Properties

Label 484.2.e.d.245.1
Level $484$
Weight $2$
Character 484.245
Analytic conductor $3.865$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [484,2,Mod(9,484)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(484, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("484.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,-2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 245.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 484.245
Dual form 484.2.e.d.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.118034 - 0.363271i) q^{3} +(-0.500000 - 0.363271i) q^{5} +(-0.881966 + 2.71441i) q^{7} +(2.30902 - 1.67760i) q^{9} +(3.73607 - 2.71441i) q^{13} +(-0.0729490 + 0.224514i) q^{15} +(3.73607 + 2.71441i) q^{17} +(0.881966 + 2.71441i) q^{19} +1.09017 q^{21} +6.47214 q^{23} +(-1.42705 - 4.39201i) q^{25} +(-1.80902 - 1.31433i) q^{27} +(-1.97214 + 6.06961i) q^{29} +(4.73607 - 3.44095i) q^{31} +(1.42705 - 1.03681i) q^{35} +(1.50000 - 4.61653i) q^{37} +(-1.42705 - 1.03681i) q^{39} +(-1.97214 - 6.06961i) q^{41} -1.76393 q^{45} +(1.11803 + 3.44095i) q^{47} +(-0.927051 - 0.673542i) q^{49} +(0.545085 - 1.67760i) q^{51} +(-5.73607 + 4.16750i) q^{53} +(0.881966 - 0.640786i) q^{57} +(-3.11803 + 9.59632i) q^{59} +(3.73607 + 2.71441i) q^{61} +(2.51722 + 7.74721i) q^{63} -2.85410 q^{65} -4.94427 q^{67} +(-0.763932 - 2.35114i) q^{69} +(6.97214 + 5.06555i) q^{71} +(3.73607 - 11.4984i) q^{73} +(-1.42705 + 1.03681i) q^{75} +(-11.2082 + 8.14324i) q^{79} +(2.38197 - 7.33094i) q^{81} +(-12.9721 - 9.42481i) q^{83} +(-0.881966 - 2.71441i) q^{85} +2.43769 q^{87} -8.47214 q^{89} +(4.07295 + 12.5352i) q^{91} +(-1.80902 - 1.31433i) q^{93} +(0.545085 - 1.67760i) q^{95} +(-4.50000 + 3.26944i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{5} - 8 q^{7} + 7 q^{9} + 6 q^{13} - 7 q^{15} + 6 q^{17} + 8 q^{19} - 18 q^{21} + 8 q^{23} + q^{25} - 5 q^{27} + 10 q^{29} + 10 q^{31} - q^{35} + 6 q^{37} + q^{39} + 10 q^{41} - 16 q^{45}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.118034 0.363271i −0.0681470 0.209735i 0.911184 0.412000i \(-0.135170\pi\)
−0.979331 + 0.202265i \(0.935170\pi\)
\(4\) 0 0
\(5\) −0.500000 0.363271i −0.223607 0.162460i 0.470342 0.882484i \(-0.344131\pi\)
−0.693949 + 0.720024i \(0.744131\pi\)
\(6\) 0 0
\(7\) −0.881966 + 2.71441i −0.333352 + 1.02595i 0.634176 + 0.773188i \(0.281339\pi\)
−0.967528 + 0.252763i \(0.918661\pi\)
\(8\) 0 0
\(9\) 2.30902 1.67760i 0.769672 0.559200i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 3.73607 2.71441i 1.03620 0.752843i 0.0666589 0.997776i \(-0.478766\pi\)
0.969540 + 0.244933i \(0.0787661\pi\)
\(14\) 0 0
\(15\) −0.0729490 + 0.224514i −0.0188354 + 0.0579693i
\(16\) 0 0
\(17\) 3.73607 + 2.71441i 0.906130 + 0.658342i 0.940033 0.341083i \(-0.110794\pi\)
−0.0339034 + 0.999425i \(0.510794\pi\)
\(18\) 0 0
\(19\) 0.881966 + 2.71441i 0.202337 + 0.622729i 0.999812 + 0.0193774i \(0.00616839\pi\)
−0.797475 + 0.603352i \(0.793832\pi\)
\(20\) 0 0
\(21\) 1.09017 0.237895
\(22\) 0 0
\(23\) 6.47214 1.34953 0.674767 0.738031i \(-0.264244\pi\)
0.674767 + 0.738031i \(0.264244\pi\)
\(24\) 0 0
\(25\) −1.42705 4.39201i −0.285410 0.878402i
\(26\) 0 0
\(27\) −1.80902 1.31433i −0.348145 0.252942i
\(28\) 0 0
\(29\) −1.97214 + 6.06961i −0.366216 + 1.12710i 0.582999 + 0.812473i \(0.301879\pi\)
−0.949216 + 0.314626i \(0.898121\pi\)
\(30\) 0 0
\(31\) 4.73607 3.44095i 0.850623 0.618014i −0.0746948 0.997206i \(-0.523798\pi\)
0.925318 + 0.379193i \(0.123798\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.42705 1.03681i 0.241216 0.175253i
\(36\) 0 0
\(37\) 1.50000 4.61653i 0.246598 0.758952i −0.748771 0.662829i \(-0.769356\pi\)
0.995369 0.0961233i \(-0.0306443\pi\)
\(38\) 0 0
\(39\) −1.42705 1.03681i −0.228511 0.166023i
\(40\) 0 0
\(41\) −1.97214 6.06961i −0.307996 0.947914i −0.978542 0.206046i \(-0.933940\pi\)
0.670546 0.741868i \(-0.266060\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −1.76393 −0.262951
\(46\) 0 0
\(47\) 1.11803 + 3.44095i 0.163082 + 0.501915i 0.998890 0.0471073i \(-0.0150003\pi\)
−0.835808 + 0.549022i \(0.815000\pi\)
\(48\) 0 0
\(49\) −0.927051 0.673542i −0.132436 0.0962203i
\(50\) 0 0
\(51\) 0.545085 1.67760i 0.0763272 0.234911i
\(52\) 0 0
\(53\) −5.73607 + 4.16750i −0.787910 + 0.572450i −0.907342 0.420393i \(-0.861892\pi\)
0.119433 + 0.992842i \(0.461892\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.881966 0.640786i 0.116819 0.0848742i
\(58\) 0 0
\(59\) −3.11803 + 9.59632i −0.405933 + 1.24933i 0.514180 + 0.857682i \(0.328096\pi\)
−0.920113 + 0.391652i \(0.871904\pi\)
\(60\) 0 0
\(61\) 3.73607 + 2.71441i 0.478354 + 0.347545i 0.800688 0.599081i \(-0.204467\pi\)
−0.322334 + 0.946626i \(0.604467\pi\)
\(62\) 0 0
\(63\) 2.51722 + 7.74721i 0.317140 + 0.976057i
\(64\) 0 0
\(65\) −2.85410 −0.354008
\(66\) 0 0
\(67\) −4.94427 −0.604039 −0.302019 0.953302i \(-0.597661\pi\)
−0.302019 + 0.953302i \(0.597661\pi\)
\(68\) 0 0
\(69\) −0.763932 2.35114i −0.0919666 0.283044i
\(70\) 0 0
\(71\) 6.97214 + 5.06555i 0.827440 + 0.601171i 0.918834 0.394644i \(-0.129132\pi\)
−0.0913937 + 0.995815i \(0.529132\pi\)
\(72\) 0 0
\(73\) 3.73607 11.4984i 0.437274 1.34579i −0.453465 0.891274i \(-0.649812\pi\)
0.890739 0.454516i \(-0.150188\pi\)
\(74\) 0 0
\(75\) −1.42705 + 1.03681i −0.164782 + 0.119721i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.2082 + 8.14324i −1.26102 + 0.916186i −0.998807 0.0488240i \(-0.984453\pi\)
−0.262214 + 0.965010i \(0.584453\pi\)
\(80\) 0 0
\(81\) 2.38197 7.33094i 0.264663 0.814549i
\(82\) 0 0
\(83\) −12.9721 9.42481i −1.42388 1.03451i −0.991116 0.132998i \(-0.957540\pi\)
−0.432761 0.901509i \(-0.642460\pi\)
\(84\) 0 0
\(85\) −0.881966 2.71441i −0.0956626 0.294419i
\(86\) 0 0
\(87\) 2.43769 0.261348
\(88\) 0 0
\(89\) −8.47214 −0.898045 −0.449022 0.893521i \(-0.648228\pi\)
−0.449022 + 0.893521i \(0.648228\pi\)
\(90\) 0 0
\(91\) 4.07295 + 12.5352i 0.426961 + 1.31405i
\(92\) 0 0
\(93\) −1.80902 1.31433i −0.187586 0.136289i
\(94\) 0 0
\(95\) 0.545085 1.67760i 0.0559245 0.172118i
\(96\) 0 0
\(97\) −4.50000 + 3.26944i −0.456906 + 0.331961i −0.792316 0.610111i \(-0.791125\pi\)
0.335410 + 0.942072i \(0.391125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.50000 + 3.99598i −0.547270 + 0.397615i −0.826778 0.562528i \(-0.809829\pi\)
0.279508 + 0.960143i \(0.409829\pi\)
\(102\) 0 0
\(103\) −0.354102 + 1.08981i −0.0348907 + 0.107383i −0.966985 0.254833i \(-0.917980\pi\)
0.932094 + 0.362215i \(0.117980\pi\)
\(104\) 0 0
\(105\) −0.545085 0.396027i −0.0531948 0.0386483i
\(106\) 0 0
\(107\) −2.64590 8.14324i −0.255789 0.787236i −0.993673 0.112310i \(-0.964175\pi\)
0.737885 0.674927i \(-0.235825\pi\)
\(108\) 0 0
\(109\) 3.52786 0.337908 0.168954 0.985624i \(-0.445961\pi\)
0.168954 + 0.985624i \(0.445961\pi\)
\(110\) 0 0
\(111\) −1.85410 −0.175984
\(112\) 0 0
\(113\) −0.791796 2.43690i −0.0744859 0.229244i 0.906881 0.421387i \(-0.138456\pi\)
−0.981367 + 0.192142i \(0.938456\pi\)
\(114\) 0 0
\(115\) −3.23607 2.35114i −0.301765 0.219245i
\(116\) 0 0
\(117\) 4.07295 12.5352i 0.376544 1.15888i
\(118\) 0 0
\(119\) −10.6631 + 7.74721i −0.977487 + 0.710186i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1.97214 + 1.43284i −0.177822 + 0.129195i
\(124\) 0 0
\(125\) −1.83688 + 5.65334i −0.164296 + 0.505650i
\(126\) 0 0
\(127\) −3.73607 2.71441i −0.331522 0.240865i 0.409554 0.912286i \(-0.365684\pi\)
−0.741076 + 0.671421i \(0.765684\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −18.4721 −1.61392 −0.806959 0.590607i \(-0.798888\pi\)
−0.806959 + 0.590607i \(0.798888\pi\)
\(132\) 0 0
\(133\) −8.14590 −0.706339
\(134\) 0 0
\(135\) 0.427051 + 1.31433i 0.0367547 + 0.113119i
\(136\) 0 0
\(137\) 8.73607 + 6.34712i 0.746373 + 0.542271i 0.894700 0.446667i \(-0.147389\pi\)
−0.148328 + 0.988938i \(0.547389\pi\)
\(138\) 0 0
\(139\) 2.64590 8.14324i 0.224422 0.690700i −0.773928 0.633274i \(-0.781711\pi\)
0.998350 0.0574263i \(-0.0182894\pi\)
\(140\) 0 0
\(141\) 1.11803 0.812299i 0.0941554 0.0684079i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.19098 2.31838i 0.264997 0.192531i
\(146\) 0 0
\(147\) −0.135255 + 0.416272i −0.0111556 + 0.0343335i
\(148\) 0 0
\(149\) 3.73607 + 2.71441i 0.306071 + 0.222373i 0.730209 0.683224i \(-0.239423\pi\)
−0.424138 + 0.905598i \(0.639423\pi\)
\(150\) 0 0
\(151\) 4.40983 + 13.5721i 0.358867 + 1.10448i 0.953733 + 0.300654i \(0.0972050\pi\)
−0.594866 + 0.803825i \(0.702795\pi\)
\(152\) 0 0
\(153\) 13.1803 1.06557
\(154\) 0 0
\(155\) −3.61803 −0.290607
\(156\) 0 0
\(157\) −0.791796 2.43690i −0.0631922 0.194486i 0.914476 0.404640i \(-0.132603\pi\)
−0.977668 + 0.210155i \(0.932603\pi\)
\(158\) 0 0
\(159\) 2.19098 + 1.59184i 0.173756 + 0.126241i
\(160\) 0 0
\(161\) −5.70820 + 17.5680i −0.449869 + 1.38456i
\(162\) 0 0
\(163\) 3.50000 2.54290i 0.274141 0.199175i −0.442217 0.896908i \(-0.645808\pi\)
0.716358 + 0.697733i \(0.245808\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.50000 + 3.99598i −0.425603 + 0.309219i −0.779888 0.625919i \(-0.784724\pi\)
0.354285 + 0.935137i \(0.384724\pi\)
\(168\) 0 0
\(169\) 2.57295 7.91872i 0.197919 0.609133i
\(170\) 0 0
\(171\) 6.59017 + 4.78804i 0.503963 + 0.366150i
\(172\) 0 0
\(173\) −5.50000 16.9273i −0.418157 1.28696i −0.909396 0.415931i \(-0.863456\pi\)
0.491239 0.871025i \(-0.336544\pi\)
\(174\) 0 0
\(175\) 13.1803 0.996340
\(176\) 0 0
\(177\) 3.85410 0.289692
\(178\) 0 0
\(179\) −0.118034 0.363271i −0.00882227 0.0271522i 0.946548 0.322562i \(-0.104544\pi\)
−0.955371 + 0.295409i \(0.904544\pi\)
\(180\) 0 0
\(181\) −0.500000 0.363271i −0.0371647 0.0270017i 0.569048 0.822304i \(-0.307312\pi\)
−0.606213 + 0.795303i \(0.707312\pi\)
\(182\) 0 0
\(183\) 0.545085 1.67760i 0.0402938 0.124012i
\(184\) 0 0
\(185\) −2.42705 + 1.76336i −0.178440 + 0.129644i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 5.16312 3.75123i 0.375562 0.272862i
\(190\) 0 0
\(191\) −0.937694 + 2.88593i −0.0678492 + 0.208818i −0.979233 0.202740i \(-0.935015\pi\)
0.911383 + 0.411558i \(0.135015\pi\)
\(192\) 0 0
\(193\) −1.97214 1.43284i −0.141957 0.103138i 0.514540 0.857466i \(-0.327963\pi\)
−0.656497 + 0.754328i \(0.727963\pi\)
\(194\) 0 0
\(195\) 0.336881 + 1.03681i 0.0241246 + 0.0742477i
\(196\) 0 0
\(197\) −14.9443 −1.06474 −0.532368 0.846513i \(-0.678698\pi\)
−0.532368 + 0.846513i \(0.678698\pi\)
\(198\) 0 0
\(199\) 16.9443 1.20115 0.600574 0.799569i \(-0.294939\pi\)
0.600574 + 0.799569i \(0.294939\pi\)
\(200\) 0 0
\(201\) 0.583592 + 1.79611i 0.0411634 + 0.126688i
\(202\) 0 0
\(203\) −14.7361 10.7064i −1.03427 0.751441i
\(204\) 0 0
\(205\) −1.21885 + 3.75123i −0.0851280 + 0.261997i
\(206\) 0 0
\(207\) 14.9443 10.8576i 1.03870 0.754659i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 18.6803 13.5721i 1.28601 0.934339i 0.286291 0.958143i \(-0.407578\pi\)
0.999717 + 0.0238035i \(0.00757760\pi\)
\(212\) 0 0
\(213\) 1.01722 3.13068i 0.0696988 0.214511i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5.16312 + 15.8904i 0.350495 + 1.07871i
\(218\) 0 0
\(219\) −4.61803 −0.312058
\(220\) 0 0
\(221\) 21.3262 1.43456
\(222\) 0 0
\(223\) −5.82624 17.9313i −0.390154 1.20077i −0.932672 0.360726i \(-0.882529\pi\)
0.542518 0.840044i \(-0.317471\pi\)
\(224\) 0 0
\(225\) −10.6631 7.74721i −0.710875 0.516481i
\(226\) 0 0
\(227\) −6.59017 + 20.2825i −0.437405 + 1.34619i 0.453197 + 0.891410i \(0.350283\pi\)
−0.890602 + 0.454784i \(0.849717\pi\)
\(228\) 0 0
\(229\) 13.9721 10.1514i 0.923305 0.670820i −0.0210397 0.999779i \(-0.506698\pi\)
0.944344 + 0.328958i \(0.106698\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.73607 2.71441i 0.244758 0.177827i −0.458642 0.888621i \(-0.651664\pi\)
0.703400 + 0.710794i \(0.251664\pi\)
\(234\) 0 0
\(235\) 0.690983 2.12663i 0.0450748 0.138726i
\(236\) 0 0
\(237\) 4.28115 + 3.11044i 0.278091 + 0.202045i
\(238\) 0 0
\(239\) −2.64590 8.14324i −0.171149 0.526742i 0.828288 0.560303i \(-0.189315\pi\)
−0.999437 + 0.0335607i \(0.989315\pi\)
\(240\) 0 0
\(241\) −3.52786 −0.227250 −0.113625 0.993524i \(-0.536246\pi\)
−0.113625 + 0.993524i \(0.536246\pi\)
\(242\) 0 0
\(243\) −9.65248 −0.619207
\(244\) 0 0
\(245\) 0.218847 + 0.673542i 0.0139816 + 0.0430310i
\(246\) 0 0
\(247\) 10.6631 + 7.74721i 0.678478 + 0.492943i
\(248\) 0 0
\(249\) −1.89261 + 5.82485i −0.119939 + 0.369135i
\(250\) 0 0
\(251\) −0.972136 + 0.706298i −0.0613607 + 0.0445811i −0.618043 0.786144i \(-0.712074\pi\)
0.556682 + 0.830726i \(0.312074\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −0.881966 + 0.640786i −0.0552309 + 0.0401276i
\(256\) 0 0
\(257\) −4.97214 + 15.3027i −0.310153 + 0.954554i 0.667550 + 0.744565i \(0.267343\pi\)
−0.977704 + 0.209989i \(0.932657\pi\)
\(258\) 0 0
\(259\) 11.2082 + 8.14324i 0.696444 + 0.505996i
\(260\) 0 0
\(261\) 5.62868 + 17.3233i 0.348406 + 1.07228i
\(262\) 0 0
\(263\) 29.8885 1.84301 0.921503 0.388371i \(-0.126962\pi\)
0.921503 + 0.388371i \(0.126962\pi\)
\(264\) 0 0
\(265\) 4.38197 0.269182
\(266\) 0 0
\(267\) 1.00000 + 3.07768i 0.0611990 + 0.188351i
\(268\) 0 0
\(269\) 10.4443 + 7.58821i 0.636798 + 0.462661i 0.858749 0.512397i \(-0.171242\pi\)
−0.221950 + 0.975058i \(0.571242\pi\)
\(270\) 0 0
\(271\) −4.40983 + 13.5721i −0.267878 + 0.824444i 0.723138 + 0.690703i \(0.242699\pi\)
−0.991016 + 0.133741i \(0.957301\pi\)
\(272\) 0 0
\(273\) 4.07295 2.95917i 0.246506 0.179097i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.97214 + 1.43284i −0.118494 + 0.0860911i −0.645454 0.763799i \(-0.723332\pi\)
0.526960 + 0.849890i \(0.323332\pi\)
\(278\) 0 0
\(279\) 5.16312 15.8904i 0.309108 0.951336i
\(280\) 0 0
\(281\) 9.44427 + 6.86167i 0.563398 + 0.409333i 0.832701 0.553723i \(-0.186793\pi\)
−0.269303 + 0.963056i \(0.586793\pi\)
\(282\) 0 0
\(283\) −2.64590 8.14324i −0.157282 0.484065i 0.841103 0.540875i \(-0.181907\pi\)
−0.998385 + 0.0568103i \(0.981907\pi\)
\(284\) 0 0
\(285\) −0.673762 −0.0399102
\(286\) 0 0
\(287\) 18.2148 1.07518
\(288\) 0 0
\(289\) 1.33688 + 4.11450i 0.0786401 + 0.242029i
\(290\) 0 0
\(291\) 1.71885 + 1.24882i 0.100761 + 0.0732069i
\(292\) 0 0
\(293\) −1.97214 + 6.06961i −0.115213 + 0.354590i −0.991991 0.126305i \(-0.959688\pi\)
0.876778 + 0.480895i \(0.159688\pi\)
\(294\) 0 0
\(295\) 5.04508 3.66547i 0.293736 0.213412i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 24.1803 17.5680i 1.39839 1.01599i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.10081 + 1.52633i 0.120689 + 0.0876854i
\(304\) 0 0
\(305\) −0.881966 2.71441i −0.0505012 0.155427i
\(306\) 0 0
\(307\) −18.4721 −1.05426 −0.527130 0.849785i \(-0.676732\pi\)
−0.527130 + 0.849785i \(0.676732\pi\)
\(308\) 0 0
\(309\) 0.437694 0.0248995
\(310\) 0 0
\(311\) −2.40983 7.41669i −0.136649 0.420562i 0.859194 0.511650i \(-0.170966\pi\)
−0.995843 + 0.0910879i \(0.970966\pi\)
\(312\) 0 0
\(313\) −24.6803 17.9313i −1.39502 1.01354i −0.995294 0.0969012i \(-0.969107\pi\)
−0.399721 0.916637i \(-0.630893\pi\)
\(314\) 0 0
\(315\) 1.55573 4.78804i 0.0876553 0.269775i
\(316\) 0 0
\(317\) −4.50000 + 3.26944i −0.252745 + 0.183630i −0.706943 0.707271i \(-0.749926\pi\)
0.454197 + 0.890901i \(0.349926\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.64590 + 1.92236i −0.147680 + 0.107296i
\(322\) 0 0
\(323\) −4.07295 + 12.5352i −0.226625 + 0.697480i
\(324\) 0 0
\(325\) −17.2533 12.5352i −0.957040 0.695330i
\(326\) 0 0
\(327\) −0.416408 1.28157i −0.0230274 0.0708711i
\(328\) 0 0
\(329\) −10.3262 −0.569304
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) −4.28115 13.1760i −0.234606 0.722042i
\(334\) 0 0
\(335\) 2.47214 + 1.79611i 0.135067 + 0.0981321i
\(336\) 0 0
\(337\) 1.55573 4.78804i 0.0847459 0.260821i −0.899700 0.436509i \(-0.856215\pi\)
0.984446 + 0.175688i \(0.0562148\pi\)
\(338\) 0 0
\(339\) −0.791796 + 0.575274i −0.0430045 + 0.0312446i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −13.5172 + 9.82084i −0.729861 + 0.530275i
\(344\) 0 0
\(345\) −0.472136 + 1.45309i −0.0254189 + 0.0782315i
\(346\) 0 0
\(347\) 5.50000 + 3.99598i 0.295255 + 0.214516i 0.725544 0.688176i \(-0.241588\pi\)
−0.430289 + 0.902691i \(0.641588\pi\)
\(348\) 0 0
\(349\) 0.208204 + 0.640786i 0.0111449 + 0.0343005i 0.956474 0.291817i \(-0.0942597\pi\)
−0.945329 + 0.326117i \(0.894260\pi\)
\(350\) 0 0
\(351\) −10.3262 −0.551174
\(352\) 0 0
\(353\) 2.94427 0.156708 0.0783539 0.996926i \(-0.475034\pi\)
0.0783539 + 0.996926i \(0.475034\pi\)
\(354\) 0 0
\(355\) −1.64590 5.06555i −0.0873552 0.268852i
\(356\) 0 0
\(357\) 4.07295 + 2.95917i 0.215563 + 0.156616i
\(358\) 0 0
\(359\) 2.64590 8.14324i 0.139645 0.429784i −0.856638 0.515917i \(-0.827451\pi\)
0.996284 + 0.0861336i \(0.0274512\pi\)
\(360\) 0 0
\(361\) 8.78115 6.37988i 0.462166 0.335783i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.04508 + 4.39201i −0.316414 + 0.229888i
\(366\) 0 0
\(367\) 8.29837 25.5398i 0.433172 1.33317i −0.461777 0.886996i \(-0.652788\pi\)
0.894949 0.446169i \(-0.147212\pi\)
\(368\) 0 0
\(369\) −14.7361 10.7064i −0.767129 0.557352i
\(370\) 0 0
\(371\) −6.25329 19.2456i −0.324655 0.999184i
\(372\) 0 0
\(373\) 33.4164 1.73024 0.865118 0.501568i \(-0.167243\pi\)
0.865118 + 0.501568i \(0.167243\pi\)
\(374\) 0 0
\(375\) 2.27051 0.117249
\(376\) 0 0
\(377\) 9.10739 + 28.0297i 0.469054 + 1.44360i
\(378\) 0 0
\(379\) −7.97214 5.79210i −0.409501 0.297520i 0.363899 0.931439i \(-0.381445\pi\)
−0.773400 + 0.633919i \(0.781445\pi\)
\(380\) 0 0
\(381\) −0.545085 + 1.67760i −0.0279255 + 0.0859460i
\(382\) 0 0
\(383\) −25.1525 + 18.2743i −1.28523 + 0.933775i −0.999698 0.0245933i \(-0.992171\pi\)
−0.285534 + 0.958369i \(0.592171\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.680340 + 2.09387i −0.0344946 + 0.106163i −0.966821 0.255454i \(-0.917775\pi\)
0.932327 + 0.361617i \(0.117775\pi\)
\(390\) 0 0
\(391\) 24.1803 + 17.5680i 1.22285 + 0.888454i
\(392\) 0 0
\(393\) 2.18034 + 6.71040i 0.109984 + 0.338495i
\(394\) 0 0
\(395\) 8.56231 0.430816
\(396\) 0 0
\(397\) −20.8328 −1.04557 −0.522785 0.852465i \(-0.675107\pi\)
−0.522785 + 0.852465i \(0.675107\pi\)
\(398\) 0 0
\(399\) 0.961493 + 2.95917i 0.0481348 + 0.148144i
\(400\) 0 0
\(401\) 28.9164 + 21.0090i 1.44402 + 1.04914i 0.987184 + 0.159587i \(0.0510162\pi\)
0.456833 + 0.889553i \(0.348984\pi\)
\(402\) 0 0
\(403\) 8.35410 25.7113i 0.416147 1.28077i
\(404\) 0 0
\(405\) −3.85410 + 2.80017i −0.191512 + 0.139142i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −11.2082 + 8.14324i −0.554210 + 0.402657i −0.829335 0.558751i \(-0.811281\pi\)
0.275125 + 0.961408i \(0.411281\pi\)
\(410\) 0 0
\(411\) 1.27458 3.92274i 0.0628702 0.193494i
\(412\) 0 0
\(413\) −23.2984 16.9273i −1.14644 0.832936i
\(414\) 0 0
\(415\) 3.06231 + 9.42481i 0.150323 + 0.462646i
\(416\) 0 0
\(417\) −3.27051 −0.160158
\(418\) 0 0
\(419\) −31.4164 −1.53479 −0.767396 0.641173i \(-0.778448\pi\)
−0.767396 + 0.641173i \(0.778448\pi\)
\(420\) 0 0
\(421\) 7.50000 + 23.0826i 0.365528 + 1.12498i 0.949650 + 0.313313i \(0.101439\pi\)
−0.584122 + 0.811666i \(0.698561\pi\)
\(422\) 0 0
\(423\) 8.35410 + 6.06961i 0.406190 + 0.295115i
\(424\) 0 0
\(425\) 6.59017 20.2825i 0.319670 0.983844i
\(426\) 0 0
\(427\) −10.6631 + 7.74721i −0.516024 + 0.374914i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.1525 + 19.0009i −1.25972 + 0.915240i −0.998744 0.0501047i \(-0.984044\pi\)
−0.260976 + 0.965345i \(0.584044\pi\)
\(432\) 0 0
\(433\) −11.2639 + 34.6668i −0.541310 + 1.66598i 0.188295 + 0.982112i \(0.439704\pi\)
−0.729605 + 0.683868i \(0.760296\pi\)
\(434\) 0 0
\(435\) −1.21885 0.885544i −0.0584392 0.0424586i
\(436\) 0 0
\(437\) 5.70820 + 17.5680i 0.273060 + 0.840394i
\(438\) 0 0
\(439\) −11.4164 −0.544875 −0.272438 0.962173i \(-0.587830\pi\)
−0.272438 + 0.962173i \(0.587830\pi\)
\(440\) 0 0
\(441\) −3.27051 −0.155739
\(442\) 0 0
\(443\) −9.35410 28.7890i −0.444427 1.36781i −0.883111 0.469164i \(-0.844555\pi\)
0.438684 0.898641i \(-0.355445\pi\)
\(444\) 0 0
\(445\) 4.23607 + 3.07768i 0.200809 + 0.145896i
\(446\) 0 0
\(447\) 0.545085 1.67760i 0.0257816 0.0793477i
\(448\) 0 0
\(449\) −4.50000 + 3.26944i −0.212368 + 0.154294i −0.688885 0.724871i \(-0.741899\pi\)
0.476516 + 0.879166i \(0.341899\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 4.40983 3.20393i 0.207192 0.150534i
\(454\) 0 0
\(455\) 2.51722 7.74721i 0.118009 0.363195i
\(456\) 0 0
\(457\) −11.2082 8.14324i −0.524298 0.380925i 0.293923 0.955829i \(-0.405039\pi\)
−0.818220 + 0.574905i \(0.805039\pi\)
\(458\) 0 0
\(459\) −3.19098 9.82084i −0.148942 0.458397i
\(460\) 0 0
\(461\) −37.7771 −1.75945 −0.879727 0.475479i \(-0.842275\pi\)
−0.879727 + 0.475479i \(0.842275\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 0 0
\(465\) 0.427051 + 1.31433i 0.0198040 + 0.0609505i
\(466\) 0 0
\(467\) −22.9164 16.6497i −1.06044 0.770458i −0.0862742 0.996271i \(-0.527496\pi\)
−0.974171 + 0.225813i \(0.927496\pi\)
\(468\) 0 0
\(469\) 4.36068 13.4208i 0.201357 0.619715i
\(470\) 0 0
\(471\) −0.791796 + 0.575274i −0.0364840 + 0.0265072i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 10.6631 7.74721i 0.489257 0.355466i
\(476\) 0 0
\(477\) −6.25329 + 19.2456i −0.286318 + 0.881198i
\(478\) 0 0
\(479\) −9.44427 6.86167i −0.431520 0.313517i 0.350737 0.936474i \(-0.385931\pi\)
−0.782256 + 0.622957i \(0.785931\pi\)
\(480\) 0 0
\(481\) −6.92705 21.3193i −0.315846 0.972075i
\(482\) 0 0
\(483\) 7.05573 0.321047
\(484\) 0 0
\(485\) 3.43769 0.156098
\(486\) 0 0
\(487\) 3.40983 + 10.4944i 0.154514 + 0.475546i 0.998111 0.0614309i \(-0.0195664\pi\)
−0.843597 + 0.536977i \(0.819566\pi\)
\(488\) 0 0
\(489\) −1.33688 0.971301i −0.0604559 0.0439237i
\(490\) 0 0
\(491\) 2.64590 8.14324i 0.119408 0.367499i −0.873433 0.486944i \(-0.838112\pi\)
0.992841 + 0.119445i \(0.0381115\pi\)
\(492\) 0 0
\(493\) −23.8435 + 17.3233i −1.07386 + 0.780202i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −19.8992 + 14.4576i −0.892601 + 0.648512i
\(498\) 0 0
\(499\) 3.17376 9.76784i 0.142077 0.437268i −0.854546 0.519375i \(-0.826165\pi\)
0.996624 + 0.0821066i \(0.0261648\pi\)
\(500\) 0 0
\(501\) 2.10081 + 1.52633i 0.0938574 + 0.0681914i
\(502\) 0 0
\(503\) −0.465558 1.43284i −0.0207582 0.0638872i 0.940141 0.340786i \(-0.110693\pi\)
−0.960899 + 0.276899i \(0.910693\pi\)
\(504\) 0 0
\(505\) 4.20163 0.186970
\(506\) 0 0
\(507\) −3.18034 −0.141244
\(508\) 0 0
\(509\) 9.79180 + 30.1360i 0.434014 + 1.33576i 0.894094 + 0.447880i \(0.147821\pi\)
−0.460080 + 0.887877i \(0.652179\pi\)
\(510\) 0 0
\(511\) 27.9164 + 20.2825i 1.23495 + 0.897243i
\(512\) 0 0
\(513\) 1.97214 6.06961i 0.0870719 0.267980i
\(514\) 0 0
\(515\) 0.572949 0.416272i 0.0252472 0.0183431i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −5.50000 + 3.99598i −0.241423 + 0.175404i
\(520\) 0 0
\(521\) 7.20820 22.1846i 0.315797 0.971924i −0.659628 0.751592i \(-0.729286\pi\)
0.975425 0.220331i \(-0.0707139\pi\)
\(522\) 0 0
\(523\) −22.2082 16.1352i −0.971097 0.705543i −0.0153956 0.999881i \(-0.504901\pi\)
−0.955701 + 0.294338i \(0.904901\pi\)
\(524\) 0 0
\(525\) −1.55573 4.78804i −0.0678975 0.208967i
\(526\) 0 0
\(527\) 27.0344 1.17764
\(528\) 0 0
\(529\) 18.8885 0.821241
\(530\) 0 0
\(531\) 8.89919 + 27.3889i 0.386192 + 1.18858i
\(532\) 0 0
\(533\) −23.8435 17.3233i −1.03277 0.750355i
\(534\) 0 0
\(535\) −1.63525 + 5.03280i −0.0706982 + 0.217587i
\(536\) 0 0
\(537\) −0.118034 + 0.0857567i −0.00509354 + 0.00370068i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −20.4443 + 14.8536i −0.878968 + 0.638608i −0.932978 0.359933i \(-0.882800\pi\)
0.0540103 + 0.998540i \(0.482800\pi\)
\(542\) 0 0
\(543\) −0.0729490 + 0.224514i −0.00313054 + 0.00963482i
\(544\) 0 0
\(545\) −1.76393 1.28157i −0.0755585 0.0548965i
\(546\) 0 0
\(547\) −7.00658 21.5640i −0.299580 0.922011i −0.981645 0.190720i \(-0.938918\pi\)
0.682065 0.731292i \(-0.261082\pi\)
\(548\) 0 0
\(549\) 13.1803 0.562523
\(550\) 0 0
\(551\) −18.2148 −0.775976
\(552\) 0 0
\(553\) −12.2188 37.6057i −0.519598 1.59916i
\(554\) 0 0
\(555\) 0.927051 + 0.673542i 0.0393511 + 0.0285903i
\(556\) 0 0
\(557\) −3.31966 + 10.2169i −0.140659 + 0.432902i −0.996427 0.0844563i \(-0.973085\pi\)
0.855769 + 0.517359i \(0.173085\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.9721 9.42481i 0.546710 0.397208i −0.279861 0.960041i \(-0.590288\pi\)
0.826571 + 0.562832i \(0.190288\pi\)
\(564\) 0 0
\(565\) −0.489357 + 1.50609i −0.0205874 + 0.0633615i
\(566\) 0 0
\(567\) 17.7984 + 12.9313i 0.747461 + 0.543063i
\(568\) 0 0
\(569\) 10.7918 + 33.2137i 0.452416 + 1.39239i 0.874143 + 0.485669i \(0.161424\pi\)
−0.421727 + 0.906723i \(0.638576\pi\)
\(570\) 0 0
\(571\) −18.4721 −0.773035 −0.386517 0.922282i \(-0.626322\pi\)
−0.386517 + 0.922282i \(0.626322\pi\)
\(572\) 0 0
\(573\) 1.15905 0.0484202
\(574\) 0 0
\(575\) −9.23607 28.4257i −0.385171 1.18543i
\(576\) 0 0
\(577\) 20.1525 + 14.6416i 0.838959 + 0.609539i 0.922080 0.387000i \(-0.126489\pi\)
−0.0831210 + 0.996539i \(0.526489\pi\)
\(578\) 0 0
\(579\) −0.287731 + 0.885544i −0.0119577 + 0.0368020i
\(580\) 0 0
\(581\) 37.0238 26.8994i 1.53601 1.11597i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −6.59017 + 4.78804i −0.272470 + 0.197961i
\(586\) 0 0
\(587\) −0.354102 + 1.08981i −0.0146154 + 0.0449814i −0.958098 0.286440i \(-0.907528\pi\)
0.943483 + 0.331421i \(0.107528\pi\)
\(588\) 0 0
\(589\) 13.5172 + 9.82084i 0.556967 + 0.404660i
\(590\) 0 0
\(591\) 1.76393 + 5.42882i 0.0725585 + 0.223312i
\(592\) 0 0
\(593\) −10.5836 −0.434616 −0.217308 0.976103i \(-0.569728\pi\)
−0.217308 + 0.976103i \(0.569728\pi\)
\(594\) 0 0
\(595\) 8.14590 0.333949
\(596\) 0 0
\(597\) −2.00000 6.15537i −0.0818546 0.251922i
\(598\) 0 0
\(599\) 0.791796 + 0.575274i 0.0323519 + 0.0235050i 0.603844 0.797103i \(-0.293635\pi\)
−0.571492 + 0.820608i \(0.693635\pi\)
\(600\) 0 0
\(601\) −4.15248 + 12.7800i −0.169383 + 0.521307i −0.999333 0.0365312i \(-0.988369\pi\)
0.829949 + 0.557839i \(0.188369\pi\)
\(602\) 0 0
\(603\) −11.4164 + 8.29451i −0.464912 + 0.337778i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 33.6246 24.4297i 1.36478 0.991571i 0.366656 0.930356i \(-0.380503\pi\)
0.998125 0.0612149i \(-0.0194975\pi\)
\(608\) 0 0
\(609\) −2.14996 + 6.61691i −0.0871209 + 0.268131i
\(610\) 0 0
\(611\) 13.5172 + 9.82084i 0.546848 + 0.397308i
\(612\) 0 0
\(613\) 9.44427 + 29.0665i 0.381451 + 1.17398i 0.939023 + 0.343856i \(0.111733\pi\)
−0.557572 + 0.830129i \(0.688267\pi\)
\(614\) 0 0
\(615\) 1.50658 0.0607511
\(616\) 0 0
\(617\) −16.4721 −0.663143 −0.331572 0.943430i \(-0.607579\pi\)
−0.331572 + 0.943430i \(0.607579\pi\)
\(618\) 0 0
\(619\) 2.06231 + 6.34712i 0.0828911 + 0.255112i 0.983909 0.178669i \(-0.0571791\pi\)
−0.901018 + 0.433781i \(0.857179\pi\)
\(620\) 0 0
\(621\) −11.7082 8.50651i −0.469834 0.341354i
\(622\) 0 0
\(623\) 7.47214 22.9969i 0.299365 0.921350i
\(624\) 0 0
\(625\) −15.7082 + 11.4127i −0.628328 + 0.456507i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.1353 13.1760i 0.723100 0.525363i
\(630\) 0 0
\(631\) −5.29837 + 16.3067i −0.210925 + 0.649160i 0.788493 + 0.615044i \(0.210862\pi\)
−0.999418 + 0.0341164i \(0.989138\pi\)
\(632\) 0 0
\(633\) −7.13525 5.18407i −0.283601 0.206048i
\(634\) 0 0
\(635\) 0.881966 + 2.71441i 0.0349998 + 0.107718i
\(636\) 0 0
\(637\) −5.29180 −0.209669
\(638\) 0 0
\(639\) 24.5967 0.973032
\(640\) 0 0
\(641\) 4.91641 + 15.1311i 0.194186 + 0.597644i 0.999985 + 0.00545483i \(0.00173634\pi\)
−0.805799 + 0.592190i \(0.798264\pi\)
\(642\) 0 0
\(643\) −17.2082 12.5025i −0.678625 0.493050i 0.194276 0.980947i \(-0.437764\pi\)
−0.872901 + 0.487897i \(0.837764\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.9164 21.0090i 1.13682 0.825949i 0.150148 0.988664i \(-0.452025\pi\)
0.986673 + 0.162714i \(0.0520249\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 5.16312 3.75123i 0.202359 0.147022i
\(652\) 0 0
\(653\) 7.20820 22.1846i 0.282079 0.868149i −0.705180 0.709028i \(-0.749134\pi\)
0.987259 0.159121i \(-0.0508661\pi\)
\(654\) 0 0
\(655\) 9.23607 + 6.71040i 0.360883 + 0.262197i
\(656\) 0 0
\(657\) −10.6631 32.8177i −0.416008 1.28034i
\(658\) 0 0
\(659\) 4.36068 0.169868 0.0849340 0.996387i \(-0.472932\pi\)
0.0849340 + 0.996387i \(0.472932\pi\)
\(660\) 0 0
\(661\) 14.3607 0.558566 0.279283 0.960209i \(-0.409903\pi\)
0.279283 + 0.960209i \(0.409903\pi\)
\(662\) 0 0
\(663\) −2.51722 7.74721i −0.0977608 0.300877i
\(664\) 0 0
\(665\) 4.07295 + 2.95917i 0.157942 + 0.114752i
\(666\) 0 0
\(667\) −12.7639 + 39.2833i −0.494221 + 1.52106i
\(668\) 0 0
\(669\) −5.82624 + 4.23301i −0.225255 + 0.163658i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 24.3885 17.7193i 0.940109 0.683029i −0.00833769 0.999965i \(-0.502654\pi\)
0.948447 + 0.316936i \(0.102654\pi\)
\(674\) 0 0
\(675\) −3.19098 + 9.82084i −0.122821 + 0.378004i
\(676\) 0 0
\(677\) 27.9164 + 20.2825i 1.07291 + 0.779518i 0.976434 0.215817i \(-0.0692414\pi\)
0.0964808 + 0.995335i \(0.469241\pi\)
\(678\) 0 0
\(679\) −4.90576 15.0984i −0.188266 0.579423i
\(680\) 0 0
\(681\) 8.14590 0.312151
\(682\) 0 0
\(683\) 16.9443 0.648355 0.324177 0.945996i \(-0.394913\pi\)
0.324177 + 0.945996i \(0.394913\pi\)
\(684\) 0 0
\(685\) −2.06231 6.34712i −0.0787967 0.242511i
\(686\) 0 0
\(687\) −5.33688 3.87747i −0.203615 0.147935i
\(688\) 0 0
\(689\) −10.1180 + 31.1401i −0.385466 + 1.18634i
\(690\) 0 0
\(691\) 10.4443 7.58821i 0.397319 0.288669i −0.371129 0.928581i \(-0.621029\pi\)
0.768448 + 0.639912i \(0.221029\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.28115 + 3.11044i −0.162393 + 0.117986i
\(696\) 0 0
\(697\) 9.10739 28.0297i 0.344967 1.06170i
\(698\) 0 0
\(699\) −1.42705 1.03681i −0.0539760 0.0392159i
\(700\) 0 0
\(701\) −0.624612 1.92236i −0.0235913 0.0726064i 0.938568 0.345095i \(-0.112153\pi\)
−0.962159 + 0.272489i \(0.912153\pi\)
\(702\) 0 0
\(703\) 13.8541 0.522517
\(704\) 0 0
\(705\) −0.854102 −0.0321673
\(706\) 0 0
\(707\) −5.99593 18.4536i −0.225500 0.694019i
\(708\) 0 0
\(709\) −6.20820 4.51052i −0.233154 0.169396i 0.465074 0.885272i \(-0.346028\pi\)
−0.698228 + 0.715876i \(0.746028\pi\)
\(710\) 0 0
\(711\) −12.2188 + 37.6057i −0.458243 + 1.41033i
\(712\) 0 0
\(713\) 30.6525 22.2703i 1.14794 0.834030i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2.64590 + 1.92236i −0.0988129 + 0.0717918i
\(718\) 0 0
\(719\) −1.77051 + 5.44907i −0.0660289 + 0.203216i −0.978628 0.205640i \(-0.934072\pi\)
0.912599 + 0.408856i \(0.134072\pi\)
\(720\) 0 0
\(721\) −2.64590 1.92236i −0.0985384 0.0715923i
\(722\) 0 0
\(723\) 0.416408 + 1.28157i 0.0154864 + 0.0476622i
\(724\) 0 0
\(725\) 29.4721 1.09457
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) −6.00658 18.4863i −0.222466 0.684679i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −4.15248 + 12.7800i −0.153375 + 0.472040i −0.997993 0.0633300i \(-0.979828\pi\)
0.844617 + 0.535370i \(0.179828\pi\)
\(734\) 0 0
\(735\) 0.218847 0.159002i 0.00807230 0.00586487i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −29.6803 + 21.5640i −1.09181 + 0.793246i −0.979704 0.200451i \(-0.935759\pi\)
−0.112105 + 0.993696i \(0.535759\pi\)
\(740\) 0 0
\(741\) 1.55573 4.78804i 0.0571511 0.175893i
\(742\) 0 0
\(743\) −27.9164 20.2825i −1.02415 0.744091i −0.0570235 0.998373i \(-0.518161\pi\)
−0.967130 + 0.254282i \(0.918161\pi\)
\(744\) 0 0
\(745\) −0.881966 2.71441i −0.0323127 0.0994484i
\(746\) 0 0
\(747\) −45.7639 −1.67441
\(748\) 0 0
\(749\) 24.4377 0.892934
\(750\) 0 0
\(751\) 5.59017 + 17.2048i 0.203988 + 0.627811i 0.999753 + 0.0222059i \(0.00706893\pi\)
−0.795765 + 0.605605i \(0.792931\pi\)
\(752\) 0 0
\(753\) 0.371323 + 0.269782i 0.0135318 + 0.00983140i
\(754\) 0 0
\(755\) 2.72542 8.38800i 0.0991884 0.305270i
\(756\) 0 0
\(757\) 12.7361 9.25330i 0.462900 0.336317i −0.331768 0.943361i \(-0.607645\pi\)
0.794668 + 0.607044i \(0.207645\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 37.1525 26.9929i 1.34678 0.978490i 0.347611 0.937639i \(-0.386993\pi\)
0.999165 0.0408513i \(-0.0130070\pi\)
\(762\) 0 0
\(763\) −3.11146 + 9.57608i −0.112642 + 0.346677i
\(764\) 0 0
\(765\) −6.59017 4.78804i −0.238268 0.173112i
\(766\) 0 0
\(767\) 14.3992 + 44.3161i 0.519925 + 1.60016i
\(768\) 0 0
\(769\) −10.5836 −0.381654 −0.190827 0.981624i \(-0.561117\pi\)
−0.190827 + 0.981624i \(0.561117\pi\)
\(770\) 0 0
\(771\) 6.14590 0.221339
\(772\) 0 0
\(773\) −3.91641 12.0535i −0.140863 0.433533i 0.855592 0.517650i \(-0.173193\pi\)
−0.996456 + 0.0841170i \(0.973193\pi\)
\(774\) 0 0
\(775\) −21.8713 15.8904i −0.785641 0.570802i
\(776\) 0 0
\(777\) 1.63525 5.03280i 0.0586644 0.180551i
\(778\) 0 0
\(779\) 14.7361 10.7064i 0.527974 0.383596i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 11.5451 8.38800i 0.412588 0.299762i
\(784\) 0 0
\(785\) −0.489357 + 1.50609i −0.0174659 + 0.0537545i
\(786\) 0 0
\(787\) 26.1525 + 19.0009i 0.932235 + 0.677308i 0.946539 0.322589i \(-0.104553\pi\)
−0.0143040 + 0.999898i \(0.504553\pi\)
\(788\) 0 0
\(789\) −3.52786 10.8576i −0.125595 0.386543i
\(790\) 0 0
\(791\) 7.31308 0.260023
\(792\) 0 0
\(793\) 21.3262 0.757317
\(794\) 0 0
\(795\) −0.517221 1.59184i −0.0183439 0.0564568i
\(796\) 0 0
\(797\) 8.73607 + 6.34712i 0.309447 + 0.224827i 0.731659 0.681670i \(-0.238746\pi\)
−0.422212 + 0.906497i \(0.638746\pi\)
\(798\) 0 0
\(799\) −5.16312 + 15.8904i −0.182658 + 0.562164i
\(800\) 0 0
\(801\) −19.5623 + 14.2128i −0.691200 + 0.502186i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 9.23607 6.71040i 0.325529 0.236510i
\(806\) 0 0
\(807\) 1.52380 4.68977i 0.0536403 0.165088i
\(808\) 0 0
\(809\) 37.1525 + 26.9929i 1.30621 + 0.949018i 0.999996 0.00294392i \(-0.000937079\pi\)
0.306216 + 0.951962i \(0.400937\pi\)
\(810\) 0 0
\(811\) 8.77051 + 26.9929i 0.307974 + 0.947847i 0.978551 + 0.206007i \(0.0660469\pi\)
−0.670576 + 0.741841i \(0.733953\pi\)
\(812\) 0 0
\(813\) 5.45085 0.191170
\(814\) 0 0
\(815\) −2.67376 −0.0936578
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 30.4336 + 22.1113i 1.06344 + 0.772632i
\(820\) 0 0
\(821\) 5.91641 18.2088i 0.206484 0.635493i −0.793165 0.609007i \(-0.791568\pi\)
0.999649 0.0264860i \(-0.00843173\pi\)
\(822\) 0 0
\(823\) 1.20820 0.877812i 0.0421153 0.0305986i −0.566528 0.824042i \(-0.691714\pi\)
0.608644 + 0.793444i \(0.291714\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.9721 9.42481i 0.451085 0.327733i −0.338939 0.940808i \(-0.610068\pi\)
0.790024 + 0.613076i \(0.210068\pi\)
\(828\) 0 0
\(829\) −14.7918 + 45.5245i −0.513740 + 1.58113i 0.271822 + 0.962348i \(0.412374\pi\)
−0.785562 + 0.618783i \(0.787626\pi\)
\(830\) 0 0
\(831\) 0.753289 + 0.547296i 0.0261313 + 0.0189855i
\(832\) 0 0
\(833\) −1.63525 5.03280i −0.0566582 0.174376i
\(834\) 0 0
\(835\) 4.20163 0.145403
\(836\) 0 0
\(837\) −13.0902 −0.452462
\(838\) 0 0
\(839\) −0.118034 0.363271i −0.00407499 0.0125415i 0.948998 0.315281i \(-0.102099\pi\)
−0.953073 + 0.302740i \(0.902099\pi\)
\(840\) 0 0
\(841\) −9.48936 6.89442i −0.327219 0.237739i
\(842\) 0 0
\(843\) 1.37790 4.24074i 0.0474574 0.146059i
\(844\) 0 0
\(845\) −4.16312 + 3.02468i −0.143216 + 0.104052i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.64590 + 1.92236i −0.0908070 + 0.0659751i
\(850\) 0 0
\(851\) 9.70820 29.8788i 0.332793 1.02423i
\(852\) 0 0
\(853\) −5.50000 3.99598i −0.188316 0.136820i 0.489632 0.871929i \(-0.337131\pi\)
−0.677949 + 0.735109i \(0.737131\pi\)
\(854\) 0 0
\(855\) −1.55573 4.78804i −0.0532048 0.163747i
\(856\) 0 0
\(857\) 14.9443 0.510487 0.255243 0.966877i \(-0.417844\pi\)
0.255243 + 0.966877i \(0.417844\pi\)
\(858\) 0 0
\(859\) −48.9443 −1.66996 −0.834979 0.550283i \(-0.814520\pi\)
−0.834979 + 0.550283i \(0.814520\pi\)
\(860\) 0 0
\(861\) −2.14996 6.61691i −0.0732706 0.225504i
\(862\) 0 0
\(863\) −21.2082 15.4087i −0.721936 0.524517i 0.165066 0.986282i \(-0.447216\pi\)
−0.887002 + 0.461766i \(0.847216\pi\)
\(864\) 0 0
\(865\) −3.39919 + 10.4616i −0.115576 + 0.355706i
\(866\) 0 0
\(867\) 1.33688 0.971301i 0.0454029 0.0329871i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −18.4721 + 13.4208i −0.625904 + 0.454746i
\(872\) 0 0
\(873\) −4.90576 + 15.0984i −0.166035 + 0.511003i
\(874\) 0 0
\(875\) −13.7254 9.97210i −0.464004 0.337119i
\(876\) 0 0
\(877\) −13.3885 41.2057i −0.452099 1.39142i −0.874507 0.485012i \(-0.838815\pi\)
0.422408 0.906406i \(-0.361185\pi\)
\(878\) 0 0
\(879\) 2.43769 0.0822214
\(880\) 0 0
\(881\) −19.8885 −0.670062 −0.335031 0.942207i \(-0.608747\pi\)
−0.335031 + 0.942207i \(0.608747\pi\)
\(882\) 0 0
\(883\) 16.0623 + 49.4347i 0.540540 + 1.66361i 0.731365 + 0.681986i \(0.238883\pi\)
−0.190826 + 0.981624i \(0.561117\pi\)
\(884\) 0 0
\(885\) −1.92705 1.40008i −0.0647771 0.0470633i
\(886\) 0 0
\(887\) 8.35410 25.7113i 0.280503 0.863300i −0.707207 0.707006i \(-0.750045\pi\)
0.987711 0.156294i \(-0.0499548\pi\)
\(888\) 0 0
\(889\) 10.6631 7.74721i 0.357630 0.259833i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.35410 + 6.06961i −0.279559 + 0.203112i
\(894\) 0 0
\(895\) −0.0729490 + 0.224514i −0.00243842 + 0.00750467i
\(896\) 0 0
\(897\) −9.23607 6.71040i −0.308383 0.224054i
\(898\) 0 0
\(899\) 11.5451 + 35.5321i 0.385050 + 1.18506i
\(900\) 0 0
\(901\) −32.7426 −1.09082
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.118034 + 0.363271i 0.00392358 + 0.0120755i
\(906\) 0 0
\(907\) 36.3885 + 26.4378i 1.20826 + 0.877854i 0.995072 0.0991572i \(-0.0316147\pi\)
0.213190 + 0.977011i \(0.431615\pi\)
\(908\) 0 0
\(909\) −5.99593 + 18.4536i −0.198873 + 0.612067i
\(910\) 0 0
\(911\) −14.9721 + 10.8779i −0.496049 + 0.360401i −0.807506 0.589860i \(-0.799183\pi\)
0.311457 + 0.950260i \(0.399183\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −0.881966 + 0.640786i −0.0291569 + 0.0211837i
\(916\) 0 0
\(917\) 16.2918 50.1410i 0.538003 1.65580i
\(918\) 0 0
\(919\) −33.6246 24.4297i −1.10917 0.805862i −0.126640 0.991949i \(-0.540419\pi\)
−0.982533 + 0.186087i \(0.940419\pi\)
\(920\) 0 0
\(921\) 2.18034 + 6.71040i 0.0718446 + 0.221115i
\(922\) 0 0
\(923\) 39.7984 1.30998
\(924\) 0 0
\(925\) −22.4164 −0.737047
\(926\) 0 0
\(927\) 1.01064 + 3.11044i 0.0331939 + 0.102160i
\(928\) 0 0
\(929\) −25.1525 18.2743i −0.825226 0.599562i 0.0929787 0.995668i \(-0.470361\pi\)
−0.918205 + 0.396106i \(0.870361\pi\)
\(930\) 0 0
\(931\) 1.01064 3.11044i 0.0331225 0.101941i
\(932\) 0 0
\(933\) −2.40983 + 1.75084i −0.0788943 + 0.0573201i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −11.2082 + 8.14324i −0.366156 + 0.266028i −0.755615 0.655016i \(-0.772662\pi\)
0.389459 + 0.921044i \(0.372662\pi\)
\(938\) 0 0
\(939\) −3.60081 + 11.0822i −0.117508 + 0.361653i
\(940\) 0 0
\(941\) 18.6803 + 13.5721i 0.608962 + 0.442437i 0.849049 0.528315i \(-0.177176\pi\)
−0.240087 + 0.970751i \(0.577176\pi\)
\(942\) 0 0
\(943\) −12.7639 39.2833i −0.415651 1.27924i
\(944\) 0 0
\(945\) −3.94427 −0.128307
\(946\) 0 0
\(947\) 47.7771 1.55255 0.776273 0.630396i \(-0.217108\pi\)
0.776273 + 0.630396i \(0.217108\pi\)
\(948\) 0 0
\(949\) −17.2533 53.1002i −0.560065 1.72370i
\(950\) 0 0
\(951\) 1.71885 + 1.24882i 0.0557374 + 0.0404956i
\(952\) 0 0
\(953\) 14.3197 44.0714i 0.463859 1.42761i −0.396552 0.918012i \(-0.629793\pi\)
0.860411 0.509600i \(-0.170207\pi\)
\(954\) 0 0
\(955\) 1.51722 1.10233i 0.0490961 0.0356704i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −24.9336 + 18.1153i −0.805149 + 0.584975i
\(960\) 0 0
\(961\) 1.01064 3.11044i 0.0326014 0.100337i
\(962\) 0 0
\(963\) −19.7705 14.3641i −0.637096 0.462877i
\(964\) 0 0
\(965\) 0.465558 + 1.43284i 0.0149868 + 0.0461248i
\(966\) 0 0
\(967\) −44.0000 −1.41494 −0.707472 0.706741i \(-0.750165\pi\)
−0.707472 + 0.706741i \(0.750165\pi\)
\(968\) 0 0
\(969\) 5.03444 0.161730
\(970\) 0 0
\(971\) 5.59017 + 17.2048i 0.179397 + 0.552127i 0.999807 0.0196484i \(-0.00625469\pi\)
−0.820410 + 0.571776i \(0.806255\pi\)
\(972\) 0 0
\(973\) 19.7705 + 14.3641i 0.633813 + 0.460492i
\(974\) 0 0
\(975\) −2.51722 + 7.74721i −0.0806156 + 0.248109i
\(976\) 0 0
\(977\) −28.6803 + 20.8375i −0.917565 + 0.666650i −0.942917 0.333028i \(-0.891930\pi\)
0.0253515 + 0.999679i \(0.491930\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 8.14590 5.91834i 0.260079 0.188958i
\(982\) 0 0
\(983\) −1.77051 + 5.44907i −0.0564705 + 0.173798i −0.975313 0.220825i \(-0.929125\pi\)
0.918843 + 0.394624i \(0.129125\pi\)
\(984\) 0 0
\(985\) 7.47214 + 5.42882i 0.238082 + 0.172977i
\(986\) 0 0
\(987\) 1.21885 + 3.75123i 0.0387963 + 0.119403i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 0 0
\(993\) 1.41641 + 4.35926i 0.0449483 + 0.138337i
\(994\) 0 0
\(995\) −8.47214 6.15537i −0.268585 0.195138i
\(996\) 0 0
\(997\) 10.7918 33.2137i 0.341780 1.05189i −0.621506 0.783410i \(-0.713479\pi\)
0.963285 0.268480i \(-0.0865213\pi\)
\(998\) 0 0
\(999\) −8.78115 + 6.37988i −0.277823 + 0.201851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.e.d.245.1 4
11.2 odd 10 484.2.a.b.1.2 2
11.3 even 5 484.2.e.c.269.1 4
11.4 even 5 inner 484.2.e.d.81.1 4
11.5 even 5 484.2.e.c.9.1 4
11.6 odd 10 44.2.e.a.9.1 yes 4
11.7 odd 10 484.2.e.e.81.1 4
11.8 odd 10 44.2.e.a.5.1 4
11.9 even 5 484.2.a.c.1.2 2
11.10 odd 2 484.2.e.e.245.1 4
33.2 even 10 4356.2.a.t.1.1 2
33.8 even 10 396.2.j.a.181.1 4
33.17 even 10 396.2.j.a.361.1 4
33.20 odd 10 4356.2.a.u.1.1 2
44.19 even 10 176.2.m.b.49.1 4
44.31 odd 10 1936.2.a.z.1.1 2
44.35 even 10 1936.2.a.ba.1.1 2
44.39 even 10 176.2.m.b.97.1 4
55.8 even 20 1100.2.cb.a.49.1 8
55.17 even 20 1100.2.cb.a.449.1 8
55.19 odd 10 1100.2.n.a.401.1 4
55.28 even 20 1100.2.cb.a.449.2 8
55.39 odd 10 1100.2.n.a.801.1 4
55.52 even 20 1100.2.cb.a.49.2 8
88.13 odd 10 7744.2.a.da.1.1 2
88.19 even 10 704.2.m.d.577.1 4
88.35 even 10 7744.2.a.bp.1.2 2
88.53 even 10 7744.2.a.db.1.1 2
88.61 odd 10 704.2.m.e.449.1 4
88.75 odd 10 7744.2.a.bo.1.2 2
88.83 even 10 704.2.m.d.449.1 4
88.85 odd 10 704.2.m.e.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.e.a.5.1 4 11.8 odd 10
44.2.e.a.9.1 yes 4 11.6 odd 10
176.2.m.b.49.1 4 44.19 even 10
176.2.m.b.97.1 4 44.39 even 10
396.2.j.a.181.1 4 33.8 even 10
396.2.j.a.361.1 4 33.17 even 10
484.2.a.b.1.2 2 11.2 odd 10
484.2.a.c.1.2 2 11.9 even 5
484.2.e.c.9.1 4 11.5 even 5
484.2.e.c.269.1 4 11.3 even 5
484.2.e.d.81.1 4 11.4 even 5 inner
484.2.e.d.245.1 4 1.1 even 1 trivial
484.2.e.e.81.1 4 11.7 odd 10
484.2.e.e.245.1 4 11.10 odd 2
704.2.m.d.449.1 4 88.83 even 10
704.2.m.d.577.1 4 88.19 even 10
704.2.m.e.449.1 4 88.61 odd 10
704.2.m.e.577.1 4 88.85 odd 10
1100.2.n.a.401.1 4 55.19 odd 10
1100.2.n.a.801.1 4 55.39 odd 10
1100.2.cb.a.49.1 8 55.8 even 20
1100.2.cb.a.49.2 8 55.52 even 20
1100.2.cb.a.449.1 8 55.17 even 20
1100.2.cb.a.449.2 8 55.28 even 20
1936.2.a.z.1.1 2 44.31 odd 10
1936.2.a.ba.1.1 2 44.35 even 10
4356.2.a.t.1.1 2 33.2 even 10
4356.2.a.u.1.1 2 33.20 odd 10
7744.2.a.bo.1.2 2 88.75 odd 10
7744.2.a.bp.1.2 2 88.35 even 10
7744.2.a.da.1.1 2 88.13 odd 10
7744.2.a.db.1.1 2 88.53 even 10