Properties

Label 483.4.a.c.1.7
Level $483$
Weight $4$
Character 483.1
Self dual yes
Analytic conductor $28.498$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,4,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 34x^{5} + 7x^{4} + 295x^{3} + 84x^{2} - 524x - 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(5.21883\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.21883 q^{2} +3.00000 q^{3} +9.79849 q^{4} -19.6249 q^{5} +12.6565 q^{6} +7.00000 q^{7} +7.58752 q^{8} +9.00000 q^{9} -82.7940 q^{10} -40.2869 q^{11} +29.3955 q^{12} +19.9125 q^{13} +29.5318 q^{14} -58.8746 q^{15} -46.3775 q^{16} -96.9123 q^{17} +37.9694 q^{18} -124.169 q^{19} -192.294 q^{20} +21.0000 q^{21} -169.963 q^{22} +23.0000 q^{23} +22.7626 q^{24} +260.136 q^{25} +84.0074 q^{26} +27.0000 q^{27} +68.5894 q^{28} +89.9718 q^{29} -248.382 q^{30} +88.3213 q^{31} -256.359 q^{32} -120.861 q^{33} -408.856 q^{34} -137.374 q^{35} +88.1864 q^{36} -226.078 q^{37} -523.848 q^{38} +59.7375 q^{39} -148.904 q^{40} -93.7541 q^{41} +88.5953 q^{42} +303.996 q^{43} -394.751 q^{44} -176.624 q^{45} +97.0330 q^{46} +158.489 q^{47} -139.132 q^{48} +49.0000 q^{49} +1097.47 q^{50} -290.737 q^{51} +195.112 q^{52} -503.202 q^{53} +113.908 q^{54} +790.626 q^{55} +53.1127 q^{56} -372.507 q^{57} +379.575 q^{58} -875.210 q^{59} -576.883 q^{60} +255.292 q^{61} +372.612 q^{62} +63.0000 q^{63} -710.513 q^{64} -390.780 q^{65} -509.890 q^{66} +320.964 q^{67} -949.594 q^{68} +69.0000 q^{69} -579.558 q^{70} +715.635 q^{71} +68.2877 q^{72} -1108.33 q^{73} -953.783 q^{74} +780.408 q^{75} -1216.67 q^{76} -282.008 q^{77} +252.022 q^{78} +996.266 q^{79} +910.153 q^{80} +81.0000 q^{81} -395.532 q^{82} -1045.70 q^{83} +205.768 q^{84} +1901.89 q^{85} +1282.51 q^{86} +269.915 q^{87} -305.678 q^{88} +440.889 q^{89} -745.146 q^{90} +139.387 q^{91} +225.365 q^{92} +264.964 q^{93} +668.638 q^{94} +2436.80 q^{95} -769.076 q^{96} +1568.23 q^{97} +206.722 q^{98} -362.582 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 6 q^{2} + 21 q^{3} + 18 q^{4} - 41 q^{5} - 18 q^{6} + 49 q^{7} - 33 q^{8} + 63 q^{9} + q^{10} - 126 q^{11} + 54 q^{12} - 87 q^{13} - 42 q^{14} - 123 q^{15} + 2 q^{16} - 204 q^{17} - 54 q^{18} - 286 q^{19}+ \cdots - 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.21883 1.49158 0.745790 0.666181i \(-0.232072\pi\)
0.745790 + 0.666181i \(0.232072\pi\)
\(3\) 3.00000 0.577350
\(4\) 9.79849 1.22481
\(5\) −19.6249 −1.75530 −0.877651 0.479300i \(-0.840891\pi\)
−0.877651 + 0.479300i \(0.840891\pi\)
\(6\) 12.6565 0.861164
\(7\) 7.00000 0.377964
\(8\) 7.58752 0.335324
\(9\) 9.00000 0.333333
\(10\) −82.7940 −2.61817
\(11\) −40.2869 −1.10427 −0.552135 0.833755i \(-0.686187\pi\)
−0.552135 + 0.833755i \(0.686187\pi\)
\(12\) 29.3955 0.707145
\(13\) 19.9125 0.424826 0.212413 0.977180i \(-0.431868\pi\)
0.212413 + 0.977180i \(0.431868\pi\)
\(14\) 29.5318 0.563764
\(15\) −58.8746 −1.01342
\(16\) −46.3775 −0.724648
\(17\) −96.9123 −1.38263 −0.691314 0.722554i \(-0.742968\pi\)
−0.691314 + 0.722554i \(0.742968\pi\)
\(18\) 37.9694 0.497193
\(19\) −124.169 −1.49928 −0.749640 0.661846i \(-0.769773\pi\)
−0.749640 + 0.661846i \(0.769773\pi\)
\(20\) −192.294 −2.14991
\(21\) 21.0000 0.218218
\(22\) −169.963 −1.64711
\(23\) 23.0000 0.208514
\(24\) 22.7626 0.193600
\(25\) 260.136 2.08109
\(26\) 84.0074 0.633661
\(27\) 27.0000 0.192450
\(28\) 68.5894 0.462935
\(29\) 89.9718 0.576115 0.288058 0.957613i \(-0.406990\pi\)
0.288058 + 0.957613i \(0.406990\pi\)
\(30\) −248.382 −1.51160
\(31\) 88.3213 0.511709 0.255855 0.966715i \(-0.417643\pi\)
0.255855 + 0.966715i \(0.417643\pi\)
\(32\) −256.359 −1.41620
\(33\) −120.861 −0.637550
\(34\) −408.856 −2.06230
\(35\) −137.374 −0.663442
\(36\) 88.1864 0.408270
\(37\) −226.078 −1.00451 −0.502256 0.864719i \(-0.667497\pi\)
−0.502256 + 0.864719i \(0.667497\pi\)
\(38\) −523.848 −2.23630
\(39\) 59.7375 0.245273
\(40\) −148.904 −0.588596
\(41\) −93.7541 −0.357120 −0.178560 0.983929i \(-0.557144\pi\)
−0.178560 + 0.983929i \(0.557144\pi\)
\(42\) 88.5953 0.325489
\(43\) 303.996 1.07812 0.539058 0.842269i \(-0.318780\pi\)
0.539058 + 0.842269i \(0.318780\pi\)
\(44\) −394.751 −1.35252
\(45\) −176.624 −0.585101
\(46\) 97.0330 0.311016
\(47\) 158.489 0.491873 0.245936 0.969286i \(-0.420905\pi\)
0.245936 + 0.969286i \(0.420905\pi\)
\(48\) −139.132 −0.418376
\(49\) 49.0000 0.142857
\(50\) 1097.47 3.10411
\(51\) −290.737 −0.798261
\(52\) 195.112 0.520331
\(53\) −503.202 −1.30415 −0.652076 0.758153i \(-0.726102\pi\)
−0.652076 + 0.758153i \(0.726102\pi\)
\(54\) 113.908 0.287055
\(55\) 790.626 1.93833
\(56\) 53.1127 0.126741
\(57\) −372.507 −0.865610
\(58\) 379.575 0.859322
\(59\) −875.210 −1.93123 −0.965615 0.259975i \(-0.916286\pi\)
−0.965615 + 0.259975i \(0.916286\pi\)
\(60\) −576.883 −1.24125
\(61\) 255.292 0.535848 0.267924 0.963440i \(-0.413662\pi\)
0.267924 + 0.963440i \(0.413662\pi\)
\(62\) 372.612 0.763255
\(63\) 63.0000 0.125988
\(64\) −710.513 −1.38772
\(65\) −390.780 −0.745697
\(66\) −509.890 −0.950957
\(67\) 320.964 0.585254 0.292627 0.956227i \(-0.405471\pi\)
0.292627 + 0.956227i \(0.405471\pi\)
\(68\) −949.594 −1.69346
\(69\) 69.0000 0.120386
\(70\) −579.558 −0.989577
\(71\) 715.635 1.19620 0.598101 0.801421i \(-0.295922\pi\)
0.598101 + 0.801421i \(0.295922\pi\)
\(72\) 68.2877 0.111775
\(73\) −1108.33 −1.77699 −0.888496 0.458885i \(-0.848249\pi\)
−0.888496 + 0.458885i \(0.848249\pi\)
\(74\) −953.783 −1.49831
\(75\) 780.408 1.20152
\(76\) −1216.67 −1.83634
\(77\) −282.008 −0.417375
\(78\) 252.022 0.365845
\(79\) 996.266 1.41884 0.709422 0.704784i \(-0.248956\pi\)
0.709422 + 0.704784i \(0.248956\pi\)
\(80\) 910.153 1.27198
\(81\) 81.0000 0.111111
\(82\) −395.532 −0.532674
\(83\) −1045.70 −1.38290 −0.691449 0.722425i \(-0.743027\pi\)
−0.691449 + 0.722425i \(0.743027\pi\)
\(84\) 205.768 0.267276
\(85\) 1901.89 2.42693
\(86\) 1282.51 1.60810
\(87\) 269.915 0.332620
\(88\) −305.678 −0.370288
\(89\) 440.889 0.525103 0.262551 0.964918i \(-0.415436\pi\)
0.262551 + 0.964918i \(0.415436\pi\)
\(90\) −745.146 −0.872725
\(91\) 139.387 0.160569
\(92\) 225.365 0.255391
\(93\) 264.964 0.295435
\(94\) 668.638 0.733668
\(95\) 2436.80 2.63169
\(96\) −769.076 −0.817641
\(97\) 1568.23 1.64155 0.820774 0.571253i \(-0.193543\pi\)
0.820774 + 0.571253i \(0.193543\pi\)
\(98\) 206.722 0.213083
\(99\) −362.582 −0.368090
\(100\) 2548.94 2.54894
\(101\) 356.643 0.351360 0.175680 0.984447i \(-0.443788\pi\)
0.175680 + 0.984447i \(0.443788\pi\)
\(102\) −1226.57 −1.19067
\(103\) −509.370 −0.487279 −0.243639 0.969866i \(-0.578341\pi\)
−0.243639 + 0.969866i \(0.578341\pi\)
\(104\) 151.087 0.142454
\(105\) −412.122 −0.383038
\(106\) −2122.92 −1.94525
\(107\) −1001.85 −0.905164 −0.452582 0.891723i \(-0.649497\pi\)
−0.452582 + 0.891723i \(0.649497\pi\)
\(108\) 264.559 0.235715
\(109\) 51.9487 0.0456494 0.0228247 0.999739i \(-0.492734\pi\)
0.0228247 + 0.999739i \(0.492734\pi\)
\(110\) 3335.51 2.89117
\(111\) −678.233 −0.579955
\(112\) −324.642 −0.273891
\(113\) 1489.87 1.24031 0.620154 0.784480i \(-0.287070\pi\)
0.620154 + 0.784480i \(0.287070\pi\)
\(114\) −1571.54 −1.29113
\(115\) −451.372 −0.366006
\(116\) 881.588 0.705633
\(117\) 179.212 0.141609
\(118\) −3692.36 −2.88059
\(119\) −678.386 −0.522584
\(120\) −446.713 −0.339826
\(121\) 292.036 0.219411
\(122\) 1077.03 0.799261
\(123\) −281.262 −0.206184
\(124\) 865.416 0.626747
\(125\) −2652.03 −1.89764
\(126\) 265.786 0.187921
\(127\) 496.178 0.346682 0.173341 0.984862i \(-0.444544\pi\)
0.173341 + 0.984862i \(0.444544\pi\)
\(128\) −946.661 −0.653701
\(129\) 911.988 0.622450
\(130\) −1648.63 −1.11227
\(131\) 1807.83 1.20573 0.602864 0.797844i \(-0.294026\pi\)
0.602864 + 0.797844i \(0.294026\pi\)
\(132\) −1184.25 −0.780879
\(133\) −869.183 −0.566675
\(134\) 1354.09 0.872953
\(135\) −529.872 −0.337808
\(136\) −735.324 −0.463629
\(137\) 1558.86 0.972135 0.486067 0.873921i \(-0.338431\pi\)
0.486067 + 0.873921i \(0.338431\pi\)
\(138\) 291.099 0.179565
\(139\) −1888.65 −1.15247 −0.576233 0.817285i \(-0.695478\pi\)
−0.576233 + 0.817285i \(0.695478\pi\)
\(140\) −1346.06 −0.812591
\(141\) 475.468 0.283983
\(142\) 3019.14 1.78423
\(143\) −802.213 −0.469122
\(144\) −417.397 −0.241549
\(145\) −1765.69 −1.01126
\(146\) −4675.86 −2.65053
\(147\) 147.000 0.0824786
\(148\) −2215.22 −1.23034
\(149\) 2235.01 1.22885 0.614426 0.788975i \(-0.289388\pi\)
0.614426 + 0.788975i \(0.289388\pi\)
\(150\) 3292.40 1.79216
\(151\) −2834.17 −1.52742 −0.763712 0.645557i \(-0.776625\pi\)
−0.763712 + 0.645557i \(0.776625\pi\)
\(152\) −942.136 −0.502745
\(153\) −872.211 −0.460876
\(154\) −1189.74 −0.622548
\(155\) −1733.30 −0.898204
\(156\) 585.337 0.300413
\(157\) −915.070 −0.465163 −0.232581 0.972577i \(-0.574717\pi\)
−0.232581 + 0.972577i \(0.574717\pi\)
\(158\) 4203.07 2.11632
\(159\) −1509.61 −0.752953
\(160\) 5031.01 2.48585
\(161\) 161.000 0.0788110
\(162\) 341.725 0.165731
\(163\) 1410.65 0.677855 0.338927 0.940813i \(-0.389936\pi\)
0.338927 + 0.940813i \(0.389936\pi\)
\(164\) −918.649 −0.437405
\(165\) 2371.88 1.11909
\(166\) −4411.63 −2.06270
\(167\) −3275.53 −1.51777 −0.758886 0.651223i \(-0.774256\pi\)
−0.758886 + 0.651223i \(0.774256\pi\)
\(168\) 159.338 0.0731738
\(169\) −1800.49 −0.819523
\(170\) 8023.75 3.61996
\(171\) −1117.52 −0.499760
\(172\) 2978.70 1.32049
\(173\) 1116.33 0.490594 0.245297 0.969448i \(-0.421114\pi\)
0.245297 + 0.969448i \(0.421114\pi\)
\(174\) 1138.73 0.496130
\(175\) 1820.95 0.786577
\(176\) 1868.41 0.800207
\(177\) −2625.63 −1.11500
\(178\) 1860.03 0.783233
\(179\) −2980.95 −1.24473 −0.622365 0.782727i \(-0.713828\pi\)
−0.622365 + 0.782727i \(0.713828\pi\)
\(180\) −1730.65 −0.716638
\(181\) −4151.36 −1.70480 −0.852398 0.522894i \(-0.824852\pi\)
−0.852398 + 0.522894i \(0.824852\pi\)
\(182\) 588.051 0.239502
\(183\) 765.875 0.309372
\(184\) 174.513 0.0699200
\(185\) 4436.75 1.76322
\(186\) 1117.84 0.440666
\(187\) 3904.30 1.52679
\(188\) 1552.95 0.602451
\(189\) 189.000 0.0727393
\(190\) 10280.4 3.92538
\(191\) −4065.39 −1.54011 −0.770056 0.637977i \(-0.779772\pi\)
−0.770056 + 0.637977i \(0.779772\pi\)
\(192\) −2131.54 −0.801201
\(193\) 2574.86 0.960323 0.480162 0.877180i \(-0.340578\pi\)
0.480162 + 0.877180i \(0.340578\pi\)
\(194\) 6616.11 2.44850
\(195\) −1172.34 −0.430529
\(196\) 480.126 0.174973
\(197\) −3305.71 −1.19554 −0.597771 0.801667i \(-0.703947\pi\)
−0.597771 + 0.801667i \(0.703947\pi\)
\(198\) −1529.67 −0.549035
\(199\) 1245.53 0.443684 0.221842 0.975083i \(-0.428793\pi\)
0.221842 + 0.975083i \(0.428793\pi\)
\(200\) 1973.79 0.697839
\(201\) 962.893 0.337897
\(202\) 1504.62 0.524081
\(203\) 629.803 0.217751
\(204\) −2848.78 −0.977719
\(205\) 1839.91 0.626854
\(206\) −2148.94 −0.726815
\(207\) 207.000 0.0695048
\(208\) −923.492 −0.307849
\(209\) 5002.39 1.65561
\(210\) −1738.67 −0.571333
\(211\) 3277.40 1.06932 0.534658 0.845068i \(-0.320440\pi\)
0.534658 + 0.845068i \(0.320440\pi\)
\(212\) −4930.62 −1.59734
\(213\) 2146.91 0.690627
\(214\) −4226.63 −1.35012
\(215\) −5965.89 −1.89242
\(216\) 204.863 0.0645332
\(217\) 618.249 0.193408
\(218\) 219.163 0.0680897
\(219\) −3324.99 −1.02595
\(220\) 7746.94 2.37409
\(221\) −1929.77 −0.587376
\(222\) −2861.35 −0.865050
\(223\) 318.327 0.0955907 0.0477953 0.998857i \(-0.484780\pi\)
0.0477953 + 0.998857i \(0.484780\pi\)
\(224\) −1794.51 −0.535272
\(225\) 2341.22 0.693696
\(226\) 6285.48 1.85002
\(227\) −4910.01 −1.43563 −0.717817 0.696232i \(-0.754859\pi\)
−0.717817 + 0.696232i \(0.754859\pi\)
\(228\) −3650.01 −1.06021
\(229\) 2031.19 0.586135 0.293068 0.956092i \(-0.405324\pi\)
0.293068 + 0.956092i \(0.405324\pi\)
\(230\) −1904.26 −0.545927
\(231\) −846.025 −0.240971
\(232\) 682.663 0.193186
\(233\) −4737.30 −1.33198 −0.665989 0.745962i \(-0.731990\pi\)
−0.665989 + 0.745962i \(0.731990\pi\)
\(234\) 756.066 0.211220
\(235\) −3110.33 −0.863386
\(236\) −8575.74 −2.36539
\(237\) 2988.80 0.819170
\(238\) −2861.99 −0.779477
\(239\) −182.095 −0.0492834 −0.0246417 0.999696i \(-0.507844\pi\)
−0.0246417 + 0.999696i \(0.507844\pi\)
\(240\) 2730.46 0.734376
\(241\) −3501.67 −0.935943 −0.467971 0.883744i \(-0.655015\pi\)
−0.467971 + 0.883744i \(0.655015\pi\)
\(242\) 1232.05 0.327269
\(243\) 243.000 0.0641500
\(244\) 2501.47 0.656313
\(245\) −961.619 −0.250758
\(246\) −1186.60 −0.307539
\(247\) −2472.52 −0.636933
\(248\) 670.140 0.171589
\(249\) −3137.10 −0.798417
\(250\) −11188.4 −2.83048
\(251\) 1913.06 0.481082 0.240541 0.970639i \(-0.422675\pi\)
0.240541 + 0.970639i \(0.422675\pi\)
\(252\) 617.305 0.154312
\(253\) −926.599 −0.230256
\(254\) 2093.29 0.517105
\(255\) 5705.68 1.40119
\(256\) 1690.31 0.412673
\(257\) 5251.40 1.27460 0.637302 0.770614i \(-0.280050\pi\)
0.637302 + 0.770614i \(0.280050\pi\)
\(258\) 3847.52 0.928435
\(259\) −1582.54 −0.379670
\(260\) −3829.06 −0.913339
\(261\) 809.746 0.192038
\(262\) 7626.90 1.79844
\(263\) 4282.52 1.00407 0.502037 0.864846i \(-0.332584\pi\)
0.502037 + 0.864846i \(0.332584\pi\)
\(264\) −917.034 −0.213786
\(265\) 9875.28 2.28918
\(266\) −3666.93 −0.845241
\(267\) 1322.67 0.303168
\(268\) 3144.97 0.716826
\(269\) −5511.78 −1.24929 −0.624646 0.780908i \(-0.714757\pi\)
−0.624646 + 0.780908i \(0.714757\pi\)
\(270\) −2235.44 −0.503868
\(271\) −2590.12 −0.580585 −0.290293 0.956938i \(-0.593753\pi\)
−0.290293 + 0.956938i \(0.593753\pi\)
\(272\) 4494.55 1.00192
\(273\) 418.162 0.0927045
\(274\) 6576.56 1.45002
\(275\) −10480.1 −2.29808
\(276\) 676.096 0.147450
\(277\) −3780.85 −0.820107 −0.410053 0.912062i \(-0.634490\pi\)
−0.410053 + 0.912062i \(0.634490\pi\)
\(278\) −7967.87 −1.71900
\(279\) 794.892 0.170570
\(280\) −1042.33 −0.222468
\(281\) 409.840 0.0870072 0.0435036 0.999053i \(-0.486148\pi\)
0.0435036 + 0.999053i \(0.486148\pi\)
\(282\) 2005.91 0.423583
\(283\) 1403.87 0.294882 0.147441 0.989071i \(-0.452896\pi\)
0.147441 + 0.989071i \(0.452896\pi\)
\(284\) 7012.15 1.46512
\(285\) 7310.41 1.51941
\(286\) −3384.40 −0.699733
\(287\) −656.279 −0.134979
\(288\) −2307.23 −0.472065
\(289\) 4478.99 0.911662
\(290\) −7449.12 −1.50837
\(291\) 4704.70 0.947748
\(292\) −10860.0 −2.17648
\(293\) 612.849 0.122195 0.0610973 0.998132i \(-0.480540\pi\)
0.0610973 + 0.998132i \(0.480540\pi\)
\(294\) 620.167 0.123023
\(295\) 17175.9 3.38989
\(296\) −1715.37 −0.336837
\(297\) −1087.75 −0.212517
\(298\) 9429.10 1.83293
\(299\) 457.987 0.0885823
\(300\) 7646.82 1.47163
\(301\) 2127.97 0.407489
\(302\) −11956.8 −2.27828
\(303\) 1069.93 0.202858
\(304\) 5758.65 1.08645
\(305\) −5010.07 −0.940576
\(306\) −3679.70 −0.687434
\(307\) −4347.74 −0.808269 −0.404135 0.914700i \(-0.632427\pi\)
−0.404135 + 0.914700i \(0.632427\pi\)
\(308\) −2763.26 −0.511205
\(309\) −1528.11 −0.281331
\(310\) −7312.47 −1.33974
\(311\) −5921.52 −1.07967 −0.539837 0.841769i \(-0.681514\pi\)
−0.539837 + 0.841769i \(0.681514\pi\)
\(312\) 453.260 0.0822461
\(313\) −5781.42 −1.04404 −0.522021 0.852933i \(-0.674822\pi\)
−0.522021 + 0.852933i \(0.674822\pi\)
\(314\) −3860.52 −0.693828
\(315\) −1236.37 −0.221147
\(316\) 9761.90 1.73782
\(317\) −1010.66 −0.179067 −0.0895333 0.995984i \(-0.528538\pi\)
−0.0895333 + 0.995984i \(0.528538\pi\)
\(318\) −6368.76 −1.12309
\(319\) −3624.69 −0.636187
\(320\) 13943.7 2.43587
\(321\) −3005.55 −0.522597
\(322\) 679.231 0.117553
\(323\) 12033.5 2.07295
\(324\) 793.678 0.136090
\(325\) 5179.96 0.884099
\(326\) 5951.27 1.01107
\(327\) 155.846 0.0263557
\(328\) −711.362 −0.119751
\(329\) 1109.42 0.185910
\(330\) 10006.5 1.66922
\(331\) −4151.00 −0.689304 −0.344652 0.938730i \(-0.612003\pi\)
−0.344652 + 0.938730i \(0.612003\pi\)
\(332\) −10246.3 −1.69379
\(333\) −2034.70 −0.334837
\(334\) −13818.9 −2.26388
\(335\) −6298.88 −1.02730
\(336\) −973.927 −0.158131
\(337\) −9856.55 −1.59324 −0.796618 0.604484i \(-0.793379\pi\)
−0.796618 + 0.604484i \(0.793379\pi\)
\(338\) −7595.96 −1.22238
\(339\) 4469.60 0.716092
\(340\) 18635.7 2.97253
\(341\) −3558.19 −0.565065
\(342\) −4714.63 −0.745432
\(343\) 343.000 0.0539949
\(344\) 2306.58 0.361518
\(345\) −1354.12 −0.211314
\(346\) 4709.59 0.731761
\(347\) 1538.53 0.238020 0.119010 0.992893i \(-0.462028\pi\)
0.119010 + 0.992893i \(0.462028\pi\)
\(348\) 2644.76 0.407397
\(349\) 10721.6 1.64445 0.822223 0.569166i \(-0.192734\pi\)
0.822223 + 0.569166i \(0.192734\pi\)
\(350\) 7682.28 1.17324
\(351\) 537.637 0.0817577
\(352\) 10327.9 1.56386
\(353\) 1412.76 0.213013 0.106507 0.994312i \(-0.466033\pi\)
0.106507 + 0.994312i \(0.466033\pi\)
\(354\) −11077.1 −1.66311
\(355\) −14044.3 −2.09970
\(356\) 4320.05 0.643152
\(357\) −2035.16 −0.301714
\(358\) −12576.1 −1.85662
\(359\) 4408.28 0.648078 0.324039 0.946044i \(-0.394959\pi\)
0.324039 + 0.946044i \(0.394959\pi\)
\(360\) −1340.14 −0.196199
\(361\) 8558.95 1.24784
\(362\) −17513.9 −2.54284
\(363\) 876.107 0.126677
\(364\) 1365.79 0.196667
\(365\) 21750.9 3.11916
\(366\) 3231.09 0.461453
\(367\) −580.837 −0.0826142 −0.0413071 0.999146i \(-0.513152\pi\)
−0.0413071 + 0.999146i \(0.513152\pi\)
\(368\) −1066.68 −0.151100
\(369\) −843.787 −0.119040
\(370\) 18717.9 2.62999
\(371\) −3522.41 −0.492923
\(372\) 2596.25 0.361853
\(373\) −1388.64 −0.192764 −0.0963820 0.995344i \(-0.530727\pi\)
−0.0963820 + 0.995344i \(0.530727\pi\)
\(374\) 16471.6 2.27734
\(375\) −7956.08 −1.09560
\(376\) 1202.54 0.164937
\(377\) 1791.56 0.244749
\(378\) 797.358 0.108496
\(379\) 4206.05 0.570054 0.285027 0.958519i \(-0.407997\pi\)
0.285027 + 0.958519i \(0.407997\pi\)
\(380\) 23877.0 3.22333
\(381\) 1488.53 0.200157
\(382\) −17151.2 −2.29720
\(383\) −11891.0 −1.58643 −0.793217 0.608939i \(-0.791595\pi\)
−0.793217 + 0.608939i \(0.791595\pi\)
\(384\) −2839.98 −0.377415
\(385\) 5534.38 0.732619
\(386\) 10862.9 1.43240
\(387\) 2735.96 0.359372
\(388\) 15366.3 2.01059
\(389\) −3493.17 −0.455297 −0.227649 0.973743i \(-0.573104\pi\)
−0.227649 + 0.973743i \(0.573104\pi\)
\(390\) −4945.90 −0.642168
\(391\) −2228.98 −0.288298
\(392\) 371.789 0.0479035
\(393\) 5423.48 0.696128
\(394\) −13946.2 −1.78325
\(395\) −19551.6 −2.49050
\(396\) −3552.76 −0.450841
\(397\) 9331.52 1.17969 0.589843 0.807518i \(-0.299189\pi\)
0.589843 + 0.807518i \(0.299189\pi\)
\(398\) 5254.67 0.661790
\(399\) −2607.55 −0.327170
\(400\) −12064.5 −1.50806
\(401\) −2906.48 −0.361952 −0.180976 0.983487i \(-0.557926\pi\)
−0.180976 + 0.983487i \(0.557926\pi\)
\(402\) 4062.28 0.504000
\(403\) 1758.70 0.217387
\(404\) 3494.57 0.430350
\(405\) −1589.62 −0.195034
\(406\) 2657.03 0.324793
\(407\) 9107.98 1.10925
\(408\) −2205.97 −0.267676
\(409\) −5685.56 −0.687366 −0.343683 0.939086i \(-0.611675\pi\)
−0.343683 + 0.939086i \(0.611675\pi\)
\(410\) 7762.28 0.935004
\(411\) 4676.58 0.561262
\(412\) −4991.06 −0.596825
\(413\) −6126.47 −0.729937
\(414\) 873.297 0.103672
\(415\) 20521.7 2.42740
\(416\) −5104.74 −0.601636
\(417\) −5665.94 −0.665377
\(418\) 21104.2 2.46947
\(419\) −14950.3 −1.74313 −0.871565 0.490279i \(-0.836895\pi\)
−0.871565 + 0.490279i \(0.836895\pi\)
\(420\) −4038.18 −0.469150
\(421\) 481.924 0.0557899 0.0278949 0.999611i \(-0.491120\pi\)
0.0278949 + 0.999611i \(0.491120\pi\)
\(422\) 13826.8 1.59497
\(423\) 1426.40 0.163958
\(424\) −3818.06 −0.437314
\(425\) −25210.4 −2.87737
\(426\) 9057.42 1.03013
\(427\) 1787.04 0.202532
\(428\) −9816.63 −1.10866
\(429\) −2406.64 −0.270848
\(430\) −25169.0 −2.82269
\(431\) −15555.9 −1.73852 −0.869258 0.494359i \(-0.835403\pi\)
−0.869258 + 0.494359i \(0.835403\pi\)
\(432\) −1252.19 −0.139459
\(433\) 9166.72 1.01738 0.508689 0.860950i \(-0.330130\pi\)
0.508689 + 0.860950i \(0.330130\pi\)
\(434\) 2608.29 0.288483
\(435\) −5297.06 −0.583850
\(436\) 509.019 0.0559119
\(437\) −2855.89 −0.312622
\(438\) −14027.6 −1.53028
\(439\) 8445.55 0.918187 0.459094 0.888388i \(-0.348174\pi\)
0.459094 + 0.888388i \(0.348174\pi\)
\(440\) 5998.89 0.649968
\(441\) 441.000 0.0476190
\(442\) −8141.35 −0.876118
\(443\) 4370.96 0.468782 0.234391 0.972142i \(-0.424690\pi\)
0.234391 + 0.972142i \(0.424690\pi\)
\(444\) −6645.66 −0.710336
\(445\) −8652.40 −0.921714
\(446\) 1342.96 0.142581
\(447\) 6705.02 0.709478
\(448\) −4973.59 −0.524509
\(449\) 454.484 0.0477693 0.0238847 0.999715i \(-0.492397\pi\)
0.0238847 + 0.999715i \(0.492397\pi\)
\(450\) 9877.21 1.03470
\(451\) 3777.07 0.394357
\(452\) 14598.4 1.51914
\(453\) −8502.50 −0.881859
\(454\) −20714.5 −2.14136
\(455\) −2735.46 −0.281847
\(456\) −2826.41 −0.290260
\(457\) 5833.13 0.597073 0.298537 0.954398i \(-0.403501\pi\)
0.298537 + 0.954398i \(0.403501\pi\)
\(458\) 8569.25 0.874268
\(459\) −2616.63 −0.266087
\(460\) −4422.77 −0.448288
\(461\) 15565.3 1.57256 0.786279 0.617871i \(-0.212005\pi\)
0.786279 + 0.617871i \(0.212005\pi\)
\(462\) −3569.23 −0.359428
\(463\) −19106.6 −1.91784 −0.958918 0.283682i \(-0.908444\pi\)
−0.958918 + 0.283682i \(0.908444\pi\)
\(464\) −4172.67 −0.417481
\(465\) −5199.89 −0.518578
\(466\) −19985.8 −1.98675
\(467\) 6876.45 0.681380 0.340690 0.940176i \(-0.389339\pi\)
0.340690 + 0.940176i \(0.389339\pi\)
\(468\) 1756.01 0.173444
\(469\) 2246.75 0.221205
\(470\) −13121.9 −1.28781
\(471\) −2745.21 −0.268562
\(472\) −6640.68 −0.647589
\(473\) −12247.1 −1.19053
\(474\) 12609.2 1.22186
\(475\) −32300.8 −3.12013
\(476\) −6647.16 −0.640067
\(477\) −4528.82 −0.434718
\(478\) −768.226 −0.0735101
\(479\) −14775.8 −1.40944 −0.704721 0.709485i \(-0.748928\pi\)
−0.704721 + 0.709485i \(0.748928\pi\)
\(480\) 15093.0 1.43521
\(481\) −4501.77 −0.426743
\(482\) −14772.9 −1.39603
\(483\) 483.000 0.0455016
\(484\) 2861.51 0.268737
\(485\) −30776.4 −2.88141
\(486\) 1025.17 0.0956849
\(487\) −1976.44 −0.183903 −0.0919516 0.995763i \(-0.529310\pi\)
−0.0919516 + 0.995763i \(0.529310\pi\)
\(488\) 1937.03 0.179683
\(489\) 4231.94 0.391360
\(490\) −4056.90 −0.374025
\(491\) 19477.0 1.79019 0.895095 0.445875i \(-0.147107\pi\)
0.895095 + 0.445875i \(0.147107\pi\)
\(492\) −2755.95 −0.252536
\(493\) −8719.38 −0.796554
\(494\) −10431.1 −0.950036
\(495\) 7115.63 0.646109
\(496\) −4096.12 −0.370809
\(497\) 5009.45 0.452122
\(498\) −13234.9 −1.19090
\(499\) −11913.4 −1.06878 −0.534388 0.845239i \(-0.679458\pi\)
−0.534388 + 0.845239i \(0.679458\pi\)
\(500\) −25985.9 −2.32425
\(501\) −9826.59 −0.876286
\(502\) 8070.89 0.717572
\(503\) 9898.33 0.877425 0.438712 0.898628i \(-0.355435\pi\)
0.438712 + 0.898628i \(0.355435\pi\)
\(504\) 478.014 0.0422469
\(505\) −6999.09 −0.616743
\(506\) −3909.16 −0.343445
\(507\) −5401.48 −0.473152
\(508\) 4861.79 0.424621
\(509\) −17204.8 −1.49821 −0.749104 0.662452i \(-0.769516\pi\)
−0.749104 + 0.662452i \(0.769516\pi\)
\(510\) 24071.3 2.08999
\(511\) −7758.32 −0.671640
\(512\) 14704.4 1.26924
\(513\) −3352.56 −0.288537
\(514\) 22154.8 1.90118
\(515\) 9996.32 0.855322
\(516\) 8936.11 0.762384
\(517\) −6385.04 −0.543160
\(518\) −6676.48 −0.566308
\(519\) 3348.98 0.283245
\(520\) −2965.06 −0.250051
\(521\) −7123.84 −0.599042 −0.299521 0.954090i \(-0.596827\pi\)
−0.299521 + 0.954090i \(0.596827\pi\)
\(522\) 3416.18 0.286441
\(523\) −1675.23 −0.140063 −0.0700315 0.997545i \(-0.522310\pi\)
−0.0700315 + 0.997545i \(0.522310\pi\)
\(524\) 17714.0 1.47679
\(525\) 5462.85 0.454130
\(526\) 18067.2 1.49766
\(527\) −8559.42 −0.707503
\(528\) 5605.22 0.462000
\(529\) 529.000 0.0434783
\(530\) 41662.1 3.41450
\(531\) −7876.89 −0.643744
\(532\) −8516.68 −0.694070
\(533\) −1866.88 −0.151714
\(534\) 5580.10 0.452200
\(535\) 19661.2 1.58884
\(536\) 2435.32 0.196250
\(537\) −8942.86 −0.718646
\(538\) −23253.3 −1.86342
\(539\) −1974.06 −0.157753
\(540\) −5191.94 −0.413751
\(541\) −11416.0 −0.907229 −0.453614 0.891198i \(-0.649866\pi\)
−0.453614 + 0.891198i \(0.649866\pi\)
\(542\) −10927.3 −0.865989
\(543\) −12454.1 −0.984264
\(544\) 24844.3 1.95807
\(545\) −1019.49 −0.0801285
\(546\) 1764.15 0.138276
\(547\) −11367.2 −0.888532 −0.444266 0.895895i \(-0.646536\pi\)
−0.444266 + 0.895895i \(0.646536\pi\)
\(548\) 15274.5 1.19068
\(549\) 2297.63 0.178616
\(550\) −44213.6 −3.42777
\(551\) −11171.7 −0.863759
\(552\) 523.539 0.0403683
\(553\) 6973.86 0.536273
\(554\) −15950.8 −1.22325
\(555\) 13310.2 1.01800
\(556\) −18505.9 −1.41155
\(557\) 4522.58 0.344036 0.172018 0.985094i \(-0.444971\pi\)
0.172018 + 0.985094i \(0.444971\pi\)
\(558\) 3353.51 0.254418
\(559\) 6053.32 0.458011
\(560\) 6371.07 0.480762
\(561\) 11712.9 0.881495
\(562\) 1729.05 0.129778
\(563\) 19087.9 1.42888 0.714441 0.699696i \(-0.246681\pi\)
0.714441 + 0.699696i \(0.246681\pi\)
\(564\) 4658.86 0.347826
\(565\) −29238.4 −2.17711
\(566\) 5922.70 0.439841
\(567\) 567.000 0.0419961
\(568\) 5429.90 0.401115
\(569\) 20243.2 1.49146 0.745729 0.666249i \(-0.232101\pi\)
0.745729 + 0.666249i \(0.232101\pi\)
\(570\) 30841.3 2.26632
\(571\) 17982.8 1.31797 0.658983 0.752158i \(-0.270987\pi\)
0.658983 + 0.752158i \(0.270987\pi\)
\(572\) −7860.48 −0.574586
\(573\) −12196.2 −0.889184
\(574\) −2768.73 −0.201332
\(575\) 5983.13 0.433937
\(576\) −6394.62 −0.462574
\(577\) −15741.8 −1.13577 −0.567885 0.823108i \(-0.692238\pi\)
−0.567885 + 0.823108i \(0.692238\pi\)
\(578\) 18896.1 1.35982
\(579\) 7724.58 0.554443
\(580\) −17301.1 −1.23860
\(581\) −7319.90 −0.522686
\(582\) 19848.3 1.41364
\(583\) 20272.5 1.44014
\(584\) −8409.49 −0.595869
\(585\) −3517.02 −0.248566
\(586\) 2585.50 0.182263
\(587\) 13251.9 0.931793 0.465896 0.884839i \(-0.345732\pi\)
0.465896 + 0.884839i \(0.345732\pi\)
\(588\) 1440.38 0.101021
\(589\) −10966.8 −0.767195
\(590\) 72462.1 5.05630
\(591\) −9917.12 −0.690247
\(592\) 10484.9 0.727918
\(593\) 7940.53 0.549880 0.274940 0.961461i \(-0.411342\pi\)
0.274940 + 0.961461i \(0.411342\pi\)
\(594\) −4589.01 −0.316986
\(595\) 13313.2 0.917294
\(596\) 21899.7 1.50511
\(597\) 3736.58 0.256161
\(598\) 1932.17 0.132128
\(599\) 14136.9 0.964305 0.482152 0.876087i \(-0.339855\pi\)
0.482152 + 0.876087i \(0.339855\pi\)
\(600\) 5921.36 0.402898
\(601\) 22357.1 1.51741 0.758705 0.651434i \(-0.225832\pi\)
0.758705 + 0.651434i \(0.225832\pi\)
\(602\) 8977.55 0.607803
\(603\) 2888.68 0.195085
\(604\) −27770.5 −1.87081
\(605\) −5731.17 −0.385132
\(606\) 4513.85 0.302579
\(607\) 17602.7 1.17705 0.588525 0.808479i \(-0.299709\pi\)
0.588525 + 0.808479i \(0.299709\pi\)
\(608\) 31831.8 2.12327
\(609\) 1889.41 0.125719
\(610\) −21136.6 −1.40294
\(611\) 3155.91 0.208960
\(612\) −8546.35 −0.564486
\(613\) −13152.8 −0.866615 −0.433307 0.901246i \(-0.642654\pi\)
−0.433307 + 0.901246i \(0.642654\pi\)
\(614\) −18342.4 −1.20560
\(615\) 5519.74 0.361915
\(616\) −2139.75 −0.139956
\(617\) −10128.5 −0.660870 −0.330435 0.943829i \(-0.607196\pi\)
−0.330435 + 0.943829i \(0.607196\pi\)
\(618\) −6446.83 −0.419627
\(619\) 2493.66 0.161920 0.0809600 0.996717i \(-0.474201\pi\)
0.0809600 + 0.996717i \(0.474201\pi\)
\(620\) −16983.7 −1.10013
\(621\) 621.000 0.0401286
\(622\) −24981.9 −1.61042
\(623\) 3086.22 0.198470
\(624\) −2770.47 −0.177737
\(625\) 19528.7 1.24984
\(626\) −24390.8 −1.55727
\(627\) 15007.2 0.955867
\(628\) −8966.31 −0.569737
\(629\) 21909.7 1.38887
\(630\) −5216.02 −0.329859
\(631\) 14021.4 0.884601 0.442301 0.896867i \(-0.354162\pi\)
0.442301 + 0.896867i \(0.354162\pi\)
\(632\) 7559.19 0.475773
\(633\) 9832.21 0.617370
\(634\) −4263.78 −0.267092
\(635\) −9737.43 −0.608532
\(636\) −14791.9 −0.922226
\(637\) 975.712 0.0606894
\(638\) −15291.9 −0.948923
\(639\) 6440.72 0.398734
\(640\) 18578.1 1.14744
\(641\) 815.452 0.0502472 0.0251236 0.999684i \(-0.492002\pi\)
0.0251236 + 0.999684i \(0.492002\pi\)
\(642\) −12679.9 −0.779495
\(643\) −7116.65 −0.436475 −0.218237 0.975896i \(-0.570031\pi\)
−0.218237 + 0.975896i \(0.570031\pi\)
\(644\) 1577.56 0.0965287
\(645\) −17897.7 −1.09259
\(646\) 50767.3 3.09197
\(647\) 21304.6 1.29454 0.647272 0.762259i \(-0.275910\pi\)
0.647272 + 0.762259i \(0.275910\pi\)
\(648\) 614.589 0.0372583
\(649\) 35259.5 2.13260
\(650\) 21853.3 1.31870
\(651\) 1854.75 0.111664
\(652\) 13822.2 0.830244
\(653\) −11961.5 −0.716830 −0.358415 0.933562i \(-0.616683\pi\)
−0.358415 + 0.933562i \(0.616683\pi\)
\(654\) 657.488 0.0393116
\(655\) −35478.4 −2.11642
\(656\) 4348.08 0.258787
\(657\) −9974.98 −0.592331
\(658\) 4680.47 0.277300
\(659\) 2599.95 0.153687 0.0768434 0.997043i \(-0.475516\pi\)
0.0768434 + 0.997043i \(0.475516\pi\)
\(660\) 23240.8 1.37068
\(661\) 1245.18 0.0732708 0.0366354 0.999329i \(-0.488336\pi\)
0.0366354 + 0.999329i \(0.488336\pi\)
\(662\) −17512.4 −1.02815
\(663\) −5789.30 −0.339122
\(664\) −7934.28 −0.463719
\(665\) 17057.6 0.994686
\(666\) −8584.04 −0.499437
\(667\) 2069.35 0.120128
\(668\) −32095.2 −1.85899
\(669\) 954.980 0.0551893
\(670\) −26573.9 −1.53230
\(671\) −10284.9 −0.591721
\(672\) −5383.53 −0.309039
\(673\) 2226.81 0.127544 0.0637722 0.997964i \(-0.479687\pi\)
0.0637722 + 0.997964i \(0.479687\pi\)
\(674\) −41583.0 −2.37644
\(675\) 7023.67 0.400505
\(676\) −17642.1 −1.00376
\(677\) −16559.7 −0.940092 −0.470046 0.882642i \(-0.655763\pi\)
−0.470046 + 0.882642i \(0.655763\pi\)
\(678\) 18856.4 1.06811
\(679\) 10977.6 0.620447
\(680\) 14430.7 0.813809
\(681\) −14730.0 −0.828864
\(682\) −15011.4 −0.842839
\(683\) 17260.9 0.967015 0.483507 0.875340i \(-0.339363\pi\)
0.483507 + 0.875340i \(0.339363\pi\)
\(684\) −10950.0 −0.612112
\(685\) −30592.5 −1.70639
\(686\) 1447.06 0.0805378
\(687\) 6093.58 0.338405
\(688\) −14098.6 −0.781255
\(689\) −10020.0 −0.554038
\(690\) −5712.78 −0.315191
\(691\) −10249.2 −0.564254 −0.282127 0.959377i \(-0.591040\pi\)
−0.282127 + 0.959377i \(0.591040\pi\)
\(692\) 10938.3 0.600886
\(693\) −2538.08 −0.139125
\(694\) 6490.80 0.355025
\(695\) 37064.5 2.02293
\(696\) 2047.99 0.111536
\(697\) 9085.93 0.493765
\(698\) 45232.4 2.45282
\(699\) −14211.9 −0.769018
\(700\) 17842.6 0.963409
\(701\) 6339.59 0.341574 0.170787 0.985308i \(-0.445369\pi\)
0.170787 + 0.985308i \(0.445369\pi\)
\(702\) 2268.20 0.121948
\(703\) 28071.9 1.50605
\(704\) 28624.4 1.53242
\(705\) −9330.99 −0.498476
\(706\) 5960.19 0.317726
\(707\) 2496.50 0.132802
\(708\) −25727.2 −1.36566
\(709\) −3640.88 −0.192858 −0.0964290 0.995340i \(-0.530742\pi\)
−0.0964290 + 0.995340i \(0.530742\pi\)
\(710\) −59250.3 −3.13186
\(711\) 8966.39 0.472948
\(712\) 3345.26 0.176080
\(713\) 2031.39 0.106699
\(714\) −8585.98 −0.450031
\(715\) 15743.3 0.823451
\(716\) −29208.8 −1.52456
\(717\) −546.284 −0.0284538
\(718\) 18597.7 0.966660
\(719\) −20060.8 −1.04053 −0.520265 0.854005i \(-0.674167\pi\)
−0.520265 + 0.854005i \(0.674167\pi\)
\(720\) 8191.37 0.423992
\(721\) −3565.59 −0.184174
\(722\) 36108.7 1.86126
\(723\) −10505.0 −0.540367
\(724\) −40677.0 −2.08805
\(725\) 23404.9 1.19895
\(726\) 3696.14 0.188949
\(727\) 16892.6 0.861778 0.430889 0.902405i \(-0.358200\pi\)
0.430889 + 0.902405i \(0.358200\pi\)
\(728\) 1057.61 0.0538427
\(729\) 729.000 0.0370370
\(730\) 91763.2 4.65247
\(731\) −29461.0 −1.49063
\(732\) 7504.42 0.378923
\(733\) 11694.5 0.589288 0.294644 0.955607i \(-0.404799\pi\)
0.294644 + 0.955607i \(0.404799\pi\)
\(734\) −2450.45 −0.123226
\(735\) −2884.86 −0.144775
\(736\) −5896.25 −0.295297
\(737\) −12930.7 −0.646278
\(738\) −3559.79 −0.177558
\(739\) 20095.0 1.00028 0.500140 0.865945i \(-0.333282\pi\)
0.500140 + 0.865945i \(0.333282\pi\)
\(740\) 43473.4 2.15962
\(741\) −7417.55 −0.367733
\(742\) −14860.5 −0.735235
\(743\) 16963.4 0.837588 0.418794 0.908081i \(-0.362453\pi\)
0.418794 + 0.908081i \(0.362453\pi\)
\(744\) 2010.42 0.0990667
\(745\) −43861.7 −2.15701
\(746\) −5858.42 −0.287523
\(747\) −9411.30 −0.460966
\(748\) 38256.2 1.87004
\(749\) −7012.96 −0.342120
\(750\) −33565.3 −1.63418
\(751\) −2164.61 −0.105177 −0.0525883 0.998616i \(-0.516747\pi\)
−0.0525883 + 0.998616i \(0.516747\pi\)
\(752\) −7350.33 −0.356435
\(753\) 5739.19 0.277753
\(754\) 7558.30 0.365062
\(755\) 55620.2 2.68109
\(756\) 1851.91 0.0890919
\(757\) 815.620 0.0391601 0.0195801 0.999808i \(-0.493767\pi\)
0.0195801 + 0.999808i \(0.493767\pi\)
\(758\) 17744.6 0.850281
\(759\) −2779.80 −0.132938
\(760\) 18489.3 0.882470
\(761\) 9078.39 0.432446 0.216223 0.976344i \(-0.430626\pi\)
0.216223 + 0.976344i \(0.430626\pi\)
\(762\) 6279.86 0.298550
\(763\) 363.641 0.0172539
\(764\) −39834.7 −1.88635
\(765\) 17117.0 0.808977
\(766\) −50166.2 −2.36629
\(767\) −17427.6 −0.820436
\(768\) 5070.92 0.238257
\(769\) 39849.4 1.86867 0.934334 0.356398i \(-0.115995\pi\)
0.934334 + 0.356398i \(0.115995\pi\)
\(770\) 23348.6 1.09276
\(771\) 15754.2 0.735894
\(772\) 25229.7 1.17622
\(773\) −15379.0 −0.715579 −0.357789 0.933802i \(-0.616469\pi\)
−0.357789 + 0.933802i \(0.616469\pi\)
\(774\) 11542.6 0.536032
\(775\) 22975.6 1.06491
\(776\) 11899.0 0.550451
\(777\) −4747.63 −0.219203
\(778\) −14737.1 −0.679112
\(779\) 11641.4 0.535424
\(780\) −11487.2 −0.527316
\(781\) −28830.7 −1.32093
\(782\) −9403.69 −0.430020
\(783\) 2429.24 0.110873
\(784\) −2272.50 −0.103521
\(785\) 17958.1 0.816501
\(786\) 22880.7 1.03833
\(787\) 10286.7 0.465923 0.232961 0.972486i \(-0.425158\pi\)
0.232961 + 0.972486i \(0.425158\pi\)
\(788\) −32390.9 −1.46431
\(789\) 12847.6 0.579703
\(790\) −82484.8 −3.71478
\(791\) 10429.1 0.468792
\(792\) −2751.10 −0.123429
\(793\) 5083.49 0.227642
\(794\) 39368.1 1.75960
\(795\) 29625.8 1.32166
\(796\) 12204.3 0.543429
\(797\) 12956.7 0.575847 0.287924 0.957653i \(-0.407035\pi\)
0.287924 + 0.957653i \(0.407035\pi\)
\(798\) −11000.8 −0.488000
\(799\) −15359.5 −0.680077
\(800\) −66688.1 −2.94723
\(801\) 3968.00 0.175034
\(802\) −12262.0 −0.539881
\(803\) 44651.3 1.96228
\(804\) 9434.90 0.413860
\(805\) −3159.61 −0.138337
\(806\) 7419.64 0.324250
\(807\) −16535.3 −0.721279
\(808\) 2706.04 0.117820
\(809\) −5061.38 −0.219961 −0.109981 0.993934i \(-0.535079\pi\)
−0.109981 + 0.993934i \(0.535079\pi\)
\(810\) −6706.31 −0.290908
\(811\) 13283.9 0.575169 0.287584 0.957755i \(-0.407148\pi\)
0.287584 + 0.957755i \(0.407148\pi\)
\(812\) 6171.12 0.266704
\(813\) −7770.36 −0.335201
\(814\) 38425.0 1.65454
\(815\) −27683.8 −1.18984
\(816\) 13483.6 0.578458
\(817\) −37746.9 −1.61640
\(818\) −23986.4 −1.02526
\(819\) 1254.49 0.0535230
\(820\) 18028.4 0.767778
\(821\) −43569.2 −1.85210 −0.926050 0.377400i \(-0.876818\pi\)
−0.926050 + 0.377400i \(0.876818\pi\)
\(822\) 19729.7 0.837168
\(823\) 44730.6 1.89455 0.947273 0.320429i \(-0.103827\pi\)
0.947273 + 0.320429i \(0.103827\pi\)
\(824\) −3864.86 −0.163396
\(825\) −31440.2 −1.32680
\(826\) −25846.5 −1.08876
\(827\) −28295.2 −1.18974 −0.594872 0.803820i \(-0.702797\pi\)
−0.594872 + 0.803820i \(0.702797\pi\)
\(828\) 2028.29 0.0851303
\(829\) 20807.8 0.871756 0.435878 0.900006i \(-0.356438\pi\)
0.435878 + 0.900006i \(0.356438\pi\)
\(830\) 86577.7 3.62067
\(831\) −11342.6 −0.473489
\(832\) −14148.1 −0.589539
\(833\) −4748.70 −0.197518
\(834\) −23903.6 −0.992463
\(835\) 64281.9 2.66415
\(836\) 49015.9 2.02781
\(837\) 2384.68 0.0984785
\(838\) −63072.9 −2.60002
\(839\) −4447.15 −0.182995 −0.0914974 0.995805i \(-0.529165\pi\)
−0.0914974 + 0.995805i \(0.529165\pi\)
\(840\) −3126.99 −0.128442
\(841\) −16294.1 −0.668091
\(842\) 2033.15 0.0832151
\(843\) 1229.52 0.0502336
\(844\) 32113.6 1.30971
\(845\) 35334.4 1.43851
\(846\) 6017.74 0.244556
\(847\) 2044.25 0.0829295
\(848\) 23337.2 0.945052
\(849\) 4211.62 0.170250
\(850\) −106358. −4.29183
\(851\) −5199.79 −0.209455
\(852\) 21036.4 0.845888
\(853\) 29357.2 1.17840 0.589199 0.807988i \(-0.299444\pi\)
0.589199 + 0.807988i \(0.299444\pi\)
\(854\) 7539.22 0.302092
\(855\) 21931.2 0.877230
\(856\) −7601.57 −0.303524
\(857\) 31964.4 1.27408 0.637038 0.770832i \(-0.280159\pi\)
0.637038 + 0.770832i \(0.280159\pi\)
\(858\) −10153.2 −0.403991
\(859\) −29455.0 −1.16996 −0.584979 0.811049i \(-0.698897\pi\)
−0.584979 + 0.811049i \(0.698897\pi\)
\(860\) −58456.7 −2.31786
\(861\) −1968.84 −0.0779301
\(862\) −65627.5 −2.59313
\(863\) 1565.48 0.0617493 0.0308746 0.999523i \(-0.490171\pi\)
0.0308746 + 0.999523i \(0.490171\pi\)
\(864\) −6921.69 −0.272547
\(865\) −21907.8 −0.861142
\(866\) 38672.8 1.51750
\(867\) 13437.0 0.526348
\(868\) 6057.91 0.236888
\(869\) −40136.5 −1.56679
\(870\) −22347.4 −0.870858
\(871\) 6391.20 0.248631
\(872\) 394.162 0.0153074
\(873\) 14114.1 0.547182
\(874\) −12048.5 −0.466300
\(875\) −18564.2 −0.717239
\(876\) −32579.9 −1.25659
\(877\) −22776.8 −0.876986 −0.438493 0.898735i \(-0.644488\pi\)
−0.438493 + 0.898735i \(0.644488\pi\)
\(878\) 35630.3 1.36955
\(879\) 1838.55 0.0705491
\(880\) −36667.2 −1.40461
\(881\) 31559.9 1.20690 0.603451 0.797400i \(-0.293792\pi\)
0.603451 + 0.797400i \(0.293792\pi\)
\(882\) 1860.50 0.0710276
\(883\) 28686.9 1.09331 0.546655 0.837358i \(-0.315901\pi\)
0.546655 + 0.837358i \(0.315901\pi\)
\(884\) −18908.8 −0.719425
\(885\) 51527.7 1.95716
\(886\) 18440.3 0.699227
\(887\) 21387.2 0.809597 0.404799 0.914406i \(-0.367342\pi\)
0.404799 + 0.914406i \(0.367342\pi\)
\(888\) −5146.11 −0.194473
\(889\) 3473.24 0.131034
\(890\) −36502.9 −1.37481
\(891\) −3263.24 −0.122697
\(892\) 3119.12 0.117081
\(893\) −19679.4 −0.737455
\(894\) 28287.3 1.05824
\(895\) 58500.8 2.18488
\(896\) −6626.63 −0.247076
\(897\) 1373.96 0.0511430
\(898\) 1917.39 0.0712517
\(899\) 7946.43 0.294803
\(900\) 22940.5 0.849647
\(901\) 48766.5 1.80316
\(902\) 15934.8 0.588215
\(903\) 6383.92 0.235264
\(904\) 11304.4 0.415905
\(905\) 81469.9 2.99243
\(906\) −35870.5 −1.31536
\(907\) 419.350 0.0153520 0.00767602 0.999971i \(-0.497557\pi\)
0.00767602 + 0.999971i \(0.497557\pi\)
\(908\) −48110.7 −1.75838
\(909\) 3209.79 0.117120
\(910\) −11540.4 −0.420398
\(911\) −37537.8 −1.36519 −0.682593 0.730799i \(-0.739148\pi\)
−0.682593 + 0.730799i \(0.739148\pi\)
\(912\) 17275.9 0.627263
\(913\) 42128.1 1.52709
\(914\) 24609.0 0.890583
\(915\) −15030.2 −0.543042
\(916\) 19902.6 0.717905
\(917\) 12654.8 0.455723
\(918\) −11039.1 −0.396890
\(919\) −36170.4 −1.29831 −0.649157 0.760654i \(-0.724878\pi\)
−0.649157 + 0.760654i \(0.724878\pi\)
\(920\) −3424.80 −0.122731
\(921\) −13043.2 −0.466654
\(922\) 65667.4 2.34560
\(923\) 14250.1 0.508177
\(924\) −8289.77 −0.295144
\(925\) −58810.9 −2.09048
\(926\) −80607.4 −2.86061
\(927\) −4584.33 −0.162426
\(928\) −23065.1 −0.815892
\(929\) 2432.90 0.0859212 0.0429606 0.999077i \(-0.486321\pi\)
0.0429606 + 0.999077i \(0.486321\pi\)
\(930\) −21937.4 −0.773501
\(931\) −6084.28 −0.214183
\(932\) −46418.4 −1.63142
\(933\) −17764.6 −0.623351
\(934\) 29010.6 1.01633
\(935\) −76621.4 −2.67999
\(936\) 1359.78 0.0474848
\(937\) 7084.56 0.247004 0.123502 0.992344i \(-0.460588\pi\)
0.123502 + 0.992344i \(0.460588\pi\)
\(938\) 9478.65 0.329945
\(939\) −17344.2 −0.602778
\(940\) −30476.6 −1.05748
\(941\) 23135.7 0.801492 0.400746 0.916189i \(-0.368751\pi\)
0.400746 + 0.916189i \(0.368751\pi\)
\(942\) −11581.6 −0.400582
\(943\) −2156.35 −0.0744647
\(944\) 40590.0 1.39946
\(945\) −3709.10 −0.127679
\(946\) −51668.2 −1.77577
\(947\) −47327.3 −1.62400 −0.812002 0.583655i \(-0.801622\pi\)
−0.812002 + 0.583655i \(0.801622\pi\)
\(948\) 29285.7 1.00333
\(949\) −22069.6 −0.754912
\(950\) −136272. −4.65393
\(951\) −3031.97 −0.103384
\(952\) −5147.27 −0.175235
\(953\) 53557.9 1.82047 0.910236 0.414090i \(-0.135900\pi\)
0.910236 + 0.414090i \(0.135900\pi\)
\(954\) −19106.3 −0.648416
\(955\) 79782.8 2.70336
\(956\) −1784.25 −0.0603629
\(957\) −10874.1 −0.367303
\(958\) −62336.4 −2.10229
\(959\) 10912.0 0.367432
\(960\) 41831.2 1.40635
\(961\) −21990.3 −0.738154
\(962\) −18992.2 −0.636521
\(963\) −9016.66 −0.301721
\(964\) −34311.1 −1.14635
\(965\) −50531.3 −1.68566
\(966\) 2037.69 0.0678692
\(967\) −49840.7 −1.65746 −0.828732 0.559645i \(-0.810937\pi\)
−0.828732 + 0.559645i \(0.810937\pi\)
\(968\) 2215.83 0.0735738
\(969\) 36100.5 1.19682
\(970\) −129840. −4.29786
\(971\) −34691.4 −1.14655 −0.573274 0.819363i \(-0.694327\pi\)
−0.573274 + 0.819363i \(0.694327\pi\)
\(972\) 2381.03 0.0785717
\(973\) −13220.5 −0.435591
\(974\) −8338.24 −0.274306
\(975\) 15539.9 0.510435
\(976\) −11839.8 −0.388302
\(977\) 50521.5 1.65438 0.827188 0.561926i \(-0.189939\pi\)
0.827188 + 0.561926i \(0.189939\pi\)
\(978\) 17853.8 0.583744
\(979\) −17762.1 −0.579855
\(980\) −9422.42 −0.307131
\(981\) 467.538 0.0152165
\(982\) 82170.0 2.67021
\(983\) 42125.1 1.36682 0.683409 0.730036i \(-0.260497\pi\)
0.683409 + 0.730036i \(0.260497\pi\)
\(984\) −2134.09 −0.0691384
\(985\) 64874.1 2.09854
\(986\) −36785.5 −1.18812
\(987\) 3328.27 0.107335
\(988\) −24226.9 −0.780123
\(989\) 6991.91 0.224803
\(990\) 30019.6 0.963723
\(991\) −9172.16 −0.294009 −0.147005 0.989136i \(-0.546963\pi\)
−0.147005 + 0.989136i \(0.546963\pi\)
\(992\) −22641.9 −0.724680
\(993\) −12453.0 −0.397970
\(994\) 21134.0 0.674376
\(995\) −24443.3 −0.778800
\(996\) −30738.9 −0.977910
\(997\) −49474.9 −1.57160 −0.785800 0.618481i \(-0.787748\pi\)
−0.785800 + 0.618481i \(0.787748\pi\)
\(998\) −50260.7 −1.59416
\(999\) −6104.10 −0.193318
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.4.a.c.1.7 7
3.2 odd 2 1449.4.a.h.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.c.1.7 7 1.1 even 1 trivial
1449.4.a.h.1.1 7 3.2 odd 2