Properties

Label 484.2.e
Level $484$
Weight $2$
Character orbit 484.e
Rep. character $\chi_{484}(9,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $36$
Newform subspaces $7$
Sturm bound $132$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.e (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 7 \)
Sturm bound: \(132\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(484, [\chi])\).

Total New Old
Modular forms 336 36 300
Cusp forms 192 36 156
Eisenstein series 144 0 144

Trace form

\( 36 q - 4 q^{5} + 7 q^{7} - 3 q^{9} + q^{13} - 2 q^{15} + q^{17} - 7 q^{19} - 18 q^{21} - 12 q^{23} - 19 q^{25} - 6 q^{27} + 5 q^{29} + 4 q^{31} + 9 q^{35} + 10 q^{37} - 9 q^{39} + 5 q^{41} + 24 q^{45}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(484, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
484.2.e.a 484.e 11.c $4$ $3.865$ \(\Q(\zeta_{10})\) None 44.2.a.a \(0\) \(-1\) \(3\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+3\zeta_{10}q^{5}-2\zeta_{10}^{3}q^{7}+\cdots\)
484.2.e.b 484.e 11.c $4$ $3.865$ \(\Q(\zeta_{10})\) None 44.2.a.a \(0\) \(-1\) \(3\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+3\zeta_{10}q^{5}+2\zeta_{10}^{3}q^{7}+\cdots\)
484.2.e.c 484.e 11.c $4$ $3.865$ \(\Q(\zeta_{10})\) None 44.2.e.a \(0\) \(-1\) \(3\) \(7\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}-\zeta_{10}^{2}-\zeta_{10}^{3})q^{3}+(1+\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
484.2.e.d 484.e 11.c $4$ $3.865$ \(\Q(\zeta_{10})\) None 44.2.e.a \(0\) \(4\) \(-2\) \(-8\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}-2\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(-1+\cdots)q^{5}+\cdots\)
484.2.e.e 484.e 11.c $4$ $3.865$ \(\Q(\zeta_{10})\) None 44.2.e.a \(0\) \(4\) \(-2\) \(8\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\zeta_{10}-2\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+(-1+\cdots)q^{5}+\cdots\)
484.2.e.f 484.e 11.c $8$ $3.865$ 8.0.324000000.3 None 484.2.a.e \(0\) \(-4\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+2\beta _{6}q^{3}+(-3-3\beta _{2}-3\beta _{4}-3\beta _{6}+\cdots)q^{5}+\cdots\)
484.2.e.g 484.e 11.c $8$ $3.865$ 8.0.\(\cdots\).3 \(\Q(\sqrt{-11}) \) 484.2.a.d \(0\) \(-1\) \(-3\) \(0\) $\mathrm{U}(1)[D_{5}]$ \(q-\beta _{1}q^{3}+(-2-2\beta _{2}-2\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(484, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(484, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 2}\)