432.518 + 140.534i 0.826994 + 0.268707i 0.691779 0.722110i \(-0.256827\pi\)
0.135215 + 0.990816i \(0.456827\pi\)
\(524\) 0 0
\(525\) 49.9368 68.7321i 0.0951178 0.130918i
\(526\) 0 0
\(527\) 391.246i 0.742403i
\(528\) 0 0
\(529\) −516.121 −0.975653
\(530\) 0 0
\(531\) −490.477 356.353i −0.923686 0.671097i
\(532\) 0 0
\(533\) −230.613 + 709.754i −0.432670 + 1.33162i
\(534\) 0 0
\(535\) 3.31339 + 4.56049i 0.00619325 + 0.00852428i
\(536\) 0 0
\(537\) 245.403 + 755.274i 0.456989 + 1.40647i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −768.411 + 249.672i −1.42035 + 0.461500i −0.915714 0.401830i \(-0.868374\pi\)
−0.504638 + 0.863331i \(0.668374\pi\)
\(542\) 0 0
\(543\) 1392.71 1011.86i 2.56485 1.86347i
\(544\) 0 0
\(545\) −654.771 212.748i −1.20141 0.390363i
\(546\) 0 0
\(547\) −100.382 + 138.164i −0.183514 + 0.252585i −0.890856 0.454287i \(-0.849894\pi\)
0.707342 + 0.706872i \(0.249894\pi\)
\(548\) 0 0
\(549\) 467.994i 0.852447i
\(550\) 0 0
\(551\) −413.287 −0.750067
\(552\) 0 0
\(553\) −670.370 487.052i −1.21224 0.880745i
\(554\) 0 0
\(555\) −205.216 + 631.591i −0.369759 + 1.13800i
\(556\) 0 0
\(557\) 13.9618 + 19.2168i 0.0250661 + 0.0345005i 0.821366 0.570401i \(-0.193212\pi\)
−0.796300 + 0.604902i \(0.793212\pi\)
\(558\) 0 0
\(559\) 78.5373 + 241.713i 0.140496 + 0.432402i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 568.487 184.713i 1.00975 0.328086i 0.242993 0.970028i \(-0.421871\pi\)
0.766753 + 0.641942i \(0.221871\pi\)
\(564\) 0 0
\(565\) −223.272 + 162.217i −0.395172 + 0.287109i
\(566\) 0 0
\(567\) −276.478 89.8333i −0.487616 0.158436i
\(568\) 0 0
\(569\) 239.476 329.610i 0.420871 0.579279i −0.544957 0.838464i \(-0.683454\pi\)
0.965828 + 0.259185i \(0.0834539\pi\)
\(570\) 0 0
\(571\) 1036.11i 1.81456i −0.420530 0.907279i \(-0.638156\pi\)
0.420530 0.907279i \(-0.361844\pi\)
\(572\) 0 0
\(573\) 157.255 0.274441
\(574\) 0 0
\(575\) −7.32156 5.31943i −0.0127332 0.00925118i
\(576\) 0 0
\(577\) 212.646 654.458i 0.368538 1.13424i −0.579198 0.815187i \(-0.696634\pi\)
0.947736 0.319056i \(-0.103366\pi\)
\(578\) 0 0
\(579\) −148.971 205.041i −0.257290 0.354130i
\(580\) 0 0
\(581\) 6.37621 + 19.6239i 0.0109745 + 0.0337762i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1122.87 + 364.842i −1.91943 + 0.623662i
\(586\) 0 0
\(587\) −485.538 + 352.764i −0.827152 + 0.600961i −0.918752 0.394835i \(-0.870802\pi\)
0.0915999 + 0.995796i \(0.470802\pi\)
\(588\) 0 0
\(589\) −673.872 218.954i −1.14410 0.371739i
\(590\) 0 0
\(591\) 670.773 923.239i 1.13498 1.56216i
\(592\) 0 0
\(593\) 468.857i 0.790652i −0.918541 0.395326i \(-0.870632\pi\)
0.918541 0.395326i \(-0.129368\pi\)
\(594\) 0 0
\(595\) 564.931 0.949463
\(596\) 0 0
\(597\) −189.790 137.891i −0.317907 0.230973i
\(598\) 0 0
\(599\) 158.477 487.741i 0.264569 0.814259i −0.727224 0.686400i \(-0.759190\pi\)
0.991792 0.127858i \(-0.0408102\pi\)
\(600\) 0 0
\(601\) −298.113 410.318i −0.496028 0.682725i 0.485457 0.874260i \(-0.338653\pi\)
−0.981486 + 0.191536i \(0.938653\pi\)
\(602\) 0 0
\(603\) −156.989 483.163i −0.260347 0.801265i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −320.774 + 104.226i −0.528458 + 0.171707i −0.561081 0.827761i \(-0.689614\pi\)
0.0326221 + 0.999468i \(0.489614\pi\)
\(608\) 0 0
\(609\) 348.025 252.855i 0.571469 0.415197i
\(610\) 0 0
\(611\) −1116.83 362.881i −1.82788 0.593913i
\(612\) 0 0
\(613\) 198.216 272.820i 0.323353 0.445058i −0.616134 0.787641i \(-0.711302\pi\)
0.939487 + 0.342584i \(0.111302\pi\)
\(614\) 0 0
\(615\) 1187.22i 1.93044i
\(616\) 0 0
\(617\) −269.856 −0.437369 −0.218684 0.975796i \(-0.570177\pi\)
−0.218684 + 0.975796i \(0.570177\pi\)
\(618\) 0 0
\(619\) −439.905 319.610i −0.710671 0.516333i 0.172719 0.984971i \(-0.444745\pi\)
−0.883390 + 0.468639i \(0.844745\pi\)
\(620\) 0 0
\(621\) −42.2295 + 129.969i −0.0680024 + 0.209290i
\(622\) 0 0
\(623\) 237.052 + 326.274i 0.380501 + 0.523714i
\(624\) 0 0
\(625\) −171.689 528.405i −0.274703 0.845448i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 471.155 153.088i 0.749055 0.243383i
\(630\) 0 0
\(631\) −91.5704 + 66.5298i −0.145119 + 0.105435i −0.657976 0.753039i \(-0.728587\pi\)
0.512857 + 0.858474i \(0.328587\pi\)
\(632\) 0 0
\(633\) 513.189 + 166.745i 0.810724 + 0.263420i
\(634\) 0 0
\(635\) 110.230 151.719i 0.173591 0.238928i
\(636\) 0 0
\(637\) 68.5364i 0.107592i
\(638\) 0 0
\(639\) −678.697 −1.06212
\(640\) 0 0
\(641\) 426.791 + 310.082i 0.665821 + 0.483747i 0.868624 0.495472i \(-0.165005\pi\)
−0.202803 + 0.979220i \(0.565005\pi\)
\(642\) 0 0
\(643\) 90.5922 278.814i 0.140890 0.433614i −0.855570 0.517688i \(-0.826793\pi\)
0.996460 + 0.0840733i \(0.0267930\pi\)
\(644\) 0 0
\(645\) 237.653 + 327.101i 0.368454 + 0.507133i
\(646\) 0 0
\(647\) −205.130 631.325i −0.317048 0.975773i −0.974903 0.222629i \(-0.928536\pi\)
0.657855 0.753144i \(-0.271464\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 701.420 227.905i 1.07745 0.350085i
\(652\) 0 0
\(653\) 642.435 466.756i 0.983821 0.714788i 0.0252618 0.999681i \(-0.491958\pi\)
0.958559 + 0.284893i \(0.0919581\pi\)
\(654\) 0 0
\(655\) 587.446 + 190.873i 0.896864 + 0.291409i
\(656\) 0 0
\(657\) −600.241 + 826.160i −0.913608 + 1.25747i
\(658\) 0 0
\(659\) 187.489i 0.284505i 0.989830 + 0.142253i \(0.0454346\pi\)
−0.989830 + 0.142253i \(0.954565\pi\)
\(660\) 0 0
\(661\) 74.1929 0.112243 0.0561217 0.998424i \(-0.482127\pi\)
0.0561217 + 0.998424i \(0.482127\pi\)
\(662\) 0 0
\(663\) 1100.36 + 799.460i 1.65967 + 1.20582i
\(664\) 0 0
\(665\) −316.154 + 973.021i −0.475419 + 1.46319i
\(666\) 0 0
\(667\) −26.9349 37.0727i −0.0403821 0.0555812i
\(668\) 0 0
\(669\) −208.688 642.275i −0.311940 0.960052i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −898.412 + 291.912i −1.33494 + 0.433747i −0.887598 0.460618i \(-0.847628\pi\)
−0.447338 + 0.894365i \(0.647628\pi\)
\(674\) 0 0
\(675\) 77.6858 56.4420i 0.115090 0.0836178i
\(676\) 0 0
\(677\) 688.441 + 223.688i 1.01690 + 0.330411i 0.769599 0.638528i \(-0.220456\pi\)
0.247301 + 0.968939i \(0.420456\pi\)
\(678\) 0 0
\(679\) −187.972 + 258.721i −0.276836 + 0.381032i
\(680\) 0 0
\(681\) 917.495i 1.34728i
\(682\) 0 0
\(683\) 660.998 0.967787 0.483893 0.875127i \(-0.339222\pi\)
0.483893 + 0.875127i \(0.339222\pi\)
\(684\) 0 0
\(685\) 790.350 + 574.223i 1.15380 + 0.838281i
\(686\) 0 0
\(687\) −410.722 + 1264.07i −0.597849 + 1.83999i
\(688\) 0 0
\(689\) −87.6683 120.665i −0.127240 0.175131i
\(690\) 0 0
\(691\) −124.898 384.395i −0.180749 0.556288i 0.819100 0.573650i \(-0.194473\pi\)
−0.999849 + 0.0173622i \(0.994473\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 965.827 313.816i 1.38968 0.451534i
\(696\) 0 0
\(697\) 716.502 520.569i 1.02798 0.746871i
\(698\) 0 0
\(699\) −793.121 257.701i −1.13465 0.368670i
\(700\) 0 0
\(701\) −233.239 + 321.027i −0.332724 + 0.457955i −0.942299 0.334773i \(-0.891340\pi\)
0.609575 + 0.792729i \(0.291340\pi\)
\(702\) 0 0
\(703\) 897.178i 1.27621i
\(704\) 0 0
\(705\) −1868.15 −2.64986
\(706\) 0 0
\(707\) −474.541 344.774i −0.671204 0.487658i
\(708\) 0 0
\(709\) −4.25048 + 13.0816i −0.00599503 + 0.0184508i −0.954009 0.299777i \(-0.903088\pi\)
0.948014 + 0.318228i \(0.103088\pi\)
\(710\) 0 0
\(711\) −1207.99 1662.65i −1.69900 2.33847i
\(712\) 0 0
\(713\) −24.2772 74.7174i −0.0340493 0.104793i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1456.25 473.163i 2.03103 0.659920i
\(718\) 0 0
\(719\) −84.0118 + 61.0381i −0.116845 + 0.0848931i −0.644673 0.764458i \(-0.723007\pi\)
0.527828 + 0.849351i \(0.323007\pi\)
\(720\) 0 0
\(721\) 78.8223 + 25.6109i 0.109324 + 0.0355214i
\(722\) 0 0
\(723\) 860.306 1184.11i 1.18991 1.63777i
\(724\) 0 0
\(725\) 32.1994i 0.0444129i
\(726\) 0 0
\(727\) 1381.61 1.90043 0.950214 0.311599i \(-0.100864\pi\)
0.950214 + 0.311599i \(0.100864\pi\)
\(728\) 0 0
\(729\) 817.755 + 594.134i 1.12175 + 0.814998i
\(730\) 0 0
\(731\) 93.2040 286.852i 0.127502 0.392411i
\(732\) 0 0
\(733\) 418.254 + 575.678i 0.570606 + 0.785372i 0.992626 0.121214i \(-0.0386789\pi\)
−0.422020 + 0.906586i \(0.638679\pi\)
\(734\) 0 0
\(735\) 33.6925 + 103.695i 0.0458402 + 0.141082i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 339.005 110.149i 0.458734 0.149052i −0.0705286 0.997510i \(-0.522469\pi\)
0.529263 + 0.848458i \(0.322469\pi\)
\(740\) 0 0
\(741\) −1992.77 + 1447.83i −2.68930 + 1.95389i
\(742\) 0 0
\(743\) 204.751 + 66.5275i 0.275573 + 0.0895391i 0.443543 0.896253i \(-0.353721\pi\)
−0.167970 + 0.985792i \(0.553721\pi\)
\(744\) 0 0
\(745\) −167.378 + 230.376i −0.224668 + 0.309229i
\(746\) 0 0
\(747\) 51.1760i 0.0685087i
\(748\) 0 0
\(749\) −7.92691 −0.0105833
\(750\) 0 0
\(751\) −15.0409 10.9279i −0.0200279 0.0145511i 0.577726 0.816231i \(-0.303940\pi\)
−0.597754 + 0.801679i \(0.703940\pi\)
\(752\) 0 0
\(753\) 420.522 1294.23i 0.558463 1.71877i
\(754\) 0 0
\(755\) −359.635 494.996i −0.476338 0.655623i
\(756\) 0 0
\(757\) 99.0402 + 304.814i 0.130833 + 0.402661i 0.994919 0.100683i \(-0.0321028\pi\)
−0.864086 + 0.503344i \(0.832103\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.81819 2.54029i 0.0102736 0.00333809i −0.303876 0.952712i \(-0.598281\pi\)
0.314149 + 0.949374i \(0.398281\pi\)
\(762\) 0 0
\(763\) 783.232 569.051i 1.02652 0.745808i
\(764\) 0 0
\(765\) 1332.56 + 432.976i 1.74191 + 0.565982i
\(766\) 0 0
\(767\) 324.553 446.709i 0.423146 0.582411i
\(768\) 0 0
\(769\) 32.0029i 0.0416162i 0.999783 + 0.0208081i \(0.00662391\pi\)
−0.999783 + 0.0208081i \(0.993376\pi\)
\(770\) 0 0
\(771\) 2541.83 3.29679
\(772\) 0 0
\(773\) −730.274 530.575i −0.944728 0.686385i 0.00482645 0.999988i \(-0.498464\pi\)
−0.949554 + 0.313604i \(0.898464\pi\)
\(774\) 0 0
\(775\) −17.0588 + 52.5016i −0.0220114 + 0.0677440i
\(776\) 0 0
\(777\) −548.906 755.505i −0.706443 0.972335i
\(778\) 0 0
\(779\) 495.637 + 1525.41i 0.636247 + 1.95817i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 462.424 150.251i 0.590580 0.191891i
\(784\) 0 0
\(785\) 1046.53 760.351i 1.33316 0.968600i
\(786\) 0 0
\(787\) −803.354 261.026i −1.02078 0.331672i −0.249641 0.968338i \(-0.580313\pi\)
−0.771139 + 0.636667i \(0.780313\pi\)
\(788\) 0 0
\(789\) −530.493 + 730.161i −0.672362 + 0.925426i
\(790\) 0 0
\(791\) 388.085i 0.490626i
\(792\) 0 0
\(793\) −426.232 −0.537493
\(794\) 0 0
\(795\) −191.960 139.467i −0.241460 0.175431i
\(796\) 0 0
\(797\) −132.202 + 406.875i −0.165874 + 0.510508i −0.999100 0.0424253i \(-0.986492\pi\)
0.833226 + 0.552933i \(0.186492\pi\)
\(798\) 0 0
\(799\) 819.141 + 1127.45i 1.02521 + 1.41108i
\(800\) 0 0
\(801\) 309.096 + 951.300i 0.385888 + 1.18764i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −107.886 + 35.0544i −0.134020 + 0.0435459i
\(806\) 0 0
\(807\) −431.208 + 313.291i −0.534334 + 0.388217i
\(808\) 0 0
\(809\) 633.173 + 205.731i 0.782662 + 0.254302i 0.672976 0.739664i \(-0.265016\pi\)
0.109686 + 0.993966i \(0.465016\pi\)
\(810\) 0 0
\(811\) 382.500 526.466i 0.471640 0.649156i −0.505232 0.862984i \(-0.668593\pi\)
0.976871 + 0.213828i \(0.0685930\pi\)
\(812\) 0 0
\(813\) 742.189i 0.912901i
\(814\) 0 0
\(815\) −68.2962 −0.0837990
\(816\) 0 0
\(817\) 441.907 + 321.064i 0.540890 + 0.392979i
\(818\) 0 0
\(819\) 513.045 1578.99i 0.626428 1.92795i
\(820\) 0 0
\(821\) 725.856 + 999.055i 0.884112 + 1.21688i 0.975265 + 0.221039i \(0.0709449\pi\)
−0.0911526 + 0.995837i \(0.529055\pi\)
\(822\) 0 0
\(823\) 210.770 + 648.683i 0.256100 + 0.788193i 0.993611 + 0.112859i \(0.0360008\pi\)
−0.737512 + 0.675335i \(0.763999\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −207.534 + 67.4319i −0.250948 + 0.0815379i −0.431790 0.901974i \(-0.642118\pi\)
0.180842 + 0.983512i \(0.442118\pi\)
\(828\) 0 0
\(829\) −1026.39 + 745.718i −1.23811 + 0.899539i −0.997471 0.0710752i \(-0.977357\pi\)
−0.240639 + 0.970615i \(0.577357\pi\)
\(830\) 0 0
\(831\) 1250.58 + 406.340i 1.50492 + 0.488977i
\(832\) 0 0
\(833\) 47.8078 65.8018i 0.0573923 0.0789937i
\(834\) 0 0
\(835\) 770.856i 0.923181i
\(836\) 0 0
\(837\) 833.592 0.995928
\(838\) 0 0
\(839\) −734.509 533.652i −0.875458 0.636058i 0.0565879 0.998398i \(-0.481978\pi\)
−0.932046 + 0.362340i \(0.881978\pi\)
\(840\) 0 0
\(841\) 209.501 644.777i 0.249109 0.766679i
\(842\) 0 0
\(843\) 1521.32 + 2093.92i 1.80465 + 2.48389i
\(844\) 0 0
\(845\) −84.6852 260.634i −0.100219 0.308443i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −859.784 + 279.361i −1.01270 + 0.329047i
\(850\) 0 0
\(851\) −80.4787 + 58.4712i −0.0945696 + 0.0687088i
\(852\) 0 0
\(853\) −18.1669 5.90278i −0.0212976 0.00692003i 0.298349 0.954457i \(-0.403564\pi\)
−0.319646 + 0.947537i \(0.603564\pi\)
\(854\) 0 0
\(855\) −1491.49 + 2052.86i −1.74444 + 2.40101i
\(856\) 0 0
\(857\) 488.737i 0.570289i −0.958485 0.285144i \(-0.907958\pi\)
0.958485 0.285144i \(-0.0920415\pi\)
\(858\) 0 0
\(859\) −1449.51 −1.68744 −0.843721 0.536782i \(-0.819640\pi\)
−0.843721 + 0.536782i \(0.819640\pi\)
\(860\) 0 0
\(861\) −1350.64 981.297i −1.56869 1.13972i
\(862\) 0 0
\(863\) 10.0403 30.9007i 0.0116341 0.0358062i −0.945071 0.326865i \(-0.894008\pi\)
0.956705 + 0.291059i \(0.0940076\pi\)
\(864\) 0 0
\(865\) −312.178 429.677i −0.360900 0.496736i
\(866\) 0 0
\(867\) −47.5048 146.205i −0.0547921 0.168633i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 440.047 142.980i 0.505221 0.164156i
\(872\) 0 0
\(873\) −641.679 + 466.207i −0.735028 + 0.534029i
\(874\) 0 0
\(875\) 827.361 + 268.826i 0.945555 + 0.307230i
\(876\) 0 0
\(877\) 71.7460 98.7499i 0.0818084 0.112600i −0.766151 0.642660i \(-0.777831\pi\)
0.847960 + 0.530060i \(0.177831\pi\)
\(878\) 0 0
\(879\) 2628.09i 2.98986i
\(880\) 0 0
\(881\) −545.388 −0.619055 −0.309528 0.950890i \(-0.600171\pi\)
−0.309528 + 0.950890i \(0.600171\pi\)
\(882\) 0 0
\(883\) 823.342 + 598.193i 0.932438 + 0.677456i 0.946588 0.322444i \(-0.104505\pi\)
−0.0141509 + 0.999900i \(0.504505\pi\)
\(884\) 0 0
\(885\) 271.444 835.417i 0.306716 0.943974i
\(886\) 0 0
\(887\) −894.768 1231.54i −1.00876 1.38844i −0.919794 0.392401i \(-0.871645\pi\)
−0.0889633 0.996035i \(-0.528355\pi\)
\(888\) 0 0
\(889\) 81.4921 + 250.807i 0.0916671 + 0.282122i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2400.31 + 779.908i −2.68792 + 0.873357i
\(894\) 0 0
\(895\) −602.788 + 437.951i −0.673507 + 0.489331i
\(896\) 0 0
\(897\) −259.747 84.3968i −0.289573 0.0940879i
\(898\) 0 0
\(899\) −164.299 + 226.138i −0.182758 + 0.251544i
\(900\) 0 0
\(901\) 177.004i 0.196453i
\(902\) 0 0
\(903\) −568.557 −0.629631
\(904\) 0 0
\(905\) 1306.68 + 949.361i 1.44385 + 1.04902i
\(906\) 0 0
\(907\) −193.968 + 596.971i −0.213856 + 0.658182i 0.785377 + 0.619018i \(0.212469\pi\)
−0.999233 + 0.0391635i \(0.987531\pi\)
\(908\) 0 0
\(909\) −855.109 1176.96i −0.940713 1.29478i
\(910\) 0 0
\(911\) 221.708 + 682.348i 0.243368 + 0.749010i 0.995901 + 0.0904550i \(0.0288321\pi\)
−0.752532 + 0.658555i \(0.771168\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −644.885 + 209.536i −0.704792 + 0.229001i
\(916\) 0 0
\(917\) −702.699 + 510.541i −0.766302 + 0.556751i
\(918\) 0 0
\(919\) 847.124 + 275.247i 0.921789 + 0.299507i 0.731200 0.682163i \(-0.238960\pi\)
0.190588 + 0.981670i \(0.438960\pi\)
\(920\) 0 0
\(921\) −1347.84 + 1855.15i −1.46346 + 2.01428i
\(922\) 0 0
\(923\) 618.133i 0.669700i
\(924\) 0 0
\(925\) 69.8995 0.0755670
\(926\) 0 0
\(927\) 166.298 + 120.823i 0.179394 + 0.130337i
\(928\) 0 0
\(929\) −250.632 + 771.367i −0.269787 + 0.830320i 0.720765 + 0.693180i \(0.243791\pi\)
−0.990552 + 0.137140i \(0.956209\pi\)
\(930\) 0 0
\(931\) 86.5804 + 119.168i 0.0929972 + 0.128000i
\(932\) 0 0
\(933\) 633.549 + 1949.86i 0.679045 + 2.08988i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1399.40 454.693i 1.49349 0.485265i 0.555380 0.831596i \(-0.312573\pi\)
0.938112 + 0.346331i \(0.112573\pi\)
\(938\) 0 0
\(939\) −68.2695 + 49.6007i −0.0727044 + 0.0528229i
\(940\) 0 0
\(941\) 130.287 + 42.3328i 0.138456 + 0.0449871i 0.377425 0.926040i \(-0.376810\pi\)
−0.238969 + 0.971027i \(0.576810\pi\)
\(942\) 0 0
\(943\) −104.531 + 143.874i −0.110849 + 0.152571i
\(944\) 0 0
\(945\) 1203.65i 1.27370i
\(946\) 0 0
\(947\) −862.357 −0.910620 −0.455310 0.890333i \(-0.650472\pi\)
−0.455310 + 0.890333i \(0.650472\pi\)
\(948\) 0 0
\(949\) −752.437 546.677i −0.792873 0.576056i
\(950\) 0 0
\(951\) 878.442 2703.57i 0.923703 2.84287i
\(952\) 0 0
\(953\) 875.727 + 1205.33i 0.918916 + 1.26478i 0.964029 + 0.265797i \(0.0856351\pi\)
−0.0451134 + 0.998982i \(0.514365\pi\)
\(954\) 0 0
\(955\) 45.5926 + 140.320i 0.0477410 + 0.146932i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1306.53 + 424.516i −1.36238 + 0.442665i
\(960\) 0 0
\(961\) 389.767 283.183i 0.405585 0.294675i
\(962\) 0 0
\(963\) −18.6981 6.07537i −0.0194165 0.00630879i
\(964\) 0 0
\(965\) 139.769 192.376i 0.144838 0.199353i
\(966\) 0 0
\(967\) 961.962i 0.994790i 0.867524 + 0.497395i \(0.165710\pi\)
−0.867524 + 0.497395i \(0.834290\pi\)
\(968\) 0 0
\(969\) 2923.19 3.01671
\(970\) 0 0
\(971\) 827.337 + 601.095i 0.852046 + 0.619048i 0.925709 0.378235i \(-0.123469\pi\)
−0.0736633 + 0.997283i \(0.523469\pi\)
\(972\) 0 0
\(973\) −441.292 + 1358.16i −0.453537 + 1.39584i
\(974\) 0 0
\(975\) 112.801 + 155.257i 0.115693 + 0.159238i
\(976\) 0 0
\(977\) −363.804 1119.67i −0.372368 1.14603i −0.945237 0.326384i \(-0.894170\pi\)
0.572869 0.819647i \(-0.305830\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 2283.63 741.996i 2.32786 0.756367i
\(982\) 0 0
\(983\) 287.961 209.216i 0.292941 0.212834i −0.431601 0.902065i \(-0.642051\pi\)
0.724542 + 0.689230i \(0.242051\pi\)
\(984\) 0 0
\(985\) 1018.29 + 330.863i 1.03380 + 0.335901i
\(986\) 0 0
\(987\) 1544.12 2125.30i 1.56446 2.15329i
\(988\) 0 0
\(989\) 60.5645i 0.0612381i
\(990\) 0 0
\(991\) −370.283 −0.373646 −0.186823 0.982394i \(-0.559819\pi\)
−0.186823 + 0.982394i \(0.559819\pi\)
\(992\) 0 0
\(993\) −685.521 498.060i −0.690353 0.501571i
\(994\) 0 0
\(995\) 68.0155 209.330i 0.0683573 0.210382i
\(996\) 0 0
\(997\) −16.4378 22.6247i −0.0164872 0.0226927i 0.800694 0.599074i \(-0.204464\pi\)
−0.817181 + 0.576381i \(0.804464\pi\)
\(998\) 0 0
\(999\) −326.170 1003.85i −0.326496 1.00485i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.3.f.a.457.1 8
11.2 odd 10 inner 484.3.f.a.233.1 8
11.3 even 5 484.3.d.c.241.7 8
11.4 even 5 484.3.f.d.481.2 8
11.5 even 5 484.3.f.e.161.2 8
11.6 odd 10 484.3.f.d.161.2 8
11.7 odd 10 484.3.f.e.481.2 8
11.8 odd 10 484.3.d.c.241.8 8
11.9 even 5 44.3.f.a.13.1 8
11.10 odd 2 44.3.f.a.17.1 yes 8
33.8 even 10 4356.3.f.g.1693.4 8
33.14 odd 10 4356.3.f.g.1693.3 8
33.20 odd 10 396.3.t.a.145.1 8
33.32 even 2 396.3.t.a.325.1 8
44.31 odd 10 176.3.n.c.145.2 8
44.43 even 2 176.3.n.c.17.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.3.f.a.13.1 8 11.9 even 5
44.3.f.a.17.1 yes 8 11.10 odd 2
176.3.n.c.17.2 8 44.43 even 2
176.3.n.c.145.2 8 44.31 odd 10
396.3.t.a.145.1 8 33.20 odd 10
396.3.t.a.325.1 8 33.32 even 2
484.3.d.c.241.7 8 11.3 even 5
484.3.d.c.241.8 8 11.8 odd 10
484.3.f.a.233.1 8 11.2 odd 10 inner
484.3.f.a.457.1 8 1.1 even 1 trivial
484.3.f.d.161.2 8 11.6 odd 10
484.3.f.d.481.2 8 11.4 even 5
484.3.f.e.161.2 8 11.5 even 5
484.3.f.e.481.2 8 11.7 odd 10
4356.3.f.g.1693.3 8 33.14 odd 10
4356.3.f.g.1693.4 8 33.8 even 10