Properties

Label 484.2.e.d.269.1
Level $484$
Weight $2$
Character 484.269
Analytic conductor $3.865$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [484,2,Mod(9,484)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(484, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("484.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,-2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 269.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 484.269
Dual form 484.2.e.d.9.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.11803 + 1.53884i) q^{3} +(-0.500000 + 1.53884i) q^{5} +(-3.11803 + 2.26538i) q^{7} +(1.19098 + 3.66547i) q^{9} +(-0.736068 - 2.26538i) q^{13} +(-3.42705 + 2.48990i) q^{15} +(-0.736068 + 2.26538i) q^{17} +(3.11803 + 2.26538i) q^{19} -10.0902 q^{21} -2.47214 q^{23} +(1.92705 + 1.40008i) q^{25} +(-0.690983 + 2.12663i) q^{27} +(6.97214 - 5.06555i) q^{29} +(0.263932 + 0.812299i) q^{31} +(-1.92705 - 5.93085i) q^{35} +(1.50000 - 1.08981i) q^{37} +(1.92705 - 5.93085i) q^{39} +(6.97214 + 5.06555i) q^{41} -6.23607 q^{45} +(-1.11803 - 0.812299i) q^{47} +(2.42705 - 7.46969i) q^{49} +(-5.04508 + 3.66547i) q^{51} +(-1.26393 - 3.88998i) q^{53} +(3.11803 + 9.59632i) q^{57} +(-0.881966 + 0.640786i) q^{59} +(-0.736068 + 2.26538i) q^{61} +(-12.0172 - 8.73102i) q^{63} +3.85410 q^{65} +12.9443 q^{67} +(-5.23607 - 3.80423i) q^{69} +(-1.97214 + 6.06961i) q^{71} +(-0.736068 + 0.534785i) q^{73} +(1.92705 + 5.93085i) q^{75} +(2.20820 + 6.79615i) q^{79} +(4.61803 - 3.35520i) q^{81} +(-4.02786 + 12.3965i) q^{83} +(-3.11803 - 2.26538i) q^{85} +22.5623 q^{87} +0.472136 q^{89} +(7.42705 + 5.39607i) q^{91} +(-0.690983 + 2.12663i) q^{93} +(-5.04508 + 3.66547i) q^{95} +(-4.50000 - 13.8496i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{5} - 8 q^{7} + 7 q^{9} + 6 q^{13} - 7 q^{15} + 6 q^{17} + 8 q^{19} - 18 q^{21} + 8 q^{23} + q^{25} - 5 q^{27} + 10 q^{29} + 10 q^{31} - q^{35} + 6 q^{37} + q^{39} + 10 q^{41} - 16 q^{45}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.11803 + 1.53884i 1.22285 + 0.888451i 0.996333 0.0855571i \(-0.0272670\pi\)
0.226514 + 0.974008i \(0.427267\pi\)
\(4\) 0 0
\(5\) −0.500000 + 1.53884i −0.223607 + 0.688191i 0.774823 + 0.632178i \(0.217839\pi\)
−0.998430 + 0.0560130i \(0.982161\pi\)
\(6\) 0 0
\(7\) −3.11803 + 2.26538i −1.17851 + 0.856235i −0.992002 0.126219i \(-0.959716\pi\)
−0.186504 + 0.982454i \(0.559716\pi\)
\(8\) 0 0
\(9\) 1.19098 + 3.66547i 0.396994 + 1.22182i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −0.736068 2.26538i −0.204149 0.628305i −0.999747 0.0224806i \(-0.992844\pi\)
0.795599 0.605824i \(-0.207156\pi\)
\(14\) 0 0
\(15\) −3.42705 + 2.48990i −0.884861 + 0.642889i
\(16\) 0 0
\(17\) −0.736068 + 2.26538i −0.178523 + 0.549436i −0.999777 0.0211262i \(-0.993275\pi\)
0.821254 + 0.570563i \(0.193275\pi\)
\(18\) 0 0
\(19\) 3.11803 + 2.26538i 0.715326 + 0.519715i 0.884887 0.465805i \(-0.154235\pi\)
−0.169561 + 0.985520i \(0.554235\pi\)
\(20\) 0 0
\(21\) −10.0902 −2.20186
\(22\) 0 0
\(23\) −2.47214 −0.515476 −0.257738 0.966215i \(-0.582977\pi\)
−0.257738 + 0.966215i \(0.582977\pi\)
\(24\) 0 0
\(25\) 1.92705 + 1.40008i 0.385410 + 0.280017i
\(26\) 0 0
\(27\) −0.690983 + 2.12663i −0.132980 + 0.409270i
\(28\) 0 0
\(29\) 6.97214 5.06555i 1.29469 0.940650i 0.294804 0.955558i \(-0.404746\pi\)
0.999889 + 0.0149080i \(0.00474555\pi\)
\(30\) 0 0
\(31\) 0.263932 + 0.812299i 0.0474036 + 0.145893i 0.971957 0.235160i \(-0.0755614\pi\)
−0.924553 + 0.381053i \(0.875561\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.92705 5.93085i −0.325731 1.00250i
\(36\) 0 0
\(37\) 1.50000 1.08981i 0.246598 0.179164i −0.457619 0.889148i \(-0.651298\pi\)
0.704218 + 0.709984i \(0.251298\pi\)
\(38\) 0 0
\(39\) 1.92705 5.93085i 0.308575 0.949697i
\(40\) 0 0
\(41\) 6.97214 + 5.06555i 1.08886 + 0.791107i 0.979207 0.202863i \(-0.0650246\pi\)
0.109658 + 0.993969i \(0.465025\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −6.23607 −0.929618
\(46\) 0 0
\(47\) −1.11803 0.812299i −0.163082 0.118486i 0.503251 0.864140i \(-0.332137\pi\)
−0.666333 + 0.745654i \(0.732137\pi\)
\(48\) 0 0
\(49\) 2.42705 7.46969i 0.346722 1.06710i
\(50\) 0 0
\(51\) −5.04508 + 3.66547i −0.706453 + 0.513268i
\(52\) 0 0
\(53\) −1.26393 3.88998i −0.173614 0.534330i 0.825953 0.563739i \(-0.190638\pi\)
−0.999567 + 0.0294087i \(0.990638\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.11803 + 9.59632i 0.412994 + 1.27106i
\(58\) 0 0
\(59\) −0.881966 + 0.640786i −0.114822 + 0.0834232i −0.643714 0.765266i \(-0.722608\pi\)
0.528892 + 0.848689i \(0.322608\pi\)
\(60\) 0 0
\(61\) −0.736068 + 2.26538i −0.0942438 + 0.290053i −0.987056 0.160377i \(-0.948729\pi\)
0.892812 + 0.450429i \(0.148729\pi\)
\(62\) 0 0
\(63\) −12.0172 8.73102i −1.51403 1.10001i
\(64\) 0 0
\(65\) 3.85410 0.478043
\(66\) 0 0
\(67\) 12.9443 1.58139 0.790697 0.612207i \(-0.209718\pi\)
0.790697 + 0.612207i \(0.209718\pi\)
\(68\) 0 0
\(69\) −5.23607 3.80423i −0.630349 0.457975i
\(70\) 0 0
\(71\) −1.97214 + 6.06961i −0.234049 + 0.720330i 0.763197 + 0.646166i \(0.223629\pi\)
−0.997246 + 0.0741639i \(0.976371\pi\)
\(72\) 0 0
\(73\) −0.736068 + 0.534785i −0.0861502 + 0.0625918i −0.630027 0.776574i \(-0.716956\pi\)
0.543876 + 0.839165i \(0.316956\pi\)
\(74\) 0 0
\(75\) 1.92705 + 5.93085i 0.222517 + 0.684836i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.20820 + 6.79615i 0.248442 + 0.764627i 0.995051 + 0.0993636i \(0.0316807\pi\)
−0.746609 + 0.665263i \(0.768319\pi\)
\(80\) 0 0
\(81\) 4.61803 3.35520i 0.513115 0.372800i
\(82\) 0 0
\(83\) −4.02786 + 12.3965i −0.442116 + 1.36069i 0.443501 + 0.896274i \(0.353736\pi\)
−0.885616 + 0.464418i \(0.846264\pi\)
\(84\) 0 0
\(85\) −3.11803 2.26538i −0.338198 0.245715i
\(86\) 0 0
\(87\) 22.5623 2.41893
\(88\) 0 0
\(89\) 0.472136 0.0500463 0.0250232 0.999687i \(-0.492034\pi\)
0.0250232 + 0.999687i \(0.492034\pi\)
\(90\) 0 0
\(91\) 7.42705 + 5.39607i 0.778566 + 0.565662i
\(92\) 0 0
\(93\) −0.690983 + 2.12663i −0.0716516 + 0.220521i
\(94\) 0 0
\(95\) −5.04508 + 3.66547i −0.517615 + 0.376069i
\(96\) 0 0
\(97\) −4.50000 13.8496i −0.456906 1.40621i −0.868883 0.495017i \(-0.835162\pi\)
0.411977 0.911194i \(-0.364838\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.50000 16.9273i −0.547270 1.68433i −0.715530 0.698582i \(-0.753815\pi\)
0.168259 0.985743i \(-0.446185\pi\)
\(102\) 0 0
\(103\) 6.35410 4.61653i 0.626088 0.454880i −0.228955 0.973437i \(-0.573531\pi\)
0.855043 + 0.518557i \(0.173531\pi\)
\(104\) 0 0
\(105\) 5.04508 15.5272i 0.492350 1.51530i
\(106\) 0 0
\(107\) −9.35410 6.79615i −0.904295 0.657009i 0.0352704 0.999378i \(-0.488771\pi\)
−0.939566 + 0.342369i \(0.888771\pi\)
\(108\) 0 0
\(109\) 12.4721 1.19461 0.597307 0.802013i \(-0.296237\pi\)
0.597307 + 0.802013i \(0.296237\pi\)
\(110\) 0 0
\(111\) 4.85410 0.460731
\(112\) 0 0
\(113\) −14.2082 10.3229i −1.33660 0.971093i −0.999562 0.0296008i \(-0.990576\pi\)
−0.337034 0.941493i \(-0.609424\pi\)
\(114\) 0 0
\(115\) 1.23607 3.80423i 0.115264 0.354746i
\(116\) 0 0
\(117\) 7.42705 5.39607i 0.686631 0.498867i
\(118\) 0 0
\(119\) −2.83688 8.73102i −0.260056 0.800371i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 6.97214 + 21.4580i 0.628656 + 1.93481i
\(124\) 0 0
\(125\) −9.66312 + 7.02067i −0.864296 + 0.627948i
\(126\) 0 0
\(127\) 0.736068 2.26538i 0.0653155 0.201020i −0.913073 0.407797i \(-0.866297\pi\)
0.978388 + 0.206776i \(0.0662972\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.52786 −0.832453 −0.416227 0.909261i \(-0.636648\pi\)
−0.416227 + 0.909261i \(0.636648\pi\)
\(132\) 0 0
\(133\) −14.8541 −1.28801
\(134\) 0 0
\(135\) −2.92705 2.12663i −0.251920 0.183031i
\(136\) 0 0
\(137\) 4.26393 13.1230i 0.364292 1.12118i −0.586131 0.810216i \(-0.699350\pi\)
0.950423 0.310960i \(-0.100650\pi\)
\(138\) 0 0
\(139\) 9.35410 6.79615i 0.793405 0.576442i −0.115567 0.993300i \(-0.536869\pi\)
0.908972 + 0.416857i \(0.136869\pi\)
\(140\) 0 0
\(141\) −1.11803 3.44095i −0.0941554 0.289781i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.30902 + 13.2618i 0.357844 + 1.10133i
\(146\) 0 0
\(147\) 16.6353 12.0862i 1.37205 0.996855i
\(148\) 0 0
\(149\) −0.736068 + 2.26538i −0.0603010 + 0.185588i −0.976669 0.214749i \(-0.931107\pi\)
0.916368 + 0.400336i \(0.131107\pi\)
\(150\) 0 0
\(151\) 15.5902 + 11.3269i 1.26871 + 0.921772i 0.999150 0.0412119i \(-0.0131219\pi\)
0.269560 + 0.962984i \(0.413122\pi\)
\(152\) 0 0
\(153\) −9.18034 −0.742186
\(154\) 0 0
\(155\) −1.38197 −0.111002
\(156\) 0 0
\(157\) −14.2082 10.3229i −1.13394 0.823854i −0.147675 0.989036i \(-0.547179\pi\)
−0.986263 + 0.165182i \(0.947179\pi\)
\(158\) 0 0
\(159\) 3.30902 10.1841i 0.262422 0.807652i
\(160\) 0 0
\(161\) 7.70820 5.60034i 0.607492 0.441368i
\(162\) 0 0
\(163\) 3.50000 + 10.7719i 0.274141 + 0.843720i 0.989445 + 0.144907i \(0.0462881\pi\)
−0.715304 + 0.698813i \(0.753712\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.50000 16.9273i −0.425603 1.30987i −0.902416 0.430866i \(-0.858208\pi\)
0.476813 0.879005i \(-0.341792\pi\)
\(168\) 0 0
\(169\) 5.92705 4.30625i 0.455927 0.331250i
\(170\) 0 0
\(171\) −4.59017 + 14.1271i −0.351019 + 1.08033i
\(172\) 0 0
\(173\) −5.50000 3.99598i −0.418157 0.303809i 0.358739 0.933438i \(-0.383207\pi\)
−0.776896 + 0.629629i \(0.783207\pi\)
\(174\) 0 0
\(175\) −9.18034 −0.693968
\(176\) 0 0
\(177\) −2.85410 −0.214527
\(178\) 0 0
\(179\) 2.11803 + 1.53884i 0.158309 + 0.115018i 0.664120 0.747626i \(-0.268806\pi\)
−0.505810 + 0.862645i \(0.668806\pi\)
\(180\) 0 0
\(181\) −0.500000 + 1.53884i −0.0371647 + 0.114381i −0.967918 0.251267i \(-0.919153\pi\)
0.930753 + 0.365648i \(0.119153\pi\)
\(182\) 0 0
\(183\) −5.04508 + 3.66547i −0.372943 + 0.270959i
\(184\) 0 0
\(185\) 0.927051 + 2.85317i 0.0681581 + 0.209769i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.66312 8.19624i −0.193713 0.596189i
\(190\) 0 0
\(191\) −21.0623 + 15.3027i −1.52401 + 1.10726i −0.564563 + 0.825390i \(0.690955\pi\)
−0.959452 + 0.281872i \(0.909045\pi\)
\(192\) 0 0
\(193\) 6.97214 21.4580i 0.501865 1.54458i −0.304112 0.952636i \(-0.598360\pi\)
0.805977 0.591946i \(-0.201640\pi\)
\(194\) 0 0
\(195\) 8.16312 + 5.93085i 0.584573 + 0.424717i
\(196\) 0 0
\(197\) 2.94427 0.209771 0.104885 0.994484i \(-0.466552\pi\)
0.104885 + 0.994484i \(0.466552\pi\)
\(198\) 0 0
\(199\) −0.944272 −0.0669377 −0.0334688 0.999440i \(-0.510655\pi\)
−0.0334688 + 0.999440i \(0.510655\pi\)
\(200\) 0 0
\(201\) 27.4164 + 19.9192i 1.93380 + 1.40499i
\(202\) 0 0
\(203\) −10.2639 + 31.5891i −0.720387 + 2.21712i
\(204\) 0 0
\(205\) −11.2812 + 8.19624i −0.787910 + 0.572450i
\(206\) 0 0
\(207\) −2.94427 9.06154i −0.204641 0.629820i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −3.68034 11.3269i −0.253365 0.779777i −0.994147 0.108032i \(-0.965545\pi\)
0.740782 0.671745i \(-0.234455\pi\)
\(212\) 0 0
\(213\) −13.5172 + 9.82084i −0.926185 + 0.672913i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.66312 1.93487i −0.180784 0.131347i
\(218\) 0 0
\(219\) −2.38197 −0.160958
\(220\) 0 0
\(221\) 5.67376 0.381659
\(222\) 0 0
\(223\) 9.82624 + 7.13918i 0.658014 + 0.478075i 0.865992 0.500059i \(-0.166688\pi\)
−0.207978 + 0.978134i \(0.566688\pi\)
\(224\) 0 0
\(225\) −2.83688 + 8.73102i −0.189125 + 0.582068i
\(226\) 0 0
\(227\) 4.59017 3.33495i 0.304660 0.221349i −0.424942 0.905221i \(-0.639705\pi\)
0.729602 + 0.683872i \(0.239705\pi\)
\(228\) 0 0
\(229\) 5.02786 + 15.4742i 0.332251 + 1.02256i 0.968061 + 0.250717i \(0.0806662\pi\)
−0.635810 + 0.771846i \(0.719334\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.736068 2.26538i −0.0482214 0.148410i 0.924047 0.382280i \(-0.124861\pi\)
−0.972268 + 0.233870i \(0.924861\pi\)
\(234\) 0 0
\(235\) 1.80902 1.31433i 0.118007 0.0857373i
\(236\) 0 0
\(237\) −5.78115 + 17.7926i −0.375526 + 1.15575i
\(238\) 0 0
\(239\) −9.35410 6.79615i −0.605067 0.439607i 0.242607 0.970125i \(-0.421997\pi\)
−0.847674 + 0.530518i \(0.821997\pi\)
\(240\) 0 0
\(241\) −12.4721 −0.803401 −0.401700 0.915771i \(-0.631581\pi\)
−0.401700 + 0.915771i \(0.631581\pi\)
\(242\) 0 0
\(243\) 21.6525 1.38901
\(244\) 0 0
\(245\) 10.2812 + 7.46969i 0.656839 + 0.477221i
\(246\) 0 0
\(247\) 2.83688 8.73102i 0.180506 0.555542i
\(248\) 0 0
\(249\) −27.6074 + 20.0579i −1.74955 + 1.27112i
\(250\) 0 0
\(251\) 7.97214 + 24.5357i 0.503197 + 1.54868i 0.803781 + 0.594925i \(0.202818\pi\)
−0.300584 + 0.953755i \(0.597182\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.11803 9.59632i −0.195259 0.600945i
\(256\) 0 0
\(257\) 3.97214 2.88593i 0.247775 0.180019i −0.456965 0.889485i \(-0.651064\pi\)
0.704740 + 0.709466i \(0.251064\pi\)
\(258\) 0 0
\(259\) −2.20820 + 6.79615i −0.137211 + 0.422292i
\(260\) 0 0
\(261\) 26.8713 + 19.5232i 1.66329 + 1.20845i
\(262\) 0 0
\(263\) −5.88854 −0.363103 −0.181552 0.983381i \(-0.558112\pi\)
−0.181552 + 0.983381i \(0.558112\pi\)
\(264\) 0 0
\(265\) 6.61803 0.406543
\(266\) 0 0
\(267\) 1.00000 + 0.726543i 0.0611990 + 0.0444637i
\(268\) 0 0
\(269\) −7.44427 + 22.9111i −0.453885 + 1.39692i 0.418554 + 0.908192i \(0.362537\pi\)
−0.872439 + 0.488723i \(0.837463\pi\)
\(270\) 0 0
\(271\) −15.5902 + 11.3269i −0.947035 + 0.688061i −0.950104 0.311934i \(-0.899023\pi\)
0.00306845 + 0.999995i \(0.499023\pi\)
\(272\) 0 0
\(273\) 7.42705 + 22.8581i 0.449506 + 1.38344i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.97214 + 21.4580i 0.418915 + 1.28929i 0.908702 + 0.417446i \(0.137075\pi\)
−0.489787 + 0.871842i \(0.662925\pi\)
\(278\) 0 0
\(279\) −2.66312 + 1.93487i −0.159437 + 0.115838i
\(280\) 0 0
\(281\) −8.44427 + 25.9888i −0.503743 + 1.55036i 0.299130 + 0.954212i \(0.403303\pi\)
−0.802874 + 0.596149i \(0.796697\pi\)
\(282\) 0 0
\(283\) −9.35410 6.79615i −0.556044 0.403989i 0.273965 0.961740i \(-0.411665\pi\)
−0.830009 + 0.557750i \(0.811665\pi\)
\(284\) 0 0
\(285\) −16.3262 −0.967083
\(286\) 0 0
\(287\) −33.2148 −1.96061
\(288\) 0 0
\(289\) 9.16312 + 6.65740i 0.539007 + 0.391612i
\(290\) 0 0
\(291\) 11.7812 36.2587i 0.690623 2.12552i
\(292\) 0 0
\(293\) 6.97214 5.06555i 0.407317 0.295933i −0.365198 0.930930i \(-0.618999\pi\)
0.772515 + 0.634997i \(0.218999\pi\)
\(294\) 0 0
\(295\) −0.545085 1.67760i −0.0317361 0.0976736i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.81966 + 5.60034i 0.105234 + 0.323876i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 14.3992 44.3161i 0.827212 2.54590i
\(304\) 0 0
\(305\) −3.11803 2.26538i −0.178538 0.129716i
\(306\) 0 0
\(307\) −9.52786 −0.543784 −0.271892 0.962328i \(-0.587649\pi\)
−0.271892 + 0.962328i \(0.587649\pi\)
\(308\) 0 0
\(309\) 20.5623 1.16975
\(310\) 0 0
\(311\) −13.5902 9.87384i −0.770628 0.559894i 0.131524 0.991313i \(-0.458013\pi\)
−0.902152 + 0.431419i \(0.858013\pi\)
\(312\) 0 0
\(313\) −2.31966 + 7.13918i −0.131115 + 0.403530i −0.994966 0.100218i \(-0.968046\pi\)
0.863851 + 0.503748i \(0.168046\pi\)
\(314\) 0 0
\(315\) 19.4443 14.1271i 1.09556 0.795971i
\(316\) 0 0
\(317\) −4.50000 13.8496i −0.252745 0.777870i −0.994266 0.106939i \(-0.965895\pi\)
0.741520 0.670930i \(-0.234105\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −9.35410 28.7890i −0.522095 1.60684i
\(322\) 0 0
\(323\) −7.42705 + 5.39607i −0.413252 + 0.300245i
\(324\) 0 0
\(325\) 1.75329 5.39607i 0.0972550 0.299320i
\(326\) 0 0
\(327\) 26.4164 + 19.1926i 1.46083 + 1.06136i
\(328\) 0 0
\(329\) 5.32624 0.293645
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) 5.78115 + 4.20025i 0.316805 + 0.230172i
\(334\) 0 0
\(335\) −6.47214 + 19.9192i −0.353611 + 1.08830i
\(336\) 0 0
\(337\) 19.4443 14.1271i 1.05920 0.769552i 0.0852573 0.996359i \(-0.472829\pi\)
0.973940 + 0.226807i \(0.0728288\pi\)
\(338\) 0 0
\(339\) −14.2082 43.7284i −0.771684 2.37500i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.01722 + 3.13068i 0.0549248 + 0.169041i
\(344\) 0 0
\(345\) 8.47214 6.15537i 0.456124 0.331394i
\(346\) 0 0
\(347\) 5.50000 16.9273i 0.295255 0.908703i −0.687880 0.725824i \(-0.741458\pi\)
0.983136 0.182879i \(-0.0585415\pi\)
\(348\) 0 0
\(349\) −13.2082 9.59632i −0.707019 0.513679i 0.175192 0.984534i \(-0.443945\pi\)
−0.882211 + 0.470855i \(0.843945\pi\)
\(350\) 0 0
\(351\) 5.32624 0.284294
\(352\) 0 0
\(353\) −14.9443 −0.795403 −0.397702 0.917515i \(-0.630192\pi\)
−0.397702 + 0.917515i \(0.630192\pi\)
\(354\) 0 0
\(355\) −8.35410 6.06961i −0.443390 0.322141i
\(356\) 0 0
\(357\) 7.42705 22.8581i 0.393081 1.20978i
\(358\) 0 0
\(359\) 9.35410 6.79615i 0.493691 0.358687i −0.312911 0.949782i \(-0.601304\pi\)
0.806602 + 0.591095i \(0.201304\pi\)
\(360\) 0 0
\(361\) −1.28115 3.94298i −0.0674291 0.207525i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.454915 1.40008i −0.0238113 0.0732838i
\(366\) 0 0
\(367\) −16.2984 + 11.8415i −0.850768 + 0.618119i −0.925358 0.379095i \(-0.876235\pi\)
0.0745895 + 0.997214i \(0.476235\pi\)
\(368\) 0 0
\(369\) −10.2639 + 31.5891i −0.534319 + 1.64446i
\(370\) 0 0
\(371\) 12.7533 + 9.26581i 0.662118 + 0.481057i
\(372\) 0 0
\(373\) 6.58359 0.340885 0.170443 0.985368i \(-0.445480\pi\)
0.170443 + 0.985368i \(0.445480\pi\)
\(374\) 0 0
\(375\) −31.2705 −1.61480
\(376\) 0 0
\(377\) −16.6074 12.0660i −0.855324 0.621429i
\(378\) 0 0
\(379\) 0.972136 2.99193i 0.0499353 0.153685i −0.922979 0.384849i \(-0.874253\pi\)
0.972915 + 0.231164i \(0.0742535\pi\)
\(380\) 0 0
\(381\) 5.04508 3.66547i 0.258468 0.187788i
\(382\) 0 0
\(383\) 6.15248 + 18.9354i 0.314377 + 0.967552i 0.976010 + 0.217725i \(0.0698636\pi\)
−0.661633 + 0.749828i \(0.730136\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 21.6803 15.7517i 1.09924 0.798642i 0.118302 0.992978i \(-0.462255\pi\)
0.980935 + 0.194335i \(0.0622550\pi\)
\(390\) 0 0
\(391\) 1.81966 5.60034i 0.0920242 0.283221i
\(392\) 0 0
\(393\) −20.1803 14.6619i −1.01796 0.739594i
\(394\) 0 0
\(395\) −11.5623 −0.581763
\(396\) 0 0
\(397\) 32.8328 1.64783 0.823916 0.566712i \(-0.191785\pi\)
0.823916 + 0.566712i \(0.191785\pi\)
\(398\) 0 0
\(399\) −31.4615 22.8581i −1.57504 1.14434i
\(400\) 0 0
\(401\) 2.08359 6.41264i 0.104050 0.320232i −0.885457 0.464722i \(-0.846154\pi\)
0.989506 + 0.144490i \(0.0461542\pi\)
\(402\) 0 0
\(403\) 1.64590 1.19581i 0.0819880 0.0595678i
\(404\) 0 0
\(405\) 2.85410 + 8.78402i 0.141821 + 0.436482i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.20820 + 6.79615i 0.109189 + 0.336048i 0.990691 0.136132i \(-0.0434672\pi\)
−0.881502 + 0.472180i \(0.843467\pi\)
\(410\) 0 0
\(411\) 29.2254 21.2335i 1.44158 1.04737i
\(412\) 0 0
\(413\) 1.29837 3.99598i 0.0638888 0.196630i
\(414\) 0 0
\(415\) −17.0623 12.3965i −0.837556 0.608520i
\(416\) 0 0
\(417\) 30.2705 1.48235
\(418\) 0 0
\(419\) −4.58359 −0.223923 −0.111962 0.993713i \(-0.535713\pi\)
−0.111962 + 0.993713i \(0.535713\pi\)
\(420\) 0 0
\(421\) 7.50000 + 5.44907i 0.365528 + 0.265571i 0.755354 0.655317i \(-0.227465\pi\)
−0.389826 + 0.920888i \(0.627465\pi\)
\(422\) 0 0
\(423\) 1.64590 5.06555i 0.0800263 0.246296i
\(424\) 0 0
\(425\) −4.59017 + 3.33495i −0.222656 + 0.161769i
\(426\) 0 0
\(427\) −2.83688 8.73102i −0.137286 0.422524i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.15248 + 15.8577i 0.248186 + 0.763838i 0.995096 + 0.0989130i \(0.0315365\pi\)
−0.746910 + 0.664925i \(0.768463\pi\)
\(432\) 0 0
\(433\) −15.7361 + 11.4329i −0.756227 + 0.549431i −0.897751 0.440504i \(-0.854800\pi\)
0.141524 + 0.989935i \(0.454800\pi\)
\(434\) 0 0
\(435\) −11.2812 + 34.7198i −0.540890 + 1.66469i
\(436\) 0 0
\(437\) −7.70820 5.60034i −0.368733 0.267900i
\(438\) 0 0
\(439\) 15.4164 0.735785 0.367893 0.929868i \(-0.380079\pi\)
0.367893 + 0.929868i \(0.380079\pi\)
\(440\) 0 0
\(441\) 30.2705 1.44145
\(442\) 0 0
\(443\) −2.64590 1.92236i −0.125710 0.0913340i 0.523153 0.852239i \(-0.324755\pi\)
−0.648864 + 0.760905i \(0.724755\pi\)
\(444\) 0 0
\(445\) −0.236068 + 0.726543i −0.0111907 + 0.0344414i
\(446\) 0 0
\(447\) −5.04508 + 3.66547i −0.238624 + 0.173371i
\(448\) 0 0
\(449\) −4.50000 13.8496i −0.212368 0.653602i −0.999330 0.0366002i \(-0.988347\pi\)
0.786962 0.617002i \(-0.211653\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 15.5902 + 47.9816i 0.732490 + 2.25437i
\(454\) 0 0
\(455\) −12.0172 + 8.73102i −0.563376 + 0.409317i
\(456\) 0 0
\(457\) 2.20820 6.79615i 0.103295 0.317911i −0.886031 0.463626i \(-0.846548\pi\)
0.989327 + 0.145715i \(0.0465483\pi\)
\(458\) 0 0
\(459\) −4.30902 3.13068i −0.201128 0.146128i
\(460\) 0 0
\(461\) 33.7771 1.57316 0.786578 0.617491i \(-0.211851\pi\)
0.786578 + 0.617491i \(0.211851\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 0 0
\(465\) −2.92705 2.12663i −0.135739 0.0986200i
\(466\) 0 0
\(467\) 3.91641 12.0535i 0.181230 0.557768i −0.818633 0.574317i \(-0.805268\pi\)
0.999863 + 0.0165487i \(0.00526787\pi\)
\(468\) 0 0
\(469\) −40.3607 + 29.3238i −1.86368 + 1.35404i
\(470\) 0 0
\(471\) −14.2082 43.7284i −0.654679 2.01490i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.83688 + 8.73102i 0.130165 + 0.400607i
\(476\) 0 0
\(477\) 12.7533 9.26581i 0.583933 0.424252i
\(478\) 0 0
\(479\) 8.44427 25.9888i 0.385829 1.18746i −0.550049 0.835133i \(-0.685391\pi\)
0.935877 0.352326i \(-0.114609\pi\)
\(480\) 0 0
\(481\) −3.57295 2.59590i −0.162912 0.118363i
\(482\) 0 0
\(483\) 24.9443 1.13500
\(484\) 0 0
\(485\) 23.5623 1.06991
\(486\) 0 0
\(487\) 14.5902 + 10.6004i 0.661144 + 0.480349i 0.867049 0.498223i \(-0.166014\pi\)
−0.205905 + 0.978572i \(0.566014\pi\)
\(488\) 0 0
\(489\) −9.16312 + 28.2012i −0.414371 + 1.27530i
\(490\) 0 0
\(491\) 9.35410 6.79615i 0.422145 0.306706i −0.356355 0.934350i \(-0.615981\pi\)
0.778500 + 0.627644i \(0.215981\pi\)
\(492\) 0 0
\(493\) 6.34346 + 19.5232i 0.285695 + 0.879279i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.60081 23.3929i −0.340943 1.04931i
\(498\) 0 0
\(499\) 18.8262 13.6781i 0.842778 0.612314i −0.0803672 0.996765i \(-0.525609\pi\)
0.923145 + 0.384451i \(0.125609\pi\)
\(500\) 0 0
\(501\) 14.3992 44.3161i 0.643308 1.97990i
\(502\) 0 0
\(503\) −29.5344 21.4580i −1.31688 0.956766i −0.999965 0.00831064i \(-0.997355\pi\)
−0.316910 0.948456i \(-0.602645\pi\)
\(504\) 0 0
\(505\) 28.7984 1.28151
\(506\) 0 0
\(507\) 19.1803 0.851829
\(508\) 0 0
\(509\) 23.2082 + 16.8617i 1.02869 + 0.747384i 0.968045 0.250776i \(-0.0806857\pi\)
0.0606404 + 0.998160i \(0.480686\pi\)
\(510\) 0 0
\(511\) 1.08359 3.33495i 0.0479353 0.147530i
\(512\) 0 0
\(513\) −6.97214 + 5.06555i −0.307827 + 0.223650i
\(514\) 0 0
\(515\) 3.92705 + 12.0862i 0.173047 + 0.532582i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −5.50000 16.9273i −0.241423 0.743024i
\(520\) 0 0
\(521\) −6.20820 + 4.51052i −0.271986 + 0.197610i −0.715415 0.698700i \(-0.753762\pi\)
0.443428 + 0.896310i \(0.353762\pi\)
\(522\) 0 0
\(523\) −8.79180 + 27.0584i −0.384438 + 1.18318i 0.552448 + 0.833547i \(0.313694\pi\)
−0.936887 + 0.349633i \(0.886306\pi\)
\(524\) 0 0
\(525\) −19.4443 14.1271i −0.848618 0.616557i
\(526\) 0 0
\(527\) −2.03444 −0.0886217
\(528\) 0 0
\(529\) −16.8885 −0.734285
\(530\) 0 0
\(531\) −3.39919 2.46965i −0.147512 0.107174i
\(532\) 0 0
\(533\) 6.34346 19.5232i 0.274766 0.845642i
\(534\) 0 0
\(535\) 15.1353 10.9964i 0.654354 0.475416i
\(536\) 0 0
\(537\) 2.11803 + 6.51864i 0.0913999 + 0.281300i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.55573 7.86572i −0.109879 0.338174i 0.880965 0.473181i \(-0.156894\pi\)
−0.990845 + 0.135007i \(0.956894\pi\)
\(542\) 0 0
\(543\) −3.42705 + 2.48990i −0.147069 + 0.106852i
\(544\) 0 0
\(545\) −6.23607 + 19.1926i −0.267124 + 0.822123i
\(546\) 0 0
\(547\) 31.0066 + 22.5276i 1.32575 + 0.963211i 0.999841 + 0.0178077i \(0.00566866\pi\)
0.325904 + 0.945403i \(0.394331\pi\)
\(548\) 0 0
\(549\) −9.18034 −0.391807
\(550\) 0 0
\(551\) 33.2148 1.41500
\(552\) 0 0
\(553\) −22.2812 16.1882i −0.947491 0.688393i
\(554\) 0 0
\(555\) −2.42705 + 7.46969i −0.103023 + 0.317071i
\(556\) 0 0
\(557\) −25.6803 + 18.6579i −1.08811 + 0.790559i −0.979079 0.203479i \(-0.934775\pi\)
−0.109032 + 0.994038i \(0.534775\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.02786 + 12.3965i 0.169754 + 0.522450i 0.999355 0.0359070i \(-0.0114320\pi\)
−0.829601 + 0.558357i \(0.811432\pi\)
\(564\) 0 0
\(565\) 22.9894 16.7027i 0.967170 0.702690i
\(566\) 0 0
\(567\) −6.79837 + 20.9232i −0.285505 + 0.878694i
\(568\) 0 0
\(569\) 24.2082 + 17.5883i 1.01486 + 0.737339i 0.965223 0.261428i \(-0.0841933\pi\)
0.0496377 + 0.998767i \(0.484193\pi\)
\(570\) 0 0
\(571\) −9.52786 −0.398729 −0.199364 0.979925i \(-0.563888\pi\)
−0.199364 + 0.979925i \(0.563888\pi\)
\(572\) 0 0
\(573\) −68.1591 −2.84739
\(574\) 0 0
\(575\) −4.76393 3.46120i −0.198670 0.144342i
\(576\) 0 0
\(577\) −11.1525 + 34.3238i −0.464284 + 1.42892i 0.395598 + 0.918424i \(0.370538\pi\)
−0.859881 + 0.510494i \(0.829462\pi\)
\(578\) 0 0
\(579\) 47.7877 34.7198i 1.98599 1.44291i
\(580\) 0 0
\(581\) −15.5238 47.7773i −0.644036 1.98214i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 4.59017 + 14.1271i 0.189780 + 0.584083i
\(586\) 0 0
\(587\) 6.35410 4.61653i 0.262262 0.190544i −0.448882 0.893591i \(-0.648178\pi\)
0.711144 + 0.703047i \(0.248178\pi\)
\(588\) 0 0
\(589\) −1.01722 + 3.13068i −0.0419139 + 0.128998i
\(590\) 0 0
\(591\) 6.23607 + 4.53077i 0.256518 + 0.186371i
\(592\) 0 0
\(593\) −37.4164 −1.53651 −0.768254 0.640145i \(-0.778874\pi\)
−0.768254 + 0.640145i \(0.778874\pi\)
\(594\) 0 0
\(595\) 14.8541 0.608959
\(596\) 0 0
\(597\) −2.00000 1.45309i −0.0818546 0.0594708i
\(598\) 0 0
\(599\) 14.2082 43.7284i 0.580531 1.78669i −0.0359877 0.999352i \(-0.511458\pi\)
0.616519 0.787340i \(-0.288542\pi\)
\(600\) 0 0
\(601\) 27.1525 19.7274i 1.10757 0.804699i 0.125293 0.992120i \(-0.460013\pi\)
0.982280 + 0.187421i \(0.0600129\pi\)
\(602\) 0 0
\(603\) 15.4164 + 47.4468i 0.627805 + 1.93218i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.62461 20.3885i −0.268885 0.827542i −0.990773 0.135532i \(-0.956726\pi\)
0.721888 0.692010i \(-0.243274\pi\)
\(608\) 0 0
\(609\) −70.3500 + 51.1123i −2.85073 + 2.07117i
\(610\) 0 0
\(611\) −1.01722 + 3.13068i −0.0411524 + 0.126654i
\(612\) 0 0
\(613\) −8.44427 6.13512i −0.341061 0.247795i 0.404048 0.914738i \(-0.367603\pi\)
−0.745109 + 0.666942i \(0.767603\pi\)
\(614\) 0 0
\(615\) −36.5066 −1.47209
\(616\) 0 0
\(617\) −7.52786 −0.303060 −0.151530 0.988453i \(-0.548420\pi\)
−0.151530 + 0.988453i \(0.548420\pi\)
\(618\) 0 0
\(619\) −18.0623 13.1230i −0.725985 0.527459i 0.162306 0.986741i \(-0.448107\pi\)
−0.888291 + 0.459281i \(0.848107\pi\)
\(620\) 0 0
\(621\) 1.70820 5.25731i 0.0685479 0.210969i
\(622\) 0 0
\(623\) −1.47214 + 1.06957i −0.0589799 + 0.0428514i
\(624\) 0 0
\(625\) −2.29180 7.05342i −0.0916718 0.282137i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.36475 + 4.20025i 0.0544160 + 0.167475i
\(630\) 0 0
\(631\) 19.2984 14.0211i 0.768256 0.558171i −0.133175 0.991092i \(-0.542517\pi\)
0.901432 + 0.432922i \(0.142517\pi\)
\(632\) 0 0
\(633\) 9.63525 29.6543i 0.382967 1.17865i
\(634\) 0 0
\(635\) 3.11803 + 2.26538i 0.123735 + 0.0898990i
\(636\) 0 0
\(637\) −18.7082 −0.741246
\(638\) 0 0
\(639\) −24.5967 −0.973032
\(640\) 0 0
\(641\) −21.9164 15.9232i −0.865646 0.628929i 0.0637690 0.997965i \(-0.479688\pi\)
−0.929415 + 0.369036i \(0.879688\pi\)
\(642\) 0 0
\(643\) −3.79180 + 11.6699i −0.149534 + 0.460218i −0.997566 0.0697267i \(-0.977787\pi\)
0.848032 + 0.529945i \(0.177787\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.08359 + 6.41264i 0.0819145 + 0.252107i 0.983623 0.180237i \(-0.0576866\pi\)
−0.901709 + 0.432344i \(0.857687\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.66312 8.19624i −0.104376 0.321236i
\(652\) 0 0
\(653\) −6.20820 + 4.51052i −0.242946 + 0.176510i −0.702595 0.711590i \(-0.747975\pi\)
0.459649 + 0.888101i \(0.347975\pi\)
\(654\) 0 0
\(655\) 4.76393 14.6619i 0.186142 0.572887i
\(656\) 0 0
\(657\) −2.83688 2.06111i −0.110677 0.0804117i
\(658\) 0 0
\(659\) −40.3607 −1.57223 −0.786114 0.618081i \(-0.787910\pi\)
−0.786114 + 0.618081i \(0.787910\pi\)
\(660\) 0 0
\(661\) −30.3607 −1.18089 −0.590447 0.807077i \(-0.701048\pi\)
−0.590447 + 0.807077i \(0.701048\pi\)
\(662\) 0 0
\(663\) 12.0172 + 8.73102i 0.466710 + 0.339085i
\(664\) 0 0
\(665\) 7.42705 22.8581i 0.288009 0.886400i
\(666\) 0 0
\(667\) −17.2361 + 12.5227i −0.667383 + 0.484882i
\(668\) 0 0
\(669\) 9.82624 + 30.2421i 0.379904 + 1.16923i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −11.3885 35.0503i −0.438996 1.35109i −0.888936 0.458032i \(-0.848554\pi\)
0.449940 0.893059i \(-0.351446\pi\)
\(674\) 0 0
\(675\) −4.30902 + 3.13068i −0.165854 + 0.120500i
\(676\) 0 0
\(677\) 1.08359 3.33495i 0.0416458 0.128173i −0.928072 0.372401i \(-0.878535\pi\)
0.969718 + 0.244228i \(0.0785346\pi\)
\(678\) 0 0
\(679\) 45.4058 + 32.9892i 1.74251 + 1.26601i
\(680\) 0 0
\(681\) 14.8541 0.569210
\(682\) 0 0
\(683\) −0.944272 −0.0361316 −0.0180658 0.999837i \(-0.505751\pi\)
−0.0180658 + 0.999837i \(0.505751\pi\)
\(684\) 0 0
\(685\) 18.0623 + 13.1230i 0.690125 + 0.501405i
\(686\) 0 0
\(687\) −13.1631 + 40.5119i −0.502204 + 1.54563i
\(688\) 0 0
\(689\) −7.88197 + 5.72658i −0.300279 + 0.218165i
\(690\) 0 0
\(691\) −7.44427 22.9111i −0.283193 0.871580i −0.986934 0.161123i \(-0.948488\pi\)
0.703741 0.710457i \(-0.251512\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.78115 + 17.7926i 0.219292 + 0.674910i
\(696\) 0 0
\(697\) −16.6074 + 12.0660i −0.629050 + 0.457031i
\(698\) 0 0
\(699\) 1.92705 5.93085i 0.0728878 0.224325i
\(700\) 0 0
\(701\) 39.6246 + 28.7890i 1.49660 + 1.08734i 0.971711 + 0.236174i \(0.0758936\pi\)
0.524890 + 0.851170i \(0.324106\pi\)
\(702\) 0 0
\(703\) 7.14590 0.269513
\(704\) 0 0
\(705\) 5.85410 0.220478
\(706\) 0 0
\(707\) 55.4959 + 40.3202i 2.08714 + 1.51640i
\(708\) 0 0
\(709\) 7.20820 22.1846i 0.270710 0.833159i −0.719613 0.694375i \(-0.755681\pi\)
0.990323 0.138784i \(-0.0443193\pi\)
\(710\) 0 0
\(711\) −22.2812 + 16.1882i −0.835609 + 0.607105i
\(712\) 0 0
\(713\) −0.652476 2.00811i −0.0244354 0.0752045i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.35410 28.7890i −0.349335 1.07514i
\(718\) 0 0
\(719\) 31.7705 23.0826i 1.18484 0.860837i 0.192131 0.981369i \(-0.438460\pi\)
0.992709 + 0.120533i \(0.0384602\pi\)
\(720\) 0 0
\(721\) −9.35410 + 28.7890i −0.348365 + 1.07216i
\(722\) 0 0
\(723\) −26.4164 19.1926i −0.982437 0.713782i
\(724\) 0 0
\(725\) 20.5279 0.762386
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 32.0066 + 23.2541i 1.18543 + 0.861264i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 27.1525 19.7274i 1.00290 0.728649i 0.0401916 0.999192i \(-0.487203\pi\)
0.962708 + 0.270543i \(0.0872032\pi\)
\(734\) 0 0
\(735\) 10.2812 + 31.6421i 0.379226 + 1.16714i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −7.31966 22.5276i −0.269258 0.828691i −0.990682 0.136197i \(-0.956512\pi\)
0.721424 0.692494i \(-0.243488\pi\)
\(740\) 0 0
\(741\) 19.4443 14.1271i 0.714303 0.518972i
\(742\) 0 0
\(743\) −1.08359 + 3.33495i −0.0397531 + 0.122348i −0.968964 0.247203i \(-0.920488\pi\)
0.929210 + 0.369551i \(0.120488\pi\)
\(744\) 0 0
\(745\) −3.11803 2.26538i −0.114236 0.0829973i
\(746\) 0 0
\(747\) −50.2361 −1.83804
\(748\) 0 0
\(749\) 44.5623 1.62827
\(750\) 0 0
\(751\) −5.59017 4.06150i −0.203988 0.148206i 0.481101 0.876665i \(-0.340237\pi\)
−0.685089 + 0.728459i \(0.740237\pi\)
\(752\) 0 0
\(753\) −20.8713 + 64.2353i −0.760593 + 2.34087i
\(754\) 0 0
\(755\) −25.2254 + 18.3273i −0.918047 + 0.667000i
\(756\) 0 0
\(757\) 8.26393 + 25.4338i 0.300358 + 0.924406i 0.981369 + 0.192133i \(0.0615405\pi\)
−0.681011 + 0.732273i \(0.738460\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.84752 + 17.9968i 0.211973 + 0.652385i 0.999355 + 0.0359193i \(0.0114359\pi\)
−0.787382 + 0.616465i \(0.788564\pi\)
\(762\) 0 0
\(763\) −38.8885 + 28.2542i −1.40786 + 1.02287i
\(764\) 0 0
\(765\) 4.59017 14.1271i 0.165958 0.510766i
\(766\) 0 0
\(767\) 2.10081 + 1.52633i 0.0758560 + 0.0551126i
\(768\) 0 0
\(769\) −37.4164 −1.34927 −0.674635 0.738151i \(-0.735699\pi\)
−0.674635 + 0.738151i \(0.735699\pi\)
\(770\) 0 0
\(771\) 12.8541 0.462929
\(772\) 0 0
\(773\) 22.9164 + 16.6497i 0.824246 + 0.598850i 0.917926 0.396753i \(-0.129863\pi\)
−0.0936796 + 0.995602i \(0.529863\pi\)
\(774\) 0 0
\(775\) −0.628677 + 1.93487i −0.0225827 + 0.0695026i
\(776\) 0 0
\(777\) −15.1353 + 10.9964i −0.542974 + 0.394494i
\(778\) 0 0
\(779\) 10.2639 + 31.5891i 0.367744 + 1.13180i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 5.95492 + 18.3273i 0.212811 + 0.654966i
\(784\) 0 0
\(785\) 22.9894 16.7027i 0.820525 0.596147i
\(786\) 0 0
\(787\) −5.15248 + 15.8577i −0.183666 + 0.565266i −0.999923 0.0124235i \(-0.996045\pi\)
0.816257 + 0.577689i \(0.196045\pi\)
\(788\) 0 0
\(789\) −12.4721 9.06154i −0.444020 0.322599i
\(790\) 0 0
\(791\) 67.6869 2.40667
\(792\) 0 0
\(793\) 5.67376 0.201481
\(794\) 0 0
\(795\) 14.0172 + 10.1841i 0.497140 + 0.361193i
\(796\) 0 0
\(797\) 4.26393 13.1230i 0.151036 0.464842i −0.846702 0.532068i \(-0.821415\pi\)
0.997738 + 0.0672265i \(0.0214150\pi\)
\(798\) 0 0
\(799\) 2.66312 1.93487i 0.0942144 0.0684508i
\(800\) 0 0
\(801\) 0.562306 + 1.73060i 0.0198681 + 0.0611477i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 4.76393 + 14.6619i 0.167907 + 0.516763i
\(806\) 0 0
\(807\) −51.0238 + 37.0710i −1.79612 + 1.30496i
\(808\) 0 0
\(809\) 5.84752 17.9968i 0.205588 0.632735i −0.794101 0.607786i \(-0.792058\pi\)
0.999689 0.0249486i \(-0.00794222\pi\)
\(810\) 0 0
\(811\) −24.7705 17.9968i −0.869810 0.631954i 0.0607258 0.998154i \(-0.480658\pi\)
−0.930536 + 0.366200i \(0.880658\pi\)
\(812\) 0 0
\(813\) −50.4508 −1.76939
\(814\) 0 0
\(815\) −18.3262 −0.641940
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −10.9336 + 33.6502i −0.382052 + 1.17583i
\(820\) 0 0
\(821\) −20.9164 + 15.1967i −0.729988 + 0.530367i −0.889560 0.456819i \(-0.848989\pi\)
0.159572 + 0.987186i \(0.448989\pi\)
\(822\) 0 0
\(823\) −12.2082 37.5730i −0.425551 1.30971i −0.902465 0.430762i \(-0.858245\pi\)
0.476914 0.878950i \(-0.341755\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.02786 + 12.3965i 0.140063 + 0.431068i 0.996343 0.0854428i \(-0.0272305\pi\)
−0.856281 + 0.516511i \(0.827231\pi\)
\(828\) 0 0
\(829\) −28.2082 + 20.4945i −0.979711 + 0.711802i −0.957644 0.287954i \(-0.907025\pi\)
−0.0220673 + 0.999756i \(0.507025\pi\)
\(830\) 0 0
\(831\) −18.2533 + 56.1778i −0.633200 + 1.94879i
\(832\) 0 0
\(833\) 15.1353 + 10.9964i 0.524406 + 0.381003i
\(834\) 0 0
\(835\) 28.7984 0.996609
\(836\) 0 0
\(837\) −1.90983 −0.0660134
\(838\) 0 0
\(839\) 2.11803 + 1.53884i 0.0731227 + 0.0531267i 0.623746 0.781627i \(-0.285610\pi\)
−0.550623 + 0.834754i \(0.685610\pi\)
\(840\) 0 0
\(841\) 13.9894 43.0548i 0.482392 1.48465i
\(842\) 0 0
\(843\) −57.8779 + 42.0508i −1.99342 + 1.44830i
\(844\) 0 0
\(845\) 3.66312 + 11.2739i 0.126015 + 0.387835i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −9.35410 28.7890i −0.321032 0.988035i
\(850\) 0 0
\(851\) −3.70820 + 2.69417i −0.127116 + 0.0923549i
\(852\) 0 0
\(853\) −5.50000 + 16.9273i −0.188316 + 0.579578i −0.999990 0.00453334i \(-0.998557\pi\)
0.811673 + 0.584112i \(0.198557\pi\)
\(854\) 0 0
\(855\) −19.4443 14.1271i −0.664980 0.483136i
\(856\) 0 0
\(857\) −2.94427 −0.100574 −0.0502872 0.998735i \(-0.516014\pi\)
−0.0502872 + 0.998735i \(0.516014\pi\)
\(858\) 0 0
\(859\) −31.0557 −1.05961 −0.529804 0.848120i \(-0.677734\pi\)
−0.529804 + 0.848120i \(0.677734\pi\)
\(860\) 0 0
\(861\) −70.3500 51.1123i −2.39752 1.74190i
\(862\) 0 0
\(863\) −7.79180 + 23.9807i −0.265236 + 0.816312i 0.726403 + 0.687269i \(0.241191\pi\)
−0.991639 + 0.129043i \(0.958809\pi\)
\(864\) 0 0
\(865\) 8.89919 6.46564i 0.302581 0.219838i
\(866\) 0 0
\(867\) 9.16312 + 28.2012i 0.311196 + 0.957762i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −9.52786 29.3238i −0.322839 0.993597i
\(872\) 0 0
\(873\) 45.4058 32.9892i 1.53675 1.11652i
\(874\) 0 0
\(875\) 14.2254 43.7814i 0.480907 1.48008i
\(876\) 0 0
\(877\) 22.3885 + 16.2662i 0.756007 + 0.549272i 0.897683 0.440642i \(-0.145249\pi\)
−0.141676 + 0.989913i \(0.545249\pi\)
\(878\) 0 0
\(879\) 22.5623 0.761008
\(880\) 0 0
\(881\) 15.8885 0.535299 0.267649 0.963516i \(-0.413753\pi\)
0.267649 + 0.963516i \(0.413753\pi\)
\(882\) 0 0
\(883\) −4.06231 2.95144i −0.136707 0.0993238i 0.517330 0.855786i \(-0.326926\pi\)
−0.654037 + 0.756462i \(0.726926\pi\)
\(884\) 0 0
\(885\) 1.42705 4.39201i 0.0479698 0.147636i
\(886\) 0 0
\(887\) 1.64590 1.19581i 0.0552638 0.0401515i −0.559810 0.828621i \(-0.689126\pi\)
0.615074 + 0.788469i \(0.289126\pi\)
\(888\) 0 0
\(889\) 2.83688 + 8.73102i 0.0951459 + 0.292829i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.64590 5.06555i −0.0550779 0.169512i
\(894\) 0 0
\(895\) −3.42705 + 2.48990i −0.114554 + 0.0832281i
\(896\) 0 0
\(897\) −4.76393 + 14.6619i −0.159063 + 0.489546i
\(898\) 0 0
\(899\) 5.95492 + 4.32650i 0.198608 + 0.144297i
\(900\) 0 0
\(901\) 9.74265 0.324575
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.11803 1.53884i −0.0704058 0.0511528i
\(906\) 0 0
\(907\) 0.611456 1.88187i 0.0203031 0.0624864i −0.940392 0.340093i \(-0.889541\pi\)
0.960695 + 0.277607i \(0.0895413\pi\)
\(908\) 0 0
\(909\) 55.4959 40.3202i 1.84068 1.33734i
\(910\) 0 0
\(911\) −6.02786 18.5519i −0.199712 0.614650i −0.999889 0.0148867i \(-0.995261\pi\)
0.800177 0.599764i \(-0.204739\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −3.11803 9.59632i −0.103079 0.317245i
\(916\) 0 0
\(917\) 29.7082 21.5843i 0.981051 0.712776i
\(918\) 0 0
\(919\) 6.62461 20.3885i 0.218526 0.672553i −0.780359 0.625332i \(-0.784963\pi\)
0.998884 0.0472210i \(-0.0150365\pi\)
\(920\) 0 0
\(921\) −20.1803 14.6619i −0.664965 0.483125i
\(922\) 0 0
\(923\) 15.2016 0.500368
\(924\) 0 0
\(925\) 4.41641 0.145211
\(926\) 0 0
\(927\) 24.4894 + 17.7926i 0.804336 + 0.584384i
\(928\) 0 0
\(929\) 6.15248 18.9354i 0.201856 0.621249i −0.797972 0.602695i \(-0.794094\pi\)
0.999828 0.0185545i \(-0.00590642\pi\)
\(930\) 0 0
\(931\) 24.4894 17.7926i 0.802606 0.583128i
\(932\) 0 0
\(933\) −13.5902 41.8262i −0.444922 1.36933i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.20820 + 6.79615i 0.0721389 + 0.222021i 0.980625 0.195894i \(-0.0627610\pi\)
−0.908486 + 0.417915i \(0.862761\pi\)
\(938\) 0 0
\(939\) −15.8992 + 11.5514i −0.518850 + 0.376967i
\(940\) 0 0
\(941\) −3.68034 + 11.3269i −0.119976 + 0.369247i −0.992952 0.118515i \(-0.962187\pi\)
0.872977 + 0.487762i \(0.162187\pi\)
\(942\) 0 0
\(943\) −17.2361 12.5227i −0.561284 0.407796i
\(944\) 0 0
\(945\) 13.9443 0.453607
\(946\) 0 0
\(947\) −23.7771 −0.772652 −0.386326 0.922362i \(-0.626256\pi\)
−0.386326 + 0.922362i \(0.626256\pi\)
\(948\) 0 0
\(949\) 1.75329 + 1.27384i 0.0569142 + 0.0413506i
\(950\) 0 0
\(951\) 11.7812 36.2587i 0.382030 1.17577i
\(952\) 0 0
\(953\) 36.6803 26.6498i 1.18819 0.863273i 0.195121 0.980779i \(-0.437490\pi\)
0.993072 + 0.117507i \(0.0374902\pi\)
\(954\) 0 0
\(955\) −13.0172 40.0629i −0.421227 1.29640i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 16.4336 + 50.5775i 0.530670 + 1.63323i
\(960\) 0 0
\(961\) 24.4894 17.7926i 0.789979 0.573954i
\(962\) 0 0
\(963\) 13.7705 42.3813i 0.443748 1.36572i
\(964\) 0 0
\(965\) 29.5344 + 21.4580i 0.950747 + 0.690758i
\(966\) 0 0
\(967\) −44.0000 −1.41494 −0.707472 0.706741i \(-0.750165\pi\)
−0.707472 + 0.706741i \(0.750165\pi\)
\(968\) 0 0
\(969\) −24.0344 −0.772098
\(970\) 0 0
\(971\) −5.59017 4.06150i −0.179397 0.130340i 0.494463 0.869199i \(-0.335365\pi\)
−0.673860 + 0.738859i \(0.735365\pi\)
\(972\) 0 0
\(973\) −13.7705 + 42.3813i −0.441462 + 1.35868i
\(974\) 0 0
\(975\) 12.0172 8.73102i 0.384859 0.279616i
\(976\) 0 0
\(977\) −6.31966 19.4499i −0.202184 0.622258i −0.999817 0.0191154i \(-0.993915\pi\)
0.797633 0.603143i \(-0.206085\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 14.8541 + 45.7162i 0.474255 + 1.45961i
\(982\) 0 0
\(983\) 31.7705 23.0826i 1.01332 0.736221i 0.0484187 0.998827i \(-0.484582\pi\)
0.964903 + 0.262606i \(0.0845818\pi\)
\(984\) 0 0
\(985\) −1.47214 + 4.53077i −0.0469062 + 0.144362i
\(986\) 0 0
\(987\) 11.2812 + 8.19624i 0.359083 + 0.260889i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 0 0
\(993\) −25.4164 18.4661i −0.806565 0.586004i
\(994\) 0 0
\(995\) 0.472136 1.45309i 0.0149677 0.0460659i
\(996\) 0 0
\(997\) 24.2082 17.5883i 0.766682 0.557027i −0.134271 0.990945i \(-0.542869\pi\)
0.900952 + 0.433918i \(0.142869\pi\)
\(998\) 0 0
\(999\) 1.28115 + 3.94298i 0.0405339 + 0.124750i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.e.d.269.1 4
11.2 odd 10 484.2.e.e.9.1 4
11.3 even 5 484.2.a.c.1.1 2
11.4 even 5 484.2.e.c.245.1 4
11.5 even 5 484.2.e.c.81.1 4
11.6 odd 10 44.2.e.a.37.1 yes 4
11.7 odd 10 44.2.e.a.25.1 4
11.8 odd 10 484.2.a.b.1.1 2
11.9 even 5 inner 484.2.e.d.9.1 4
11.10 odd 2 484.2.e.e.269.1 4
33.8 even 10 4356.2.a.t.1.2 2
33.14 odd 10 4356.2.a.u.1.2 2
33.17 even 10 396.2.j.a.37.1 4
33.29 even 10 396.2.j.a.289.1 4
44.3 odd 10 1936.2.a.z.1.2 2
44.7 even 10 176.2.m.b.113.1 4
44.19 even 10 1936.2.a.ba.1.2 2
44.39 even 10 176.2.m.b.81.1 4
55.7 even 20 1100.2.cb.a.949.1 8
55.17 even 20 1100.2.cb.a.1049.2 8
55.18 even 20 1100.2.cb.a.949.2 8
55.28 even 20 1100.2.cb.a.1049.1 8
55.29 odd 10 1100.2.n.a.201.1 4
55.39 odd 10 1100.2.n.a.301.1 4
88.3 odd 10 7744.2.a.bo.1.1 2
88.19 even 10 7744.2.a.bp.1.1 2
88.29 odd 10 704.2.m.e.641.1 4
88.51 even 10 704.2.m.d.641.1 4
88.61 odd 10 704.2.m.e.257.1 4
88.69 even 10 7744.2.a.db.1.2 2
88.83 even 10 704.2.m.d.257.1 4
88.85 odd 10 7744.2.a.da.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.e.a.25.1 4 11.7 odd 10
44.2.e.a.37.1 yes 4 11.6 odd 10
176.2.m.b.81.1 4 44.39 even 10
176.2.m.b.113.1 4 44.7 even 10
396.2.j.a.37.1 4 33.17 even 10
396.2.j.a.289.1 4 33.29 even 10
484.2.a.b.1.1 2 11.8 odd 10
484.2.a.c.1.1 2 11.3 even 5
484.2.e.c.81.1 4 11.5 even 5
484.2.e.c.245.1 4 11.4 even 5
484.2.e.d.9.1 4 11.9 even 5 inner
484.2.e.d.269.1 4 1.1 even 1 trivial
484.2.e.e.9.1 4 11.2 odd 10
484.2.e.e.269.1 4 11.10 odd 2
704.2.m.d.257.1 4 88.83 even 10
704.2.m.d.641.1 4 88.51 even 10
704.2.m.e.257.1 4 88.61 odd 10
704.2.m.e.641.1 4 88.29 odd 10
1100.2.n.a.201.1 4 55.29 odd 10
1100.2.n.a.301.1 4 55.39 odd 10
1100.2.cb.a.949.1 8 55.7 even 20
1100.2.cb.a.949.2 8 55.18 even 20
1100.2.cb.a.1049.1 8 55.28 even 20
1100.2.cb.a.1049.2 8 55.17 even 20
1936.2.a.z.1.2 2 44.3 odd 10
1936.2.a.ba.1.2 2 44.19 even 10
4356.2.a.t.1.2 2 33.8 even 10
4356.2.a.u.1.2 2 33.14 odd 10
7744.2.a.bo.1.1 2 88.3 odd 10
7744.2.a.bp.1.1 2 88.19 even 10
7744.2.a.da.1.2 2 88.85 odd 10
7744.2.a.db.1.2 2 88.69 even 10