Properties

Label 484.2.g.f.475.4
Level $484$
Weight $2$
Character 484.475
Analytic conductor $3.865$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [484,2,Mod(215,484)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("484.215"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(484, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.g (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-5,0,-1,4,10,0,-5,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 475.4
Root \(1.40958 + 0.114404i\) of defining polynomial
Character \(\chi\) \(=\) 484.475
Dual form 484.2.g.f.215.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.07313 - 0.921084i) q^{2} +(0.435358 + 0.599219i) q^{3} +(0.303207 - 1.97688i) q^{4} +(-0.416683 - 1.28242i) q^{5} +(1.01913 + 0.242037i) q^{6} +(-1.31738 - 0.957131i) q^{7} +(-1.49550 - 2.40073i) q^{8} +(0.757524 - 2.33142i) q^{9} +(-1.62837 - 0.992398i) q^{10} +(1.31659 - 0.678965i) q^{12} +(3.38313 + 1.09925i) q^{13} +(-2.29531 + 0.186292i) q^{14} +(0.587043 - 0.807995i) q^{15} +(-3.81613 - 1.19881i) q^{16} +(0.0665412 - 0.0216205i) q^{17} +(-1.33451 - 3.19966i) q^{18} +(-6.43293 + 4.67380i) q^{19} +(-2.66153 + 0.434895i) q^{20} -1.20609i q^{21} -5.30988i q^{23} +(0.787485 - 1.94131i) q^{24} +(2.57411 - 1.87020i) q^{25} +(4.64303 - 1.93652i) q^{26} +(3.84010 - 1.24772i) q^{27} +(-2.29157 + 2.31409i) q^{28} +(2.31370 - 3.18453i) q^{29} +(-0.114260 - 1.40780i) q^{30} +(3.51309 + 1.14147i) q^{31} +(-5.19940 + 2.22850i) q^{32} +(0.0514928 - 0.0844916i) q^{34} +(-0.678513 + 2.08825i) q^{35} +(-4.37926 - 2.20444i) q^{36} +(5.56491 + 4.04314i) q^{37} +(-2.59840 + 10.9409i) q^{38} +(0.814185 + 2.50580i) q^{39} +(-2.45559 + 2.91819i) q^{40} +(3.40107 + 4.68117i) q^{41} +(-1.11091 - 1.29429i) q^{42} +1.89516 q^{43} -3.30550 q^{45} +(-4.89084 - 5.69818i) q^{46} +(5.76344 + 7.93270i) q^{47} +(-0.943034 - 2.80861i) q^{48} +(-1.34373 - 4.13559i) q^{49} +(1.03974 - 4.37794i) q^{50} +(0.0419247 + 0.0304601i) q^{51} +(3.19887 - 6.35475i) q^{52} +(-1.20135 + 3.69738i) q^{53} +(2.97166 - 4.87602i) q^{54} +(-0.327678 + 4.59405i) q^{56} +(-5.60126 - 1.81996i) q^{57} +(-0.450329 - 5.54852i) q^{58} +(-2.85758 + 3.93312i) q^{59} +(-1.41932 - 1.40551i) q^{60} +(-1.28015 + 0.415944i) q^{61} +(4.82139 - 2.01091i) q^{62} +(-3.22942 + 2.34631i) q^{63} +(-3.52698 + 7.18056i) q^{64} -4.79662i q^{65} +4.91303i q^{67} +(-0.0225655 - 0.138100i) q^{68} +(3.18178 - 2.31170i) q^{69} +(1.19532 + 2.86593i) q^{70} +(6.63416 - 2.15557i) q^{71} +(-6.72998 + 1.66802i) q^{72} +(-5.94967 + 8.18902i) q^{73} +(9.69594 - 0.786941i) q^{74} +(2.24132 + 0.728250i) q^{75} +(7.28904 + 14.1343i) q^{76} +(3.18178 + 1.93911i) q^{78} +(-1.85551 + 5.71067i) q^{79} +(0.0527412 + 5.39340i) q^{80} +(-3.53019 - 2.56484i) q^{81} +(7.96154 + 1.89082i) q^{82} +(-1.11615 - 3.43515i) q^{83} +(-2.38430 - 0.365696i) q^{84} +(-0.0554531 - 0.0763247i) q^{85} +(2.03375 - 1.74560i) q^{86} +2.91552 q^{87} -5.39711 q^{89} +(-3.54723 + 3.04465i) q^{90} +(-3.40474 - 4.68622i) q^{91} +(-10.4970 - 1.60999i) q^{92} +(0.845462 + 2.60206i) q^{93} +(13.4916 + 3.20418i) q^{94} +(8.67425 + 6.30221i) q^{95} +(-3.59896 - 2.14538i) q^{96} +(2.26393 - 6.96767i) q^{97} +(-5.25122 - 3.20032i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 5 q^{2} - q^{4} + 4 q^{5} + 10 q^{6} - 5 q^{8} + 10 q^{9} - 22 q^{12} - 2 q^{14} - 17 q^{16} - 10 q^{17} - 15 q^{18} - 24 q^{20} + 40 q^{24} - 4 q^{25} + 16 q^{26} - 30 q^{28} + 40 q^{29} + 30 q^{30}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07313 0.921084i 0.758816 0.651305i
\(3\) 0.435358 + 0.599219i 0.251354 + 0.345959i 0.915985 0.401213i \(-0.131411\pi\)
−0.664631 + 0.747172i \(0.731411\pi\)
\(4\) 0.303207 1.97688i 0.151604 0.988441i
\(5\) −0.416683 1.28242i −0.186346 0.573515i 0.813623 0.581393i \(-0.197492\pi\)
−0.999969 + 0.00787847i \(0.997492\pi\)
\(6\) 1.01913 + 0.242037i 0.416057 + 0.0988113i
\(7\) −1.31738 0.957131i −0.497922 0.361762i 0.310301 0.950638i \(-0.399570\pi\)
−0.808223 + 0.588877i \(0.799570\pi\)
\(8\) −1.49550 2.40073i −0.528738 0.848785i
\(9\) 0.757524 2.33142i 0.252508 0.777140i
\(10\) −1.62837 0.992398i −0.514936 0.313824i
\(11\) 0 0
\(12\) 1.31659 0.678965i 0.380067 0.196000i
\(13\) 3.38313 + 1.09925i 0.938312 + 0.304876i 0.737957 0.674848i \(-0.235791\pi\)
0.200354 + 0.979723i \(0.435791\pi\)
\(14\) −2.29531 + 0.186292i −0.613449 + 0.0497887i
\(15\) 0.587043 0.807995i 0.151574 0.208624i
\(16\) −3.81613 1.19881i −0.954033 0.299702i
\(17\) 0.0665412 0.0216205i 0.0161386 0.00524375i −0.300937 0.953644i \(-0.597299\pi\)
0.317075 + 0.948400i \(0.397299\pi\)
\(18\) −1.33451 3.19966i −0.314548 0.754166i
\(19\) −6.43293 + 4.67380i −1.47582 + 1.07224i −0.496940 + 0.867785i \(0.665543\pi\)
−0.978875 + 0.204458i \(0.934457\pi\)
\(20\) −2.66153 + 0.434895i −0.595136 + 0.0972455i
\(21\) 1.20609i 0.263191i
\(22\) 0 0
\(23\) 5.30988i 1.10719i −0.832787 0.553593i \(-0.813256\pi\)
0.832787 0.553593i \(-0.186744\pi\)
\(24\) 0.787485 1.94131i 0.160745 0.396267i
\(25\) 2.57411 1.87020i 0.514823 0.374041i
\(26\) 4.64303 1.93652i 0.910573 0.379782i
\(27\) 3.84010 1.24772i 0.739027 0.240125i
\(28\) −2.29157 + 2.31409i −0.433067 + 0.437323i
\(29\) 2.31370 3.18453i 0.429643 0.591353i −0.538228 0.842799i \(-0.680906\pi\)
0.967871 + 0.251446i \(0.0809062\pi\)
\(30\) −0.114260 1.40780i −0.0208609 0.257028i
\(31\) 3.51309 + 1.14147i 0.630970 + 0.205015i 0.607005 0.794698i \(-0.292371\pi\)
0.0239654 + 0.999713i \(0.492371\pi\)
\(32\) −5.19940 + 2.22850i −0.919133 + 0.393947i
\(33\) 0 0
\(34\) 0.0514928 0.0844916i 0.00883095 0.0144902i
\(35\) −0.678513 + 2.08825i −0.114690 + 0.352979i
\(36\) −4.37926 2.20444i −0.729876 0.367407i
\(37\) 5.56491 + 4.04314i 0.914866 + 0.664689i 0.942241 0.334936i \(-0.108715\pi\)
−0.0273751 + 0.999625i \(0.508715\pi\)
\(38\) −2.59840 + 10.9409i −0.421515 + 1.77484i
\(39\) 0.814185 + 2.50580i 0.130374 + 0.401250i
\(40\) −2.45559 + 2.91819i −0.388263 + 0.461407i
\(41\) 3.40107 + 4.68117i 0.531158 + 0.731076i 0.987306 0.158827i \(-0.0507713\pi\)
−0.456148 + 0.889904i \(0.650771\pi\)
\(42\) −1.11091 1.29429i −0.171418 0.199714i
\(43\) 1.89516 0.289009 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(44\) 0 0
\(45\) −3.30550 −0.492755
\(46\) −4.89084 5.69818i −0.721116 0.840150i
\(47\) 5.76344 + 7.93270i 0.840685 + 1.15710i 0.985839 + 0.167694i \(0.0536322\pi\)
−0.145154 + 0.989409i \(0.546368\pi\)
\(48\) −0.943034 2.80861i −0.136115 0.405388i
\(49\) −1.34373 4.13559i −0.191962 0.590798i
\(50\) 1.03974 4.37794i 0.147041 0.619135i
\(51\) 0.0419247 + 0.0304601i 0.00587063 + 0.00426526i
\(52\) 3.19887 6.35475i 0.443603 0.881246i
\(53\) −1.20135 + 3.69738i −0.165018 + 0.507874i −0.999038 0.0438612i \(-0.986034\pi\)
0.834019 + 0.551735i \(0.186034\pi\)
\(54\) 2.97166 4.87602i 0.404391 0.663543i
\(55\) 0 0
\(56\) −0.327678 + 4.59405i −0.0437878 + 0.613906i
\(57\) −5.60126 1.81996i −0.741905 0.241059i
\(58\) −0.450329 5.54852i −0.0591311 0.728556i
\(59\) −2.85758 + 3.93312i −0.372025 + 0.512049i −0.953450 0.301551i \(-0.902496\pi\)
0.581425 + 0.813600i \(0.302496\pi\)
\(60\) −1.41932 1.40551i −0.183233 0.181450i
\(61\) −1.28015 + 0.415944i −0.163906 + 0.0532562i −0.389820 0.920891i \(-0.627463\pi\)
0.225915 + 0.974147i \(0.427463\pi\)
\(62\) 4.82139 2.01091i 0.612317 0.255386i
\(63\) −3.22942 + 2.34631i −0.406869 + 0.295607i
\(64\) −3.52698 + 7.18056i −0.440873 + 0.897569i
\(65\) 4.79662i 0.594948i
\(66\) 0 0
\(67\) 4.91303i 0.600223i 0.953904 + 0.300111i \(0.0970238\pi\)
−0.953904 + 0.300111i \(0.902976\pi\)
\(68\) −0.0225655 0.138100i −0.00273647 0.0167470i
\(69\) 3.18178 2.31170i 0.383041 0.278296i
\(70\) 1.19532 + 2.86593i 0.142868 + 0.342544i
\(71\) 6.63416 2.15557i 0.787330 0.255819i 0.112363 0.993667i \(-0.464158\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(72\) −6.72998 + 1.66802i −0.793135 + 0.196578i
\(73\) −5.94967 + 8.18902i −0.696356 + 0.958452i 0.303628 + 0.952791i \(0.401802\pi\)
−0.999984 + 0.00566160i \(0.998198\pi\)
\(74\) 9.69594 0.786941i 1.12713 0.0914801i
\(75\) 2.24132 + 0.728250i 0.258806 + 0.0840911i
\(76\) 7.28904 + 14.1343i 0.836110 + 1.62131i
\(77\) 0 0
\(78\) 3.18178 + 1.93911i 0.360266 + 0.219561i
\(79\) −1.85551 + 5.71067i −0.208761 + 0.642501i 0.790777 + 0.612105i \(0.209677\pi\)
−0.999538 + 0.0303963i \(0.990323\pi\)
\(80\) 0.0527412 + 5.39340i 0.00589664 + 0.603000i
\(81\) −3.53019 2.56484i −0.392244 0.284982i
\(82\) 7.96154 + 1.89082i 0.879205 + 0.208807i
\(83\) −1.11615 3.43515i −0.122513 0.377057i 0.870927 0.491413i \(-0.163519\pi\)
−0.993440 + 0.114356i \(0.963519\pi\)
\(84\) −2.38430 0.365696i −0.260149 0.0399007i
\(85\) −0.0554531 0.0763247i −0.00601473 0.00827857i
\(86\) 2.03375 1.74560i 0.219305 0.188233i
\(87\) 2.91552 0.312576
\(88\) 0 0
\(89\) −5.39711 −0.572093 −0.286046 0.958216i \(-0.592341\pi\)
−0.286046 + 0.958216i \(0.592341\pi\)
\(90\) −3.54723 + 3.04465i −0.373910 + 0.320934i
\(91\) −3.40474 4.68622i −0.356914 0.491250i
\(92\) −10.4970 1.60999i −1.09439 0.167853i
\(93\) 0.845462 + 2.60206i 0.0876703 + 0.269821i
\(94\) 13.4916 + 3.20418i 1.39155 + 0.330486i
\(95\) 8.67425 + 6.30221i 0.889960 + 0.646594i
\(96\) −3.59896 2.14538i −0.367318 0.218962i
\(97\) 2.26393 6.96767i 0.229867 0.707459i −0.767893 0.640578i \(-0.778695\pi\)
0.997761 0.0668817i \(-0.0213050\pi\)
\(98\) −5.25122 3.20032i −0.530454 0.323281i
\(99\) 0 0
\(100\) −2.91668 5.65578i −0.291668 0.565578i
\(101\) 9.10415 + 2.95812i 0.905897 + 0.294344i 0.724669 0.689097i \(-0.241993\pi\)
0.181228 + 0.983441i \(0.441993\pi\)
\(102\) 0.0730468 0.00592862i 0.00723271 0.000587021i
\(103\) −6.06681 + 8.35025i −0.597781 + 0.822775i −0.995503 0.0947311i \(-0.969801\pi\)
0.397722 + 0.917506i \(0.369801\pi\)
\(104\) −2.42047 9.76589i −0.237346 0.957625i
\(105\) −1.54672 + 0.502558i −0.150944 + 0.0490447i
\(106\) 2.11639 + 5.07431i 0.205562 + 0.492860i
\(107\) 8.96161 6.51099i 0.866352 0.629441i −0.0632539 0.997997i \(-0.520148\pi\)
0.929605 + 0.368556i \(0.120148\pi\)
\(108\) −1.30226 7.96974i −0.125310 0.766889i
\(109\) 8.95933i 0.858149i 0.903269 + 0.429074i \(0.141160\pi\)
−0.903269 + 0.429074i \(0.858840\pi\)
\(110\) 0 0
\(111\) 5.09482i 0.483579i
\(112\) 3.87987 + 5.23182i 0.366613 + 0.494361i
\(113\) −8.91785 + 6.47920i −0.838921 + 0.609511i −0.922069 0.387026i \(-0.873502\pi\)
0.0831484 + 0.996537i \(0.473502\pi\)
\(114\) −7.68720 + 3.20618i −0.719972 + 0.300286i
\(115\) −6.80948 + 2.21253i −0.634987 + 0.206320i
\(116\) −5.59391 5.53948i −0.519382 0.514328i
\(117\) 5.12561 7.05479i 0.473863 0.652216i
\(118\) 0.556188 + 6.85282i 0.0512013 + 0.630853i
\(119\) −0.108354 0.0352062i −0.00993275 0.00322735i
\(120\) −2.81770 0.200977i −0.257219 0.0183466i
\(121\) 0 0
\(122\) −0.990640 + 1.62548i −0.0896883 + 0.147164i
\(123\) −1.32436 + 4.07597i −0.119414 + 0.367518i
\(124\) 3.32175 6.59887i 0.298302 0.592596i
\(125\) −8.92542 6.48470i −0.798314 0.580009i
\(126\) −1.30443 + 5.49246i −0.116208 + 0.489307i
\(127\) −3.18051 9.78860i −0.282225 0.868598i −0.987217 0.159383i \(-0.949050\pi\)
0.704992 0.709215i \(-0.250950\pi\)
\(128\) 2.82899 + 10.9543i 0.250050 + 0.968233i
\(129\) 0.825073 + 1.13562i 0.0726436 + 0.0999854i
\(130\) −4.41810 5.14739i −0.387493 0.451456i
\(131\) 1.86768 0.163180 0.0815901 0.996666i \(-0.474000\pi\)
0.0815901 + 0.996666i \(0.474000\pi\)
\(132\) 0 0
\(133\) 12.9480 1.12274
\(134\) 4.52532 + 5.27231i 0.390928 + 0.455459i
\(135\) −3.20021 4.40471i −0.275430 0.379097i
\(136\) −0.151417 0.127414i −0.0129839 0.0109256i
\(137\) −0.387654 1.19308i −0.0331195 0.101931i 0.933130 0.359539i \(-0.117066\pi\)
−0.966250 + 0.257607i \(0.917066\pi\)
\(138\) 1.28519 5.41144i 0.109402 0.460652i
\(139\) −5.08964 3.69784i −0.431698 0.313647i 0.350630 0.936514i \(-0.385968\pi\)
−0.782327 + 0.622867i \(0.785968\pi\)
\(140\) 3.92249 + 1.97451i 0.331511 + 0.166877i
\(141\) −2.24426 + 6.90713i −0.189001 + 0.581686i
\(142\) 5.13384 8.42382i 0.430822 0.706912i
\(143\) 0 0
\(144\) −5.68574 + 7.98888i −0.473812 + 0.665740i
\(145\) −5.04798 1.64019i −0.419212 0.136210i
\(146\) 1.15802 + 14.2680i 0.0958384 + 1.18083i
\(147\) 1.89312 2.60565i 0.156142 0.214911i
\(148\) 9.68014 9.77527i 0.795703 0.803522i
\(149\) 16.3160 5.30140i 1.33666 0.434307i 0.448477 0.893795i \(-0.351967\pi\)
0.888184 + 0.459487i \(0.151967\pi\)
\(150\) 3.07601 1.28294i 0.251155 0.104752i
\(151\) 9.83626 7.14646i 0.800464 0.581571i −0.110586 0.993867i \(-0.535273\pi\)
0.911050 + 0.412295i \(0.135273\pi\)
\(152\) 20.8409 + 8.45407i 1.69042 + 0.685715i
\(153\) 0.171513i 0.0138660i
\(154\) 0 0
\(155\) 4.98089i 0.400074i
\(156\) 5.20054 0.849770i 0.416377 0.0680361i
\(157\) 4.28919 3.11628i 0.342315 0.248706i −0.403323 0.915058i \(-0.632145\pi\)
0.745638 + 0.666351i \(0.232145\pi\)
\(158\) 3.26881 + 7.83737i 0.260053 + 0.623507i
\(159\) −2.73856 + 0.889811i −0.217182 + 0.0705666i
\(160\) 5.02437 + 5.73923i 0.397212 + 0.453726i
\(161\) −5.08225 + 6.99512i −0.400537 + 0.551292i
\(162\) −6.15078 + 0.499209i −0.483251 + 0.0392216i
\(163\) −9.56530 3.10795i −0.749212 0.243434i −0.0905700 0.995890i \(-0.528869\pi\)
−0.658642 + 0.752456i \(0.728869\pi\)
\(164\) 10.2854 5.30415i 0.803152 0.414185i
\(165\) 0 0
\(166\) −4.36183 2.65829i −0.338544 0.206323i
\(167\) 6.76983 20.8354i 0.523865 1.61229i −0.242683 0.970106i \(-0.578028\pi\)
0.766549 0.642186i \(-0.221972\pi\)
\(168\) −2.89550 + 1.80371i −0.223393 + 0.139159i
\(169\) −0.279988 0.203423i −0.0215375 0.0156479i
\(170\) −0.129810 0.0308291i −0.00995595 0.00236449i
\(171\) 6.02348 + 18.5384i 0.460627 + 1.41766i
\(172\) 0.574626 3.74651i 0.0438148 0.285669i
\(173\) −6.95480 9.57246i −0.528763 0.727780i 0.458178 0.888861i \(-0.348502\pi\)
−0.986941 + 0.161080i \(0.948502\pi\)
\(174\) 3.12872 2.68544i 0.237188 0.203583i
\(175\) −5.18111 −0.391655
\(176\) 0 0
\(177\) −3.60087 −0.270658
\(178\) −5.79179 + 4.97120i −0.434113 + 0.372607i
\(179\) 0.548801 + 0.755360i 0.0410193 + 0.0564582i 0.829034 0.559198i \(-0.188891\pi\)
−0.788015 + 0.615656i \(0.788891\pi\)
\(180\) −1.00225 + 6.53459i −0.0747034 + 0.487060i
\(181\) 5.82171 + 17.9174i 0.432725 + 1.33179i 0.895400 + 0.445262i \(0.146889\pi\)
−0.462676 + 0.886528i \(0.653111\pi\)
\(182\) −7.97013 1.89286i −0.590785 0.140308i
\(183\) −0.806564 0.586003i −0.0596229 0.0433186i
\(184\) −12.7476 + 7.94090i −0.939763 + 0.585411i
\(185\) 2.86620 8.82125i 0.210727 0.648551i
\(186\) 3.30401 + 2.01361i 0.242262 + 0.147645i
\(187\) 0 0
\(188\) 17.4295 8.98840i 1.27118 0.655547i
\(189\) −6.25310 2.03175i −0.454846 0.147788i
\(190\) 15.1135 1.22664i 1.09645 0.0889896i
\(191\) 12.0167 16.5396i 0.869501 1.19676i −0.109719 0.993963i \(-0.534995\pi\)
0.979220 0.202802i \(-0.0650049\pi\)
\(192\) −5.83823 + 1.01268i −0.421338 + 0.0730837i
\(193\) −16.4922 + 5.35865i −1.18714 + 0.385724i −0.835013 0.550230i \(-0.814540\pi\)
−0.352123 + 0.935954i \(0.614540\pi\)
\(194\) −3.98832 9.56247i −0.286345 0.686545i
\(195\) 2.87423 2.08825i 0.205828 0.149543i
\(196\) −8.58300 + 1.40246i −0.613072 + 0.100176i
\(197\) 3.49133i 0.248747i 0.992235 + 0.124374i \(0.0396921\pi\)
−0.992235 + 0.124374i \(0.960308\pi\)
\(198\) 0 0
\(199\) 11.2660i 0.798625i 0.916815 + 0.399313i \(0.130751\pi\)
−0.916815 + 0.399313i \(0.869249\pi\)
\(200\) −8.33942 3.38286i −0.589686 0.239205i
\(201\) −2.94398 + 2.13893i −0.207653 + 0.150868i
\(202\) 12.4946 5.21125i 0.879117 0.366662i
\(203\) −6.09603 + 1.98072i −0.427857 + 0.139019i
\(204\) 0.0729278 0.0736445i 0.00510597 0.00515614i
\(205\) 4.58605 6.31216i 0.320304 0.440860i
\(206\) 1.18082 + 14.5489i 0.0822717 + 1.01367i
\(207\) −12.3796 4.02236i −0.860438 0.279573i
\(208\) −11.5927 8.25060i −0.803808 0.572076i
\(209\) 0 0
\(210\) −1.19693 + 1.96397i −0.0825957 + 0.135526i
\(211\) 0.847619 2.60870i 0.0583525 0.179590i −0.917632 0.397432i \(-0.869902\pi\)
0.975984 + 0.217841i \(0.0699015\pi\)
\(212\) 6.94503 + 3.49600i 0.476986 + 0.240106i
\(213\) 4.17989 + 3.03687i 0.286402 + 0.208083i
\(214\) 3.61978 15.2415i 0.247443 1.04189i
\(215\) −0.789680 2.43039i −0.0538558 0.165751i
\(216\) −8.73830 7.35306i −0.594566 0.500313i
\(217\) −3.53553 4.86624i −0.240008 0.330342i
\(218\) 8.25230 + 9.61451i 0.558916 + 0.651177i
\(219\) −7.49726 −0.506618
\(220\) 0 0
\(221\) 0.248884 0.0167417
\(222\) 4.69276 + 5.46739i 0.314957 + 0.366947i
\(223\) −13.9457 19.1946i −0.933871 1.28536i −0.958330 0.285662i \(-0.907787\pi\)
0.0244597 0.999701i \(-0.492213\pi\)
\(224\) 8.98255 + 2.04073i 0.600172 + 0.136352i
\(225\) −2.41027 7.41806i −0.160685 0.494538i
\(226\) −3.60211 + 15.1671i −0.239608 + 1.00890i
\(227\) −0.647893 0.470721i −0.0430021 0.0312429i 0.566077 0.824353i \(-0.308461\pi\)
−0.609079 + 0.793110i \(0.708461\pi\)
\(228\) −5.29619 + 10.5212i −0.350749 + 0.696784i
\(229\) −7.28939 + 22.4344i −0.481696 + 1.48251i 0.355013 + 0.934861i \(0.384476\pi\)
−0.836709 + 0.547647i \(0.815524\pi\)
\(230\) −5.26951 + 8.64644i −0.347461 + 0.570129i
\(231\) 0 0
\(232\) −11.1053 0.792103i −0.729100 0.0520041i
\(233\) −16.6354 5.40517i −1.08982 0.354105i −0.291644 0.956527i \(-0.594202\pi\)
−0.798178 + 0.602422i \(0.794202\pi\)
\(234\) −0.997627 12.2918i −0.0652169 0.803541i
\(235\) 7.77151 10.6966i 0.506957 0.697767i
\(236\) 6.90888 + 6.84165i 0.449730 + 0.445354i
\(237\) −4.22976 + 1.37433i −0.274752 + 0.0892724i
\(238\) −0.148705 + 0.0620220i −0.00963912 + 0.00402029i
\(239\) 5.40825 3.92933i 0.349831 0.254167i −0.398967 0.916965i \(-0.630631\pi\)
0.748798 + 0.662798i \(0.230631\pi\)
\(240\) −3.20887 + 2.37966i −0.207131 + 0.153607i
\(241\) 4.28655i 0.276121i −0.990424 0.138061i \(-0.955913\pi\)
0.990424 0.138061i \(-0.0440868\pi\)
\(242\) 0 0
\(243\) 15.3451i 0.984391i
\(244\) 0.434124 + 2.65681i 0.0277920 + 0.170085i
\(245\) −4.74364 + 3.44646i −0.303060 + 0.220186i
\(246\) 2.33310 + 5.59389i 0.148753 + 0.356654i
\(247\) −26.9011 + 8.74070i −1.71168 + 0.556157i
\(248\) −2.51345 10.1410i −0.159604 0.643957i
\(249\) 1.57248 2.16434i 0.0996521 0.137159i
\(250\) −15.5511 + 1.26216i −0.983536 + 0.0798257i
\(251\) 4.65797 + 1.51346i 0.294008 + 0.0955291i 0.452307 0.891862i \(-0.350601\pi\)
−0.158299 + 0.987391i \(0.550601\pi\)
\(252\) 3.65920 + 7.09560i 0.230508 + 0.446981i
\(253\) 0 0
\(254\) −12.4292 7.57491i −0.779879 0.475292i
\(255\) 0.0215932 0.0664571i 0.00135222 0.00416171i
\(256\) 13.1257 + 9.14963i 0.820357 + 0.571852i
\(257\) 10.0191 + 7.27931i 0.624975 + 0.454071i 0.854656 0.519195i \(-0.173768\pi\)
−0.229681 + 0.973266i \(0.573768\pi\)
\(258\) 1.93141 + 0.458699i 0.120244 + 0.0285574i
\(259\) −3.46127 10.6527i −0.215073 0.661927i
\(260\) −9.48236 1.45437i −0.588071 0.0901962i
\(261\) −5.67180 7.80656i −0.351075 0.483214i
\(262\) 2.00426 1.72029i 0.123824 0.106280i
\(263\) −16.9489 −1.04511 −0.522556 0.852605i \(-0.675021\pi\)
−0.522556 + 0.852605i \(0.675021\pi\)
\(264\) 0 0
\(265\) 5.24217 0.322024
\(266\) 13.8949 11.9262i 0.851951 0.731245i
\(267\) −2.34968 3.23405i −0.143798 0.197921i
\(268\) 9.71249 + 1.48967i 0.593285 + 0.0909959i
\(269\) 1.22209 + 3.76120i 0.0745120 + 0.229324i 0.981375 0.192101i \(-0.0615300\pi\)
−0.906863 + 0.421425i \(0.861530\pi\)
\(270\) −7.49134 1.77915i −0.455908 0.108276i
\(271\) −19.2040 13.9525i −1.16656 0.847556i −0.175968 0.984396i \(-0.556305\pi\)
−0.990593 + 0.136840i \(0.956305\pi\)
\(272\) −0.279849 + 0.00273659i −0.0169683 + 0.000165930i
\(273\) 1.32579 4.08037i 0.0802406 0.246955i
\(274\) −1.51493 0.923261i −0.0915200 0.0557763i
\(275\) 0 0
\(276\) −3.60522 6.99093i −0.217009 0.420804i
\(277\) 14.2764 + 4.63868i 0.857784 + 0.278711i 0.704703 0.709503i \(-0.251080\pi\)
0.153081 + 0.988214i \(0.451080\pi\)
\(278\) −8.86786 + 0.719733i −0.531859 + 0.0431667i
\(279\) 5.32251 7.32580i 0.318650 0.438584i
\(280\) 6.02803 1.49404i 0.360244 0.0892861i
\(281\) −5.46035 + 1.77417i −0.325737 + 0.105838i −0.467321 0.884088i \(-0.654781\pi\)
0.141584 + 0.989926i \(0.454781\pi\)
\(282\) 3.95367 + 9.47939i 0.235438 + 0.564490i
\(283\) −9.05676 + 6.58012i −0.538369 + 0.391148i −0.823479 0.567347i \(-0.807970\pi\)
0.285110 + 0.958495i \(0.407970\pi\)
\(284\) −2.24978 13.7685i −0.133500 0.817013i
\(285\) 7.94150i 0.470414i
\(286\) 0 0
\(287\) 9.42215i 0.556172i
\(288\) 1.25690 + 13.8101i 0.0740637 + 0.813770i
\(289\) −13.7493 + 9.98947i −0.808784 + 0.587616i
\(290\) −6.92788 + 2.88948i −0.406819 + 0.169676i
\(291\) 5.16078 1.67684i 0.302530 0.0982981i
\(292\) 14.3848 + 14.2448i 0.841804 + 0.833612i
\(293\) 3.11697 4.29014i 0.182095 0.250632i −0.708205 0.706007i \(-0.750495\pi\)
0.890300 + 0.455375i \(0.150495\pi\)
\(294\) −0.368469 4.53992i −0.0214895 0.264774i
\(295\) 6.23461 + 2.02575i 0.362993 + 0.117944i
\(296\) 1.38419 19.4063i 0.0804542 1.12797i
\(297\) 0 0
\(298\) 12.6261 20.7175i 0.731413 1.20013i
\(299\) 5.83686 17.9640i 0.337554 1.03889i
\(300\) 2.11925 4.21002i 0.122355 0.243066i
\(301\) −2.49664 1.81392i −0.143904 0.104552i
\(302\) 3.97307 16.7291i 0.228625 0.962652i
\(303\) 2.19101 + 6.74322i 0.125870 + 0.387388i
\(304\) 30.1519 10.1240i 1.72933 0.580649i
\(305\) 1.06683 + 1.46836i 0.0610865 + 0.0840783i
\(306\) −0.157978 0.184056i −0.00903102 0.0105218i
\(307\) −2.27014 −0.129564 −0.0647820 0.997899i \(-0.520635\pi\)
−0.0647820 + 0.997899i \(0.520635\pi\)
\(308\) 0 0
\(309\) −7.64487 −0.434901
\(310\) −4.58782 5.34513i −0.260571 0.303583i
\(311\) 11.8536 + 16.3151i 0.672155 + 0.925143i 0.999807 0.0196560i \(-0.00625712\pi\)
−0.327651 + 0.944799i \(0.606257\pi\)
\(312\) 4.79814 5.70205i 0.271641 0.322815i
\(313\) 0.476468 + 1.46642i 0.0269316 + 0.0828869i 0.963619 0.267280i \(-0.0861249\pi\)
−0.936687 + 0.350167i \(0.886125\pi\)
\(314\) 1.73249 7.29487i 0.0977703 0.411674i
\(315\) 4.35460 + 3.16380i 0.245354 + 0.178260i
\(316\) 10.7267 + 5.39964i 0.603426 + 0.303754i
\(317\) −5.21071 + 16.0369i −0.292663 + 0.900723i 0.691334 + 0.722536i \(0.257023\pi\)
−0.983997 + 0.178188i \(0.942977\pi\)
\(318\) −2.11923 + 3.47732i −0.118841 + 0.194999i
\(319\) 0 0
\(320\) 10.6781 + 1.53105i 0.596924 + 0.0855885i
\(321\) 7.80302 + 2.53535i 0.435522 + 0.141510i
\(322\) 0.989189 + 12.1878i 0.0551253 + 0.679201i
\(323\) −0.327005 + 0.450083i −0.0181950 + 0.0250433i
\(324\) −6.14076 + 6.20110i −0.341153 + 0.344506i
\(325\) 10.7644 3.49756i 0.597100 0.194010i
\(326\) −13.1275 + 5.47522i −0.727064 + 0.303244i
\(327\) −5.36860 + 3.90052i −0.296885 + 0.215699i
\(328\) 6.15193 15.1657i 0.339684 0.837387i
\(329\) 15.9667i 0.880275i
\(330\) 0 0
\(331\) 33.9735i 1.86735i 0.358115 + 0.933677i \(0.383419\pi\)
−0.358115 + 0.933677i \(0.616581\pi\)
\(332\) −7.12931 + 1.16493i −0.391272 + 0.0639339i
\(333\) 13.6418 9.91136i 0.747567 0.543139i
\(334\) −11.9263 28.5946i −0.652576 1.56463i
\(335\) 6.30056 2.04718i 0.344237 0.111849i
\(336\) −1.44588 + 4.60261i −0.0788790 + 0.251093i
\(337\) −10.0486 + 13.8307i −0.547382 + 0.753407i −0.989654 0.143474i \(-0.954173\pi\)
0.442272 + 0.896881i \(0.354173\pi\)
\(338\) −0.487833 + 0.0395935i −0.0265346 + 0.00215360i
\(339\) −7.76492 2.52297i −0.421732 0.137029i
\(340\) −0.167699 + 0.0864821i −0.00909474 + 0.00469015i
\(341\) 0 0
\(342\) 23.5394 + 14.3459i 1.27286 + 0.775738i
\(343\) −5.71045 + 17.5750i −0.308335 + 0.948959i
\(344\) −2.83420 4.54976i −0.152810 0.245307i
\(345\) −4.29036 3.11713i −0.230985 0.167820i
\(346\) −16.2804 3.86652i −0.875241 0.207865i
\(347\) 0.772260 + 2.37677i 0.0414571 + 0.127592i 0.969643 0.244525i \(-0.0786321\pi\)
−0.928186 + 0.372117i \(0.878632\pi\)
\(348\) 0.884006 5.76364i 0.0473877 0.308963i
\(349\) −4.12112 5.67223i −0.220598 0.303628i 0.684346 0.729157i \(-0.260088\pi\)
−0.904944 + 0.425530i \(0.860088\pi\)
\(350\) −5.56000 + 4.77224i −0.297194 + 0.255087i
\(351\) 14.3631 0.766646
\(352\) 0 0
\(353\) 17.9431 0.955017 0.477509 0.878627i \(-0.341540\pi\)
0.477509 + 0.878627i \(0.341540\pi\)
\(354\) −3.86420 + 3.31671i −0.205380 + 0.176281i
\(355\) −5.52868 7.60958i −0.293432 0.403874i
\(356\) −1.63644 + 10.6695i −0.0867313 + 0.565480i
\(357\) −0.0260764 0.0802548i −0.00138011 0.00424754i
\(358\) 1.28468 + 0.305106i 0.0678977 + 0.0161253i
\(359\) 7.83085 + 5.68945i 0.413297 + 0.300278i 0.774935 0.632041i \(-0.217783\pi\)
−0.361638 + 0.932318i \(0.617783\pi\)
\(360\) 4.94336 + 7.93561i 0.260538 + 0.418243i
\(361\) 13.6669 42.0624i 0.719310 2.21381i
\(362\) 22.7509 + 13.8654i 1.19576 + 0.728748i
\(363\) 0 0
\(364\) −10.2965 + 5.30988i −0.539681 + 0.278313i
\(365\) 12.9809 + 4.21774i 0.679450 + 0.220767i
\(366\) −1.40530 + 0.114057i −0.0734564 + 0.00596187i
\(367\) −18.1903 + 25.0368i −0.949524 + 1.30691i 0.00221435 + 0.999998i \(0.499295\pi\)
−0.951738 + 0.306910i \(0.900705\pi\)
\(368\) −6.36553 + 20.2632i −0.331826 + 1.05629i
\(369\) 13.4902 4.38322i 0.702270 0.228181i
\(370\) −5.04932 12.1063i −0.262502 0.629379i
\(371\) 5.12151 3.72100i 0.265896 0.193184i
\(372\) 5.40032 0.882414i 0.279994 0.0457511i
\(373\) 4.92658i 0.255088i −0.991833 0.127544i \(-0.959291\pi\)
0.991833 0.127544i \(-0.0407095\pi\)
\(374\) 0 0
\(375\) 8.17145i 0.421972i
\(376\) 10.4250 25.6998i 0.537631 1.32537i
\(377\) 11.3281 8.23036i 0.583428 0.423885i
\(378\) −8.58179 + 3.57930i −0.441400 + 0.184099i
\(379\) 3.82815 1.24384i 0.196639 0.0638918i −0.209042 0.977907i \(-0.567035\pi\)
0.405681 + 0.914015i \(0.367035\pi\)
\(380\) 15.0888 15.2371i 0.774041 0.781647i
\(381\) 4.48086 6.16737i 0.229561 0.315964i
\(382\) −2.33889 28.8176i −0.119668 1.47443i
\(383\) 11.4021 + 3.70477i 0.582621 + 0.189305i 0.585474 0.810691i \(-0.300908\pi\)
−0.00285329 + 0.999996i \(0.500908\pi\)
\(384\) −5.33240 + 6.46423i −0.272118 + 0.329877i
\(385\) 0 0
\(386\) −12.7625 + 20.9412i −0.649594 + 1.06588i
\(387\) 1.43563 4.41841i 0.0729771 0.224600i
\(388\) −13.0878 6.58817i −0.664433 0.334464i
\(389\) −11.1135 8.07444i −0.563477 0.409390i 0.269253 0.963070i \(-0.413223\pi\)
−0.832730 + 0.553679i \(0.813223\pi\)
\(390\) 1.16096 4.88837i 0.0587876 0.247532i
\(391\) −0.114802 0.353325i −0.00580580 0.0178684i
\(392\) −7.91887 + 9.41069i −0.399963 + 0.475312i
\(393\) 0.813111 + 1.11915i 0.0410160 + 0.0564537i
\(394\) 3.21581 + 3.74664i 0.162010 + 0.188753i
\(395\) 8.09663 0.407386
\(396\) 0 0
\(397\) −12.1547 −0.610027 −0.305014 0.952348i \(-0.598661\pi\)
−0.305014 + 0.952348i \(0.598661\pi\)
\(398\) 10.3769 + 12.0899i 0.520149 + 0.606010i
\(399\) 5.63704 + 7.75871i 0.282205 + 0.388422i
\(400\) −12.0652 + 4.05107i −0.603259 + 0.202553i
\(401\) −8.89366 27.3719i −0.444128 1.36689i −0.883437 0.468550i \(-0.844777\pi\)
0.439309 0.898336i \(-0.355223\pi\)
\(402\) −1.18914 + 5.00700i −0.0593088 + 0.249727i
\(403\) 10.6305 + 7.72351i 0.529543 + 0.384735i
\(404\) 8.60830 17.1009i 0.428279 0.850802i
\(405\) −1.81822 + 5.59591i −0.0903481 + 0.278063i
\(406\) −4.71741 + 7.74052i −0.234121 + 0.384156i
\(407\) 0 0
\(408\) 0.0104281 0.146203i 0.000516269 0.00723811i
\(409\) −18.0275 5.85749i −0.891402 0.289634i −0.172718 0.984971i \(-0.555255\pi\)
−0.718684 + 0.695337i \(0.755255\pi\)
\(410\) −0.892611 10.9979i −0.0440829 0.543147i
\(411\) 0.546146 0.751705i 0.0269394 0.0370789i
\(412\) 14.6680 + 14.5252i 0.722639 + 0.715607i
\(413\) 7.52903 2.44633i 0.370479 0.120376i
\(414\) −16.9898 + 7.08610i −0.835002 + 0.348263i
\(415\) −3.94022 + 2.86274i −0.193418 + 0.140526i
\(416\) −20.0399 + 1.82389i −0.982538 + 0.0894238i
\(417\) 4.65970i 0.228186i
\(418\) 0 0
\(419\) 15.3705i 0.750898i −0.926843 0.375449i \(-0.877488\pi\)
0.926843 0.375449i \(-0.122512\pi\)
\(420\) 0.524524 + 3.21005i 0.0255941 + 0.156635i
\(421\) −15.6309 + 11.3565i −0.761803 + 0.553482i −0.899463 0.436997i \(-0.856042\pi\)
0.137660 + 0.990480i \(0.456042\pi\)
\(422\) −1.49323 3.58020i −0.0726894 0.174281i
\(423\) 22.8604 7.42780i 1.11151 0.361152i
\(424\) 10.6730 2.64530i 0.518327 0.128467i
\(425\) 0.130850 0.180099i 0.00634714 0.00873609i
\(426\) 7.28278 0.591084i 0.352852 0.0286381i
\(427\) 2.08455 + 0.677311i 0.100878 + 0.0327774i
\(428\) −10.1542 19.6902i −0.490824 0.951763i
\(429\) 0 0
\(430\) −3.08602 1.88075i −0.148821 0.0906980i
\(431\) −8.37559 + 25.7774i −0.403438 + 1.24165i 0.518754 + 0.854923i \(0.326396\pi\)
−0.922192 + 0.386732i \(0.873604\pi\)
\(432\) −16.1501 + 0.157929i −0.777022 + 0.00759837i
\(433\) −3.52419 2.56048i −0.169362 0.123049i 0.499876 0.866097i \(-0.333379\pi\)
−0.669237 + 0.743049i \(0.733379\pi\)
\(434\) −8.27630 1.96558i −0.397275 0.0943508i
\(435\) −1.21485 3.73891i −0.0582474 0.179267i
\(436\) 17.7116 + 2.71653i 0.848230 + 0.130098i
\(437\) 24.8173 + 34.1581i 1.18717 + 1.63400i
\(438\) −8.04552 + 6.90561i −0.384430 + 0.329963i
\(439\) 24.0996 1.15021 0.575105 0.818080i \(-0.304961\pi\)
0.575105 + 0.818080i \(0.304961\pi\)
\(440\) 0 0
\(441\) −10.6597 −0.507605
\(442\) 0.267084 0.229243i 0.0127039 0.0109040i
\(443\) 13.5454 + 18.6436i 0.643561 + 0.885786i 0.998799 0.0489896i \(-0.0156001\pi\)
−0.355238 + 0.934776i \(0.615600\pi\)
\(444\) 10.0719 + 1.54478i 0.477989 + 0.0733122i
\(445\) 2.24888 + 6.92135i 0.106607 + 0.328104i
\(446\) −32.6453 7.75308i −1.54580 0.367119i
\(447\) 10.2800 + 7.46887i 0.486228 + 0.353265i
\(448\) 11.5191 6.08372i 0.544227 0.287429i
\(449\) −1.16607 + 3.58880i −0.0550303 + 0.169366i −0.974794 0.223107i \(-0.928380\pi\)
0.919764 + 0.392473i \(0.128380\pi\)
\(450\) −9.41920 5.74046i −0.444025 0.270608i
\(451\) 0 0
\(452\) 10.1047 + 19.5941i 0.475283 + 0.921628i
\(453\) 8.56460 + 2.78281i 0.402400 + 0.130748i
\(454\) −1.12885 + 0.0916193i −0.0529794 + 0.00429991i
\(455\) −4.59100 + 6.31897i −0.215229 + 0.296238i
\(456\) 4.00743 + 16.1688i 0.187665 + 0.757175i
\(457\) −33.5315 + 10.8950i −1.56854 + 0.509649i −0.959072 0.283164i \(-0.908616\pi\)
−0.609466 + 0.792812i \(0.708616\pi\)
\(458\) 12.8416 + 30.7891i 0.600046 + 1.43868i
\(459\) 0.228548 0.166050i 0.0106677 0.00775055i
\(460\) 2.30924 + 14.1324i 0.107669 + 0.658927i
\(461\) 38.5074i 1.79347i 0.442571 + 0.896734i \(0.354067\pi\)
−0.442571 + 0.896734i \(0.645933\pi\)
\(462\) 0 0
\(463\) 10.7672i 0.500394i −0.968195 0.250197i \(-0.919505\pi\)
0.968195 0.250197i \(-0.0804954\pi\)
\(464\) −12.6470 + 9.37890i −0.587123 + 0.435405i
\(465\) 2.98464 2.16847i 0.138409 0.100560i
\(466\) −22.8305 + 9.52218i −1.05760 + 0.441106i
\(467\) 19.6677 6.39043i 0.910114 0.295714i 0.183709 0.982981i \(-0.441190\pi\)
0.726405 + 0.687267i \(0.241190\pi\)
\(468\) −12.3924 12.2718i −0.572838 0.567264i
\(469\) 4.70242 6.47232i 0.217138 0.298864i
\(470\) −1.51262 18.6370i −0.0697717 0.859661i
\(471\) 3.73467 + 1.21347i 0.172084 + 0.0559136i
\(472\) 13.7159 + 0.978304i 0.631323 + 0.0450301i
\(473\) 0 0
\(474\) −3.27320 + 5.37080i −0.150343 + 0.246689i
\(475\) −7.81814 + 24.0618i −0.358721 + 1.10403i
\(476\) −0.102452 + 0.203528i −0.00469588 + 0.00932867i
\(477\) 7.71009 + 5.60171i 0.353021 + 0.256485i
\(478\) 2.18451 9.19813i 0.0999170 0.420713i
\(479\) 3.52707 + 10.8552i 0.161156 + 0.495986i 0.998732 0.0503333i \(-0.0160284\pi\)
−0.837577 + 0.546320i \(0.816028\pi\)
\(480\) −1.25165 + 5.50932i −0.0571299 + 0.251465i
\(481\) 14.3824 + 19.7957i 0.655781 + 0.902606i
\(482\) −3.94828 4.60002i −0.179839 0.209525i
\(483\) −6.40421 −0.291401
\(484\) 0 0
\(485\) −9.87880 −0.448573
\(486\) −14.1342 16.4673i −0.641139 0.746972i
\(487\) 2.35405 + 3.24008i 0.106672 + 0.146822i 0.859016 0.511949i \(-0.171076\pi\)
−0.752343 + 0.658771i \(0.771076\pi\)
\(488\) 2.91302 + 2.45124i 0.131866 + 0.110962i
\(489\) −2.30199 7.08479i −0.104099 0.320385i
\(490\) −1.91606 + 8.06778i −0.0865586 + 0.364465i
\(491\) 9.05615 + 6.57968i 0.408698 + 0.296937i 0.773075 0.634315i \(-0.218718\pi\)
−0.364376 + 0.931252i \(0.618718\pi\)
\(492\) 7.65617 + 3.85398i 0.345167 + 0.173751i
\(493\) 0.0851048 0.261926i 0.00383293 0.0117965i
\(494\) −20.8174 + 34.1581i −0.936619 + 1.53684i
\(495\) 0 0
\(496\) −12.0380 8.56754i −0.540523 0.384694i
\(497\) −10.8029 3.51006i −0.484575 0.157448i
\(498\) −0.306062 3.77100i −0.0137150 0.168983i
\(499\) −23.1385 + 31.8474i −1.03582 + 1.42569i −0.135336 + 0.990800i \(0.543211\pi\)
−0.900485 + 0.434886i \(0.856789\pi\)
\(500\) −15.5257 + 15.6783i −0.694332 + 0.701155i
\(501\) 15.4323 5.01425i 0.689463 0.224020i
\(502\) 6.39262 2.66624i 0.285317 0.119000i
\(503\) −15.6439 + 11.3660i −0.697527 + 0.506783i −0.879126 0.476589i \(-0.841873\pi\)
0.181599 + 0.983373i \(0.441873\pi\)
\(504\) 10.4624 + 4.24406i 0.466034 + 0.189045i
\(505\) 12.9079i 0.574395i
\(506\) 0 0
\(507\) 0.256336i 0.0113843i
\(508\) −20.3153 + 3.31952i −0.901345 + 0.147280i
\(509\) 34.7849 25.2727i 1.54181 1.12019i 0.592628 0.805476i \(-0.298090\pi\)
0.949186 0.314717i \(-0.101910\pi\)
\(510\) −0.0380403 0.0912062i −0.00168445 0.00403868i
\(511\) 15.6759 5.09342i 0.693463 0.225320i
\(512\) 22.5131 2.27116i 0.994950 0.100372i
\(513\) −18.8715 + 25.9744i −0.833196 + 1.14680i
\(514\) 17.4566 1.41681i 0.769979 0.0624930i
\(515\) 13.2365 + 4.30078i 0.583268 + 0.189515i
\(516\) 2.49515 1.28675i 0.109843 0.0566458i
\(517\) 0 0
\(518\) −13.5264 8.24359i −0.594317 0.362202i
\(519\) 2.70817 8.33490i 0.118876 0.365861i
\(520\) −11.5154 + 7.17333i −0.504983 + 0.314571i
\(521\) 11.9178 + 8.65882i 0.522130 + 0.379350i 0.817406 0.576062i \(-0.195411\pi\)
−0.295275 + 0.955412i \(0.595411\pi\)
\(522\) −13.2771 3.15323i −0.581121 0.138013i
\(523\) −12.5006 38.4729i −0.546614 1.68230i −0.717122 0.696948i \(-0.754541\pi\)
0.170508 0.985356i \(-0.445459\pi\)
\(524\) 0.566295 3.69219i 0.0247387 0.161294i
\(525\) −2.25564 3.10462i −0.0984442 0.135497i
\(526\) −18.1883 + 15.6113i −0.793047 + 0.680686i
\(527\) 0.258445 0.0112580
\(528\) 0 0
\(529\) −5.19479 −0.225860
\(530\) 5.62552 4.82848i 0.244357 0.209736i
\(531\) 7.00507 + 9.64165i 0.303994 + 0.418412i
\(532\) 3.92594 25.5968i 0.170211 1.10976i
\(533\) 6.36051 + 19.5756i 0.275504 + 0.847915i
\(534\) −5.50034 1.30630i −0.238023 0.0565292i
\(535\) −12.0840 8.77951i −0.522435 0.379571i
\(536\) 11.7949 7.34742i 0.509460 0.317360i
\(537\) −0.213701 + 0.657704i −0.00922188 + 0.0283820i
\(538\) 4.77584 + 2.91060i 0.205901 + 0.125485i
\(539\) 0 0
\(540\) −9.67791 + 4.99089i −0.416471 + 0.214774i
\(541\) 15.9160 + 5.17141i 0.684281 + 0.222336i 0.630469 0.776215i \(-0.282863\pi\)
0.0538123 + 0.998551i \(0.482863\pi\)
\(542\) −33.4598 + 2.71567i −1.43722 + 0.116648i
\(543\) −8.20192 + 11.2890i −0.351978 + 0.484456i
\(544\) −0.297793 + 0.260701i −0.0127678 + 0.0111775i
\(545\) 11.4896 3.73320i 0.492161 0.159913i
\(546\) −2.33562 5.59993i −0.0999553 0.239655i
\(547\) −7.51580 + 5.46055i −0.321352 + 0.233476i −0.736752 0.676163i \(-0.763642\pi\)
0.415400 + 0.909639i \(0.363642\pi\)
\(548\) −2.47611 + 0.404597i −0.105774 + 0.0172835i
\(549\) 3.29964i 0.140825i
\(550\) 0 0
\(551\) 31.2996i 1.33341i
\(552\) −10.3081 4.18145i −0.438742 0.177974i
\(553\) 7.91027 5.74715i 0.336379 0.244394i
\(554\) 19.5930 8.17185i 0.832426 0.347189i
\(555\) 6.53368 2.12292i 0.277339 0.0901131i
\(556\) −8.85341 + 8.94041i −0.375468 + 0.379158i
\(557\) 7.79519 10.7292i 0.330293 0.454609i −0.611282 0.791413i \(-0.709346\pi\)
0.941575 + 0.336804i \(0.109346\pi\)
\(558\) −1.03595 12.7640i −0.0438553 0.540343i
\(559\) 6.41157 + 2.08325i 0.271181 + 0.0881119i
\(560\) 5.09271 7.15563i 0.215206 0.302380i
\(561\) 0 0
\(562\) −4.22549 + 6.93336i −0.178241 + 0.292466i
\(563\) −7.26327 + 22.3541i −0.306110 + 0.942111i 0.673150 + 0.739506i \(0.264941\pi\)
−0.979260 + 0.202605i \(0.935059\pi\)
\(564\) 12.9741 + 6.53094i 0.546309 + 0.275002i
\(565\) 12.0250 + 8.73664i 0.505893 + 0.367553i
\(566\) −3.65822 + 15.4034i −0.153766 + 0.647451i
\(567\) 2.19572 + 6.75772i 0.0922114 + 0.283797i
\(568\) −15.0963 12.7032i −0.633426 0.533013i
\(569\) −7.57056 10.4200i −0.317374 0.436828i 0.620289 0.784373i \(-0.287015\pi\)
−0.937663 + 0.347545i \(0.887015\pi\)
\(570\) 7.31479 + 8.52224i 0.306383 + 0.356958i
\(571\) 20.4261 0.854806 0.427403 0.904061i \(-0.359429\pi\)
0.427403 + 0.904061i \(0.359429\pi\)
\(572\) 0 0
\(573\) 15.1424 0.632585
\(574\) −8.67859 10.1112i −0.362238 0.422032i
\(575\) −9.93055 13.6682i −0.414132 0.570004i
\(576\) 14.0691 + 13.6623i 0.586213 + 0.569264i
\(577\) 2.11524 + 6.51003i 0.0880585 + 0.271016i 0.985383 0.170356i \(-0.0544918\pi\)
−0.897324 + 0.441372i \(0.854492\pi\)
\(578\) −5.55364 + 23.3843i −0.231001 + 0.972658i
\(579\) −10.3910 7.54952i −0.431836 0.313747i
\(580\) −4.77304 + 9.48194i −0.198190 + 0.393716i
\(581\) −1.81750 + 5.59369i −0.0754026 + 0.232065i
\(582\) 3.99367 6.55298i 0.165543 0.271630i
\(583\) 0 0
\(584\) 28.5573 + 2.03689i 1.18171 + 0.0842873i
\(585\) −11.1829 3.63356i −0.462358 0.150229i
\(586\) −0.606674 7.47485i −0.0250615 0.308783i
\(587\) −0.375476 + 0.516798i −0.0154975 + 0.0213305i −0.816695 0.577069i \(-0.804196\pi\)
0.801198 + 0.598399i \(0.204196\pi\)
\(588\) −4.57706 4.53252i −0.188755 0.186918i
\(589\) −27.9345 + 9.07647i −1.15102 + 0.373989i
\(590\) 8.55642 3.56872i 0.352262 0.146922i
\(591\) −2.09207 + 1.51998i −0.0860564 + 0.0625236i
\(592\) −16.3895 22.1004i −0.673603 0.908322i
\(593\) 17.0480i 0.700077i −0.936735 0.350039i \(-0.886168\pi\)
0.936735 0.350039i \(-0.113832\pi\)
\(594\) 0 0
\(595\) 0.153624i 0.00629799i
\(596\) −5.53311 33.8623i −0.226645 1.38705i
\(597\) −6.75080 + 4.90474i −0.276292 + 0.200738i
\(598\) −10.2827 24.6539i −0.420490 1.00817i
\(599\) 1.88754 0.613298i 0.0771227 0.0250587i −0.270202 0.962804i \(-0.587090\pi\)
0.347324 + 0.937745i \(0.387090\pi\)
\(600\) −1.60356 6.46990i −0.0654650 0.264133i
\(601\) 9.67660 13.3187i 0.394717 0.543281i −0.564692 0.825302i \(-0.691005\pi\)
0.959408 + 0.282021i \(0.0910049\pi\)
\(602\) −4.34999 + 0.353053i −0.177292 + 0.0143894i
\(603\) 11.4543 + 3.72174i 0.466457 + 0.151561i
\(604\) −11.1453 21.6120i −0.453496 0.879380i
\(605\) 0 0
\(606\) 8.56231 + 5.21824i 0.347820 + 0.211976i
\(607\) 8.87509 27.3147i 0.360229 1.10867i −0.592686 0.805433i \(-0.701933\pi\)
0.952915 0.303237i \(-0.0980674\pi\)
\(608\) 23.0318 38.6368i 0.934064 1.56693i
\(609\) −3.84084 2.79053i −0.155639 0.113078i
\(610\) 2.49733 + 0.593103i 0.101114 + 0.0240140i
\(611\) 10.7785 + 33.1728i 0.436051 + 1.34203i
\(612\) −0.339062 0.0520041i −0.0137058 0.00210214i
\(613\) 3.91099 + 5.38302i 0.157964 + 0.217418i 0.880662 0.473745i \(-0.157098\pi\)
−0.722698 + 0.691164i \(0.757098\pi\)
\(614\) −2.43616 + 2.09100i −0.0983153 + 0.0843857i
\(615\) 5.77894 0.233029
\(616\) 0 0
\(617\) −17.8948 −0.720416 −0.360208 0.932872i \(-0.617294\pi\)
−0.360208 + 0.932872i \(0.617294\pi\)
\(618\) −8.20392 + 7.04157i −0.330010 + 0.283253i
\(619\) 13.6588 + 18.7998i 0.548995 + 0.755627i 0.989875 0.141939i \(-0.0453336\pi\)
−0.440880 + 0.897566i \(0.645334\pi\)
\(620\) −9.84663 1.51024i −0.395450 0.0606527i
\(621\) −6.62526 20.3904i −0.265862 0.818241i
\(622\) 27.7480 + 6.59000i 1.11259 + 0.264235i
\(623\) 7.11004 + 5.16574i 0.284858 + 0.206961i
\(624\) −0.103054 10.5385i −0.00412548 0.421879i
\(625\) 0.319097 0.982080i 0.0127639 0.0392832i
\(626\) 1.86201 + 1.13479i 0.0744208 + 0.0453552i
\(627\) 0 0
\(628\) −4.86001 9.42411i −0.193935 0.376063i
\(629\) 0.457710 + 0.148719i 0.0182501 + 0.00592982i
\(630\) 7.58716 0.615789i 0.302280 0.0245336i
\(631\) 27.2272 37.4750i 1.08390 1.49186i 0.228739 0.973488i \(-0.426540\pi\)
0.855158 0.518368i \(-0.173460\pi\)
\(632\) 16.4847 4.08571i 0.655725 0.162521i
\(633\) 1.93220 0.627811i 0.0767981 0.0249532i
\(634\) 9.17960 + 22.0092i 0.364568 + 0.874096i
\(635\) −11.2278 + 8.15749i −0.445562 + 0.323720i
\(636\) 0.928703 + 5.68361i 0.0368255 + 0.225370i
\(637\) 15.4683i 0.612877i
\(638\) 0 0
\(639\) 17.0999i 0.676462i
\(640\) 12.8692 8.19242i 0.508700 0.323834i
\(641\) −21.9856 + 15.9734i −0.868377 + 0.630913i −0.930151 0.367177i \(-0.880324\pi\)
0.0617738 + 0.998090i \(0.480324\pi\)
\(642\) 10.7089 4.46648i 0.422647 0.176278i
\(643\) −29.5052 + 9.58683i −1.16357 + 0.378068i −0.826240 0.563318i \(-0.809525\pi\)
−0.337333 + 0.941386i \(0.609525\pi\)
\(644\) 12.2876 + 12.1680i 0.484197 + 0.479486i
\(645\) 1.11254 1.53128i 0.0438062 0.0602941i
\(646\) 0.0636469 + 0.784196i 0.00250415 + 0.0308538i
\(647\) −40.1073 13.0317i −1.57678 0.512327i −0.615557 0.788093i \(-0.711069\pi\)
−0.961225 + 0.275765i \(0.911069\pi\)
\(648\) −0.878082 + 12.3107i −0.0344943 + 0.483611i
\(649\) 0 0
\(650\) 8.33001 13.6682i 0.326730 0.536112i
\(651\) 1.37672 4.23712i 0.0539580 0.166066i
\(652\) −9.04433 + 17.9671i −0.354203 + 0.703647i
\(653\) 3.27455 + 2.37910i 0.128143 + 0.0931015i 0.650011 0.759925i \(-0.274764\pi\)
−0.521867 + 0.853027i \(0.674764\pi\)
\(654\) −2.16849 + 9.13069i −0.0847947 + 0.357038i
\(655\) −0.778232 2.39515i −0.0304080 0.0935863i
\(656\) −7.36710 21.9412i −0.287637 0.856660i
\(657\) 14.5850 + 20.0746i 0.569016 + 0.783183i
\(658\) −14.7067 17.1344i −0.573328 0.667967i
\(659\) −6.46292 −0.251760 −0.125880 0.992045i \(-0.540175\pi\)
−0.125880 + 0.992045i \(0.540175\pi\)
\(660\) 0 0
\(661\) 26.6232 1.03552 0.517761 0.855525i \(-0.326766\pi\)
0.517761 + 0.855525i \(0.326766\pi\)
\(662\) 31.2925 + 36.4580i 1.21622 + 1.41698i
\(663\) 0.108354 + 0.149136i 0.00420810 + 0.00579196i
\(664\) −6.57766 + 7.81682i −0.255263 + 0.303351i
\(665\) −5.39523 16.6048i −0.209218 0.643907i
\(666\) 5.51022 23.2014i 0.213517 0.899037i
\(667\) −16.9095 12.2854i −0.654737 0.475694i
\(668\) −39.1365 19.7006i −1.51424 0.762239i
\(669\) 5.43039 16.7130i 0.209951 0.646163i
\(670\) 4.87569 8.00023i 0.188364 0.309076i
\(671\) 0 0
\(672\) 2.68778 + 6.27096i 0.103683 + 0.241908i
\(673\) 7.91272 + 2.57100i 0.305013 + 0.0991047i 0.457525 0.889197i \(-0.348736\pi\)
−0.152512 + 0.988302i \(0.548736\pi\)
\(674\) 1.95582 + 24.0977i 0.0753353 + 0.928210i
\(675\) 7.55135 10.3935i 0.290652 0.400048i
\(676\) −0.487038 + 0.491824i −0.0187322 + 0.0189163i
\(677\) 14.5159 4.71650i 0.557891 0.181270i −0.0164808 0.999864i \(-0.505246\pi\)
0.574372 + 0.818594i \(0.305246\pi\)
\(678\) −10.6566 + 4.44467i −0.409265 + 0.170696i
\(679\) −9.65143 + 7.01217i −0.370388 + 0.269102i
\(680\) −0.100305 + 0.247271i −0.00384651 + 0.00948241i
\(681\) 0.593162i 0.0227300i
\(682\) 0 0
\(683\) 32.9156i 1.25948i −0.776806 0.629740i \(-0.783161\pi\)
0.776806 0.629740i \(-0.216839\pi\)
\(684\) 38.4746 6.28675i 1.47111 0.240380i
\(685\) −1.36849 + 0.994269i −0.0522875 + 0.0379891i
\(686\) 10.0600 + 24.1200i 0.384092 + 0.920905i
\(687\) −16.6166 + 5.39907i −0.633964 + 0.205987i
\(688\) −7.23218 2.27194i −0.275724 0.0866167i
\(689\) −8.12866 + 11.1881i −0.309677 + 0.426234i
\(690\) −7.47524 + 0.606705i −0.284577 + 0.0230969i
\(691\) 43.2897 + 14.0657i 1.64682 + 0.535083i 0.978047 0.208385i \(-0.0668208\pi\)
0.668771 + 0.743469i \(0.266821\pi\)
\(692\) −21.0324 + 10.8464i −0.799531 + 0.412318i
\(693\) 0 0
\(694\) 3.01794 + 1.83926i 0.114559 + 0.0698175i
\(695\) −2.62141 + 8.06787i −0.0994358 + 0.306032i
\(696\) −4.36015 6.99937i −0.165271 0.265310i
\(697\) 0.327521 + 0.237958i 0.0124057 + 0.00901329i
\(698\) −9.64709 2.29113i −0.365148 0.0867207i
\(699\) −4.00348 12.3214i −0.151426 0.466040i
\(700\) −1.57095 + 10.2425i −0.0593763 + 0.387128i
\(701\) −29.4388 40.5191i −1.11189 1.53038i −0.818604 0.574359i \(-0.805252\pi\)
−0.293285 0.956025i \(-0.594748\pi\)
\(702\) 15.4135 13.2296i 0.581743 0.499320i
\(703\) −54.6955 −2.06288
\(704\) 0 0
\(705\) 9.79298 0.368825
\(706\) 19.2553 16.5272i 0.724682 0.622008i
\(707\) −9.16230 12.6108i −0.344584 0.474279i
\(708\) −1.09181 + 7.11850i −0.0410327 + 0.267530i
\(709\) −2.62623 8.08270i −0.0986301 0.303552i 0.889553 0.456833i \(-0.151016\pi\)
−0.988183 + 0.153280i \(0.951016\pi\)
\(710\) −12.9420 3.07367i −0.485706 0.115353i
\(711\) 11.9084 + 8.65195i 0.446599 + 0.324473i
\(712\) 8.07136 + 12.9570i 0.302487 + 0.485584i
\(713\) 6.06108 18.6541i 0.226989 0.698601i
\(714\) −0.101905 0.0621052i −0.00381369 0.00232423i
\(715\) 0 0
\(716\) 1.65966 0.855885i 0.0620243 0.0319859i
\(717\) 4.70905 + 1.53006i 0.175863 + 0.0571413i
\(718\) 13.6440 1.10737i 0.509188 0.0413267i
\(719\) 4.28927 5.90368i 0.159963 0.220170i −0.721511 0.692403i \(-0.756552\pi\)
0.881474 + 0.472233i \(0.156552\pi\)
\(720\) 12.6142 + 3.96267i 0.470104 + 0.147680i
\(721\) 15.9846 5.19370i 0.595297 0.193424i
\(722\) −24.0767 57.7266i −0.896041 2.14836i
\(723\) 2.56858 1.86619i 0.0955266 0.0694042i
\(724\) 37.1858 6.07617i 1.38200 0.225819i
\(725\) 12.5244i 0.465146i
\(726\) 0 0
\(727\) 1.85004i 0.0686140i −0.999411 0.0343070i \(-0.989078\pi\)
0.999411 0.0343070i \(-0.0109224\pi\)
\(728\) −6.15857 + 15.1821i −0.228252 + 0.562685i
\(729\) −1.39548 + 1.01388i −0.0516845 + 0.0375510i
\(730\) 17.8150 7.43030i 0.659364 0.275008i
\(731\) 0.126106 0.0409743i 0.00466420 0.00151549i
\(732\) −1.40301 + 1.41680i −0.0518569 + 0.0523665i
\(733\) 11.1055 15.2854i 0.410190 0.564578i −0.553075 0.833132i \(-0.686546\pi\)
0.963265 + 0.268554i \(0.0865456\pi\)
\(734\) 3.54048 + 43.6224i 0.130682 + 1.61013i
\(735\) −4.13037 1.34204i −0.152351 0.0495018i
\(736\) 11.8331 + 27.6082i 0.436173 + 1.01765i
\(737\) 0 0
\(738\) 10.4394 17.1293i 0.384278 0.630540i
\(739\) 4.85731 14.9493i 0.178679 0.549918i −0.821103 0.570780i \(-0.806641\pi\)
0.999782 + 0.0208619i \(0.00664102\pi\)
\(740\) −16.5695 8.34080i −0.609108 0.306614i
\(741\) −16.9492 12.3143i −0.622645 0.452378i
\(742\) 2.06869 8.71045i 0.0759438 0.319771i
\(743\) 1.79427 + 5.52219i 0.0658253 + 0.202590i 0.978559 0.205964i \(-0.0660331\pi\)
−0.912734 + 0.408554i \(0.866033\pi\)
\(744\) 4.98246 5.92110i 0.182666 0.217078i
\(745\) −13.5972 18.7150i −0.498163 0.685663i
\(746\) −4.53779 5.28685i −0.166140 0.193565i
\(747\) −8.85428 −0.323961
\(748\) 0 0
\(749\) −18.0377 −0.659083
\(750\) −7.52659 8.76901i −0.274832 0.320199i
\(751\) −1.76537 2.42982i −0.0644193 0.0886655i 0.775592 0.631235i \(-0.217452\pi\)
−0.840011 + 0.542569i \(0.817452\pi\)
\(752\) −12.4843 37.1815i −0.455254 1.35587i
\(753\) 1.12099 + 3.45004i 0.0408510 + 0.125727i
\(754\) 4.57567 19.2664i 0.166636 0.701641i
\(755\) −13.2634 9.63639i −0.482703 0.350704i
\(756\) −5.91252 + 11.7456i −0.215036 + 0.427183i
\(757\) −8.06136 + 24.8103i −0.292995 + 0.901746i 0.690892 + 0.722958i \(0.257218\pi\)
−0.983888 + 0.178789i \(0.942782\pi\)
\(758\) 2.96241 4.86085i 0.107600 0.176554i
\(759\) 0 0
\(760\) 2.15759 30.2495i 0.0782639 1.09726i
\(761\) 30.3887 + 9.87389i 1.10159 + 0.357928i 0.802714 0.596364i \(-0.203388\pi\)
0.298876 + 0.954292i \(0.403388\pi\)
\(762\) −0.872136 10.7456i −0.0315942 0.389273i
\(763\) 8.57526 11.8028i 0.310445 0.427291i
\(764\) −29.0533 28.7706i −1.05111 1.04088i
\(765\) −0.219952 + 0.0714667i −0.00795238 + 0.00258388i
\(766\) 15.6483 6.52662i 0.565398 0.235816i
\(767\) −13.9910 + 10.1651i −0.505187 + 0.367040i
\(768\) 0.231752 + 11.8485i 0.00836263 + 0.427547i
\(769\) 22.3560i 0.806176i 0.915161 + 0.403088i \(0.132063\pi\)
−0.915161 + 0.403088i \(0.867937\pi\)
\(770\) 0 0
\(771\) 9.17275i 0.330348i
\(772\) 5.59286 + 34.2280i 0.201291 + 1.23189i
\(773\) −4.10741 + 2.98421i −0.147733 + 0.107335i −0.659197 0.751970i \(-0.729104\pi\)
0.511463 + 0.859305i \(0.329104\pi\)
\(774\) −2.52912 6.06386i −0.0909072 0.217961i
\(775\) 11.1779 3.63192i 0.401522 0.130462i
\(776\) −20.1132 + 4.98503i −0.722021 + 0.178952i
\(777\) 4.87641 6.71180i 0.174940 0.240785i
\(778\) −19.3635 + 1.57158i −0.694214 + 0.0563437i
\(779\) −43.7577 14.2177i −1.56778 0.509404i
\(780\) −3.25674 6.31519i −0.116610 0.226120i
\(781\) 0 0
\(782\) −0.448640 0.273421i −0.0160433 0.00977750i
\(783\) 4.91141 15.1158i 0.175519 0.540193i
\(784\) 0.170082 + 17.3928i 0.00607434 + 0.621172i
\(785\) −5.78361 4.20204i −0.206426 0.149977i
\(786\) 1.90341 + 0.452049i 0.0678922 + 0.0161240i
\(787\) 0.909670 + 2.79968i 0.0324262 + 0.0997977i 0.965960 0.258693i \(-0.0832916\pi\)
−0.933533 + 0.358490i \(0.883292\pi\)
\(788\) 6.90195 + 1.05860i 0.245872 + 0.0377109i
\(789\) −7.37882 10.1561i −0.262693 0.361566i
\(790\) 8.68872 7.45768i 0.309131 0.265332i
\(791\) 17.9496 0.638215
\(792\) 0 0
\(793\) −4.78812 −0.170031
\(794\) −13.0436 + 11.1955i −0.462899 + 0.397314i
\(795\) 2.28222 + 3.14121i 0.0809420 + 0.111407i
\(796\) 22.2716 + 3.41593i 0.789394 + 0.121074i
\(797\) 2.31514 + 7.12526i 0.0820064 + 0.252390i 0.983650 0.180090i \(-0.0576388\pi\)
−0.901644 + 0.432479i \(0.857639\pi\)
\(798\) 13.1957 + 3.13391i 0.467122 + 0.110939i
\(799\) 0.555015 + 0.403242i 0.0196350 + 0.0142657i
\(800\) −9.21610 + 15.4604i −0.325838 + 0.546606i
\(801\) −4.08844 + 12.5829i −0.144458 + 0.444596i
\(802\) −34.7558 21.1817i −1.22727 0.747952i
\(803\) 0 0
\(804\) 3.33578 + 6.46845i 0.117644 + 0.228125i
\(805\) 11.0883 + 3.60282i 0.390813 + 0.126983i
\(806\) 18.5219 1.50327i 0.652406 0.0529505i
\(807\) −1.72174 + 2.36977i −0.0606080 + 0.0834197i
\(808\) −6.51358 26.2804i −0.229147 0.924543i
\(809\) −37.8768 + 12.3069i −1.33168 + 0.432688i −0.886489 0.462749i \(-0.846863\pi\)
−0.445188 + 0.895437i \(0.646863\pi\)
\(810\) 3.20312 + 7.67986i 0.112546 + 0.269843i
\(811\) 34.5030 25.0679i 1.21157 0.880254i 0.216193 0.976351i \(-0.430636\pi\)
0.995372 + 0.0960970i \(0.0306359\pi\)
\(812\) 2.06729 + 12.6517i 0.0725477 + 0.443988i
\(813\) 17.5818i 0.616619i
\(814\) 0 0
\(815\) 13.5617i 0.475047i
\(816\) −0.123474 0.166499i −0.00432246 0.00582864i
\(817\) −12.1914 + 8.85759i −0.426524 + 0.309888i
\(818\) −24.7410 + 10.3190i −0.865050 + 0.360796i
\(819\) −13.5047 + 4.38795i −0.471893 + 0.153327i
\(820\) −11.0879 10.9800i −0.387205 0.383438i
\(821\) −11.3507 + 15.6229i −0.396142 + 0.545243i −0.959771 0.280785i \(-0.909405\pi\)
0.563628 + 0.826029i \(0.309405\pi\)
\(822\) −0.106300 1.30972i −0.00370762 0.0456818i
\(823\) −9.43380 3.06523i −0.328842 0.106847i 0.139943 0.990160i \(-0.455308\pi\)
−0.468785 + 0.883312i \(0.655308\pi\)
\(824\) 29.1196 + 2.07700i 1.01443 + 0.0723557i
\(825\) 0 0
\(826\) 5.82633 9.56010i 0.202724 0.332638i
\(827\) 13.4827 41.4953i 0.468838 1.44293i −0.385253 0.922811i \(-0.625886\pi\)
0.854091 0.520124i \(-0.174114\pi\)
\(828\) −11.7053 + 23.2533i −0.406787 + 0.808108i
\(829\) 22.7735 + 16.5459i 0.790957 + 0.574664i 0.908247 0.418434i \(-0.137421\pi\)
−0.117290 + 0.993098i \(0.537421\pi\)
\(830\) −1.59154 + 6.70135i −0.0552430 + 0.232607i
\(831\) 3.43575 + 10.5742i 0.119185 + 0.366814i
\(832\) −19.8254 + 20.4157i −0.687324 + 0.707788i
\(833\) −0.178827 0.246135i −0.00619600 0.00852806i
\(834\) −4.29197 5.00045i −0.148619 0.173151i
\(835\) −29.5406 −1.02229
\(836\) 0 0
\(837\) 14.9149 0.515533
\(838\) −14.1575 16.4945i −0.489064 0.569794i
\(839\) −20.5447 28.2774i −0.709283 0.976244i −0.999812 0.0193779i \(-0.993831\pi\)
0.290529 0.956866i \(-0.406169\pi\)
\(840\) 3.51961 + 2.96167i 0.121438 + 0.102187i
\(841\) 4.17345 + 12.8446i 0.143912 + 0.442916i
\(842\) −6.31364 + 26.5844i −0.217583 + 0.916157i
\(843\) −3.44033 2.49954i −0.118491 0.0860889i
\(844\) −4.90009 2.46662i −0.168668 0.0849046i
\(845\) −0.144207 + 0.443825i −0.00496089 + 0.0152680i
\(846\) 17.6905 29.0273i 0.608212 0.997980i
\(847\) 0 0
\(848\) 9.01697 12.6695i 0.309644 0.435072i
\(849\) −7.88587 2.56227i −0.270642 0.0879371i
\(850\) −0.0254681 0.313793i −0.000873547 0.0107630i
\(851\) 21.4686 29.5490i 0.735934 1.01293i
\(852\) 7.27091 7.34236i 0.249097 0.251545i
\(853\) 25.8841 8.41026i 0.886255 0.287962i 0.169703 0.985495i \(-0.445719\pi\)
0.716552 + 0.697533i \(0.245719\pi\)
\(854\) 2.86085 1.19320i 0.0978962 0.0408306i
\(855\) 21.2641 15.4492i 0.727216 0.528353i
\(856\) −29.0332 11.7772i −0.992333 0.402537i
\(857\) 37.5541i 1.28282i 0.767197 + 0.641412i \(0.221651\pi\)
−0.767197 + 0.641412i \(0.778349\pi\)
\(858\) 0 0
\(859\) 4.50293i 0.153638i 0.997045 + 0.0768190i \(0.0244764\pi\)
−0.997045 + 0.0768190i \(0.975524\pi\)
\(860\) −5.04403 + 0.824195i −0.172000 + 0.0281048i
\(861\) 5.64593 4.10201i 0.192413 0.139796i
\(862\) 14.7551 + 35.3771i 0.502561 + 1.20495i
\(863\) −17.1534 + 5.57348i −0.583908 + 0.189723i −0.586051 0.810274i \(-0.699318\pi\)
0.00214238 + 0.999998i \(0.499318\pi\)
\(864\) −17.1857 + 15.0451i −0.584668 + 0.511844i
\(865\) −9.37795 + 12.9076i −0.318860 + 0.438873i
\(866\) −6.14032 + 0.498361i −0.208657 + 0.0169350i
\(867\) −11.9718 3.88986i −0.406582 0.132107i
\(868\) −10.6920 + 5.51386i −0.362910 + 0.187152i
\(869\) 0 0
\(870\) −4.74754 2.89336i −0.160957 0.0980940i
\(871\) −5.40063 + 16.6214i −0.182993 + 0.563196i
\(872\) 21.5089 13.3986i 0.728384 0.453735i
\(873\) −14.5296 10.5564i −0.491751 0.357278i
\(874\) 58.0946 + 13.7972i 1.96508 + 0.466696i
\(875\) 5.55145 + 17.0856i 0.187673 + 0.577599i
\(876\) −2.27322 + 14.8212i −0.0768050 + 0.500762i
\(877\) −8.00606 11.0194i −0.270345 0.372099i 0.652161 0.758081i \(-0.273863\pi\)
−0.922506 + 0.385982i \(0.873863\pi\)
\(878\) 25.8619 22.1977i 0.872797 0.749137i
\(879\) 3.92773 0.132479
\(880\) 0 0
\(881\) 5.44549 0.183463 0.0917317 0.995784i \(-0.470760\pi\)
0.0917317 + 0.995784i \(0.470760\pi\)
\(882\) −11.4392 + 9.81848i −0.385179 + 0.330606i
\(883\) −16.5930 22.8383i −0.558399 0.768570i 0.432723 0.901527i \(-0.357553\pi\)
−0.991122 + 0.132957i \(0.957553\pi\)
\(884\) 0.0754633 0.492014i 0.00253811 0.0165482i
\(885\) 1.50042 + 4.61782i 0.0504361 + 0.155226i
\(886\) 31.7083 + 7.53056i 1.06526 + 0.252994i
\(887\) −34.3342 24.9453i −1.15283 0.837580i −0.163975 0.986464i \(-0.552432\pi\)
−0.988855 + 0.148885i \(0.952432\pi\)
\(888\) 12.2313 7.61928i 0.410454 0.255686i
\(889\) −5.17904 + 15.9395i −0.173700 + 0.534592i
\(890\) 8.78849 + 5.35608i 0.294591 + 0.179536i
\(891\) 0 0
\(892\) −42.1738 + 21.7490i −1.41208 + 0.728211i
\(893\) −74.1517 24.0933i −2.48139 0.806253i
\(894\) 17.9112 1.45371i 0.599041 0.0486194i
\(895\) 0.740011 1.01854i 0.0247358 0.0340460i
\(896\) 6.75786 17.1387i 0.225764 0.572563i
\(897\) 13.3055 4.32322i 0.444258 0.144348i
\(898\) 2.05424 + 4.92529i 0.0685510 + 0.164359i
\(899\) 11.7633 8.54653i 0.392328 0.285043i
\(900\) −15.3955 + 2.51562i −0.513182 + 0.0838541i
\(901\) 0.272002i 0.00906169i
\(902\) 0 0
\(903\) 2.28574i 0.0760646i
\(904\) 28.8914 + 11.7197i 0.960913 + 0.389792i
\(905\) 20.5518 14.9317i 0.683164 0.496348i
\(906\) 11.7541 4.90241i 0.390504 0.162872i
\(907\) −32.9920 + 10.7198i −1.09548 + 0.355944i −0.800363 0.599516i \(-0.795360\pi\)
−0.295120 + 0.955460i \(0.595360\pi\)
\(908\) −1.12701 + 1.13808i −0.0374010 + 0.0377686i
\(909\) 13.7932 18.9847i 0.457492 0.629684i
\(910\) 0.893574 + 11.0098i 0.0296217 + 0.364970i
\(911\) 28.2154 + 9.16772i 0.934816 + 0.303740i 0.736531 0.676404i \(-0.236463\pi\)
0.198286 + 0.980144i \(0.436463\pi\)
\(912\) 19.1933 + 13.6600i 0.635555 + 0.452329i
\(913\) 0 0
\(914\) −25.9483 + 42.5771i −0.858294 + 1.40833i
\(915\) −0.415419 + 1.27853i −0.0137333 + 0.0422669i
\(916\) 42.1400 + 21.2125i 1.39235 + 0.700882i
\(917\) −2.46045 1.78762i −0.0812511 0.0590324i
\(918\) 0.0923154 0.388705i 0.00304686 0.0128292i
\(919\) −6.67764 20.5517i −0.220275 0.677937i −0.998737 0.0502448i \(-0.984000\pi\)
0.778462 0.627692i \(-0.216000\pi\)
\(920\) 15.4952 + 13.0389i 0.510863 + 0.429879i
\(921\) −0.988326 1.36031i −0.0325665 0.0448239i
\(922\) 35.4685 + 41.3233i 1.16809 + 1.36091i
\(923\) 24.8137 0.816754
\(924\) 0 0
\(925\) 21.8862 0.719614
\(926\) −9.91749 11.5546i −0.325909 0.379707i
\(927\) 14.8722 + 20.4698i 0.488467 + 0.672317i
\(928\) −4.93311 + 21.7137i −0.161937 + 0.712788i
\(929\) 14.5920 + 44.9097i 0.478749 + 1.47344i 0.840834 + 0.541293i \(0.182065\pi\)
−0.362085 + 0.932145i \(0.617935\pi\)
\(930\) 1.20556 5.07615i 0.0395319 0.166454i
\(931\) 27.9730 + 20.3236i 0.916780 + 0.666079i
\(932\) −15.7294 + 31.2474i −0.515233 + 1.02354i
\(933\) −4.61574 + 14.2058i −0.151113 + 0.465077i
\(934\) 15.2199 24.9734i 0.498009 0.817154i
\(935\) 0 0
\(936\) −24.6020 1.75477i −0.804140 0.0573565i
\(937\) −44.1171 14.3345i −1.44124 0.468289i −0.518959 0.854799i \(-0.673680\pi\)
−0.922285 + 0.386510i \(0.873680\pi\)
\(938\) −0.915260 11.2770i −0.0298843 0.368206i
\(939\) −0.671272 + 0.923926i −0.0219061 + 0.0301512i
\(940\) −18.7895 18.6066i −0.612845 0.606882i
\(941\) −37.4912 + 12.1816i −1.22218 + 0.397109i −0.847874 0.530197i \(-0.822118\pi\)
−0.374303 + 0.927307i \(0.622118\pi\)
\(942\) 5.12548 2.13774i 0.166997 0.0696513i
\(943\) 24.8565 18.0593i 0.809438 0.588091i
\(944\) 15.6200 11.5836i 0.508387 0.377015i
\(945\) 8.86568i 0.288401i
\(946\) 0 0
\(947\) 24.9488i 0.810725i 0.914156 + 0.405363i \(0.132855\pi\)
−0.914156 + 0.405363i \(0.867145\pi\)
\(948\) 1.43440 + 8.77844i 0.0465871 + 0.285111i
\(949\) −29.1303 + 21.1644i −0.945608 + 0.687025i
\(950\) 13.7731 + 33.0225i 0.446857 + 1.07139i
\(951\) −11.8782 + 3.85945i −0.385176 + 0.125151i
\(952\) 0.0775218 + 0.312778i 0.00251250 + 0.0101372i
\(953\) 24.0471 33.0979i 0.778961 1.07215i −0.216435 0.976297i \(-0.569443\pi\)
0.995396 0.0958506i \(-0.0305571\pi\)
\(954\) 13.4336 1.09029i 0.434927 0.0352996i
\(955\) −26.2179 8.51870i −0.848391 0.275659i
\(956\) −6.12800 11.8829i −0.198194 0.384320i
\(957\) 0 0
\(958\) 13.7835 + 8.40029i 0.445326 + 0.271401i
\(959\) −0.631244 + 1.94277i −0.0203839 + 0.0627353i
\(960\) 3.73136 + 7.06508i 0.120429 + 0.228025i
\(961\) −14.0407 10.2011i −0.452924 0.329069i
\(962\) 33.6677 + 7.99589i 1.08549 + 0.257798i
\(963\) −8.39122 25.8255i −0.270403 0.832215i
\(964\) −8.47401 1.29971i −0.272929 0.0418609i
\(965\) 13.7440 + 18.9171i 0.442437 + 0.608962i
\(966\) −6.87253 + 5.89881i −0.221120 + 0.189791i
\(967\) 23.6696 0.761164 0.380582 0.924747i \(-0.375724\pi\)
0.380582 + 0.924747i \(0.375724\pi\)
\(968\) 0 0
\(969\) −0.412063 −0.0132374
\(970\) −10.6012 + 9.09921i −0.340385 + 0.292158i
\(971\) −31.7005 43.6320i −1.01732 1.40022i −0.914067 0.405563i \(-0.867076\pi\)
−0.103251 0.994655i \(-0.532924\pi\)
\(972\) −30.3355 4.65275i −0.973013 0.149237i
\(973\) 3.16566 + 9.74291i 0.101487 + 0.312343i
\(974\) 5.51059 + 1.30874i 0.176571 + 0.0419346i
\(975\) 6.78216 + 4.92753i 0.217203 + 0.157807i
\(976\) 5.38384 0.0526477i 0.172333 0.00168521i
\(977\) −2.96528 + 9.12620i −0.0948678 + 0.291973i −0.987219 0.159368i \(-0.949054\pi\)
0.892351 + 0.451341i \(0.149054\pi\)
\(978\) −8.99601 5.48256i −0.287661 0.175313i
\(979\) 0 0
\(980\) 5.37494 + 10.4226i 0.171696 + 0.332938i
\(981\) 20.8880 + 6.78691i 0.666901 + 0.216689i
\(982\) 15.7788 1.28064i 0.503523 0.0408669i
\(983\) −20.7503 + 28.5603i −0.661831 + 0.910932i −0.999540 0.0303182i \(-0.990348\pi\)
0.337709 + 0.941250i \(0.390348\pi\)
\(984\) 11.7659 2.91617i 0.375083 0.0929639i
\(985\) 4.47735 1.45478i 0.142660 0.0463531i
\(986\) −0.149927 0.359469i −0.00477466 0.0114478i
\(987\) 9.56758 6.95125i 0.304539 0.221261i
\(988\) 9.12273 + 55.8306i 0.290233 + 1.77621i
\(989\) 10.0631i 0.319987i
\(990\) 0 0
\(991\) 17.8021i 0.565502i 0.959193 + 0.282751i \(0.0912471\pi\)
−0.959193 + 0.282751i \(0.908753\pi\)
\(992\) −20.8098 + 1.89396i −0.660711 + 0.0601333i
\(993\) −20.3576 + 14.7907i −0.646029 + 0.469367i
\(994\) −14.8259 + 6.18360i −0.470250 + 0.196132i
\(995\) 14.4477 4.69435i 0.458023 0.148821i
\(996\) −3.80185 3.76486i −0.120466 0.119294i
\(997\) −36.9946 + 50.9188i −1.17163 + 1.61261i −0.519648 + 0.854380i \(0.673937\pi\)
−0.651984 + 0.758233i \(0.726063\pi\)
\(998\) 4.50358 + 55.4889i 0.142558 + 1.75647i
\(999\) 26.4145 + 8.58260i 0.835719 + 0.271542i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.g.f.475.4 16
4.3 odd 2 inner 484.2.g.f.475.3 16
11.2 odd 10 484.2.g.i.239.4 16
11.3 even 5 484.2.g.i.403.2 16
11.4 even 5 484.2.c.d.483.14 16
11.5 even 5 484.2.g.j.215.2 16
11.6 odd 10 inner 484.2.g.f.215.3 16
11.7 odd 10 484.2.c.d.483.3 16
11.8 odd 10 44.2.g.a.7.3 yes 16
11.9 even 5 44.2.g.a.19.1 yes 16
11.10 odd 2 484.2.g.j.475.1 16
33.8 even 10 396.2.r.a.271.2 16
33.20 odd 10 396.2.r.a.19.4 16
44.3 odd 10 484.2.g.i.403.4 16
44.7 even 10 484.2.c.d.483.13 16
44.15 odd 10 484.2.c.d.483.4 16
44.19 even 10 44.2.g.a.7.1 16
44.27 odd 10 484.2.g.j.215.1 16
44.31 odd 10 44.2.g.a.19.3 yes 16
44.35 even 10 484.2.g.i.239.2 16
44.39 even 10 inner 484.2.g.f.215.4 16
44.43 even 2 484.2.g.j.475.2 16
88.19 even 10 704.2.u.c.447.2 16
88.53 even 10 704.2.u.c.63.2 16
88.75 odd 10 704.2.u.c.63.3 16
88.85 odd 10 704.2.u.c.447.3 16
132.107 odd 10 396.2.r.a.271.4 16
132.119 even 10 396.2.r.a.19.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.7.1 16 44.19 even 10
44.2.g.a.7.3 yes 16 11.8 odd 10
44.2.g.a.19.1 yes 16 11.9 even 5
44.2.g.a.19.3 yes 16 44.31 odd 10
396.2.r.a.19.2 16 132.119 even 10
396.2.r.a.19.4 16 33.20 odd 10
396.2.r.a.271.2 16 33.8 even 10
396.2.r.a.271.4 16 132.107 odd 10
484.2.c.d.483.3 16 11.7 odd 10
484.2.c.d.483.4 16 44.15 odd 10
484.2.c.d.483.13 16 44.7 even 10
484.2.c.d.483.14 16 11.4 even 5
484.2.g.f.215.3 16 11.6 odd 10 inner
484.2.g.f.215.4 16 44.39 even 10 inner
484.2.g.f.475.3 16 4.3 odd 2 inner
484.2.g.f.475.4 16 1.1 even 1 trivial
484.2.g.i.239.2 16 44.35 even 10
484.2.g.i.239.4 16 11.2 odd 10
484.2.g.i.403.2 16 11.3 even 5
484.2.g.i.403.4 16 44.3 odd 10
484.2.g.j.215.1 16 44.27 odd 10
484.2.g.j.215.2 16 11.5 even 5
484.2.g.j.475.1 16 11.10 odd 2
484.2.g.j.475.2 16 44.43 even 2
704.2.u.c.63.2 16 88.53 even 10
704.2.u.c.63.3 16 88.75 odd 10
704.2.u.c.447.2 16 88.19 even 10
704.2.u.c.447.3 16 88.85 odd 10