Properties

Label 483.4.a.c.1.4
Level $483$
Weight $4$
Character 483.1
Self dual yes
Analytic conductor $28.498$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,4,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 34x^{5} + 7x^{4} + 295x^{3} + 84x^{2} - 524x - 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.610936\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61094 q^{2} +3.00000 q^{3} -5.40488 q^{4} -4.04614 q^{5} -4.83281 q^{6} +7.00000 q^{7} +21.5944 q^{8} +9.00000 q^{9} +6.51808 q^{10} -37.9081 q^{11} -16.2147 q^{12} +36.7373 q^{13} -11.2766 q^{14} -12.1384 q^{15} +8.45185 q^{16} -71.2798 q^{17} -14.4984 q^{18} +37.1217 q^{19} +21.8689 q^{20} +21.0000 q^{21} +61.0676 q^{22} +23.0000 q^{23} +64.7832 q^{24} -108.629 q^{25} -59.1815 q^{26} +27.0000 q^{27} -37.8342 q^{28} +296.671 q^{29} +19.5542 q^{30} +51.7855 q^{31} -186.371 q^{32} -113.724 q^{33} +114.827 q^{34} -28.3230 q^{35} -48.6440 q^{36} -34.0506 q^{37} -59.8007 q^{38} +110.212 q^{39} -87.3740 q^{40} -231.614 q^{41} -33.8297 q^{42} -540.155 q^{43} +204.889 q^{44} -36.4153 q^{45} -37.0515 q^{46} +40.9660 q^{47} +25.3555 q^{48} +49.0000 q^{49} +174.994 q^{50} -213.839 q^{51} -198.561 q^{52} -600.378 q^{53} -43.4953 q^{54} +153.382 q^{55} +151.161 q^{56} +111.365 q^{57} -477.919 q^{58} -422.877 q^{59} +65.6068 q^{60} -414.267 q^{61} -83.4232 q^{62} +63.0000 q^{63} +232.617 q^{64} -148.644 q^{65} +183.203 q^{66} -191.224 q^{67} +385.259 q^{68} +69.0000 q^{69} +45.6265 q^{70} -552.371 q^{71} +194.350 q^{72} +659.923 q^{73} +54.8533 q^{74} -325.886 q^{75} -200.639 q^{76} -265.357 q^{77} -177.544 q^{78} +883.564 q^{79} -34.1974 q^{80} +81.0000 q^{81} +373.115 q^{82} -1304.64 q^{83} -113.503 q^{84} +288.408 q^{85} +870.155 q^{86} +890.014 q^{87} -818.604 q^{88} -1298.09 q^{89} +58.6627 q^{90} +257.161 q^{91} -124.312 q^{92} +155.357 q^{93} -65.9935 q^{94} -150.200 q^{95} -559.112 q^{96} +252.312 q^{97} -78.9359 q^{98} -341.173 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 6 q^{2} + 21 q^{3} + 18 q^{4} - 41 q^{5} - 18 q^{6} + 49 q^{7} - 33 q^{8} + 63 q^{9} + q^{10} - 126 q^{11} + 54 q^{12} - 87 q^{13} - 42 q^{14} - 123 q^{15} + 2 q^{16} - 204 q^{17} - 54 q^{18} - 286 q^{19}+ \cdots - 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61094 −0.569552 −0.284776 0.958594i \(-0.591919\pi\)
−0.284776 + 0.958594i \(0.591919\pi\)
\(3\) 3.00000 0.577350
\(4\) −5.40488 −0.675611
\(5\) −4.04614 −0.361898 −0.180949 0.983492i \(-0.557917\pi\)
−0.180949 + 0.983492i \(0.557917\pi\)
\(6\) −4.83281 −0.328831
\(7\) 7.00000 0.377964
\(8\) 21.5944 0.954347
\(9\) 9.00000 0.333333
\(10\) 6.51808 0.206120
\(11\) −37.9081 −1.03907 −0.519534 0.854450i \(-0.673894\pi\)
−0.519534 + 0.854450i \(0.673894\pi\)
\(12\) −16.2147 −0.390064
\(13\) 36.7373 0.783777 0.391889 0.920013i \(-0.371822\pi\)
0.391889 + 0.920013i \(0.371822\pi\)
\(14\) −11.2766 −0.215270
\(15\) −12.1384 −0.208942
\(16\) 8.45185 0.132060
\(17\) −71.2798 −1.01693 −0.508467 0.861081i \(-0.669788\pi\)
−0.508467 + 0.861081i \(0.669788\pi\)
\(18\) −14.4984 −0.189851
\(19\) 37.1217 0.448227 0.224113 0.974563i \(-0.428051\pi\)
0.224113 + 0.974563i \(0.428051\pi\)
\(20\) 21.8689 0.244502
\(21\) 21.0000 0.218218
\(22\) 61.0676 0.591803
\(23\) 23.0000 0.208514
\(24\) 64.7832 0.550993
\(25\) −108.629 −0.869030
\(26\) −59.1815 −0.446402
\(27\) 27.0000 0.192450
\(28\) −37.8342 −0.255357
\(29\) 296.671 1.89967 0.949836 0.312749i \(-0.101250\pi\)
0.949836 + 0.312749i \(0.101250\pi\)
\(30\) 19.5542 0.119003
\(31\) 51.7855 0.300031 0.150015 0.988684i \(-0.452068\pi\)
0.150015 + 0.988684i \(0.452068\pi\)
\(32\) −186.371 −1.02956
\(33\) −113.724 −0.599906
\(34\) 114.827 0.579197
\(35\) −28.3230 −0.136785
\(36\) −48.6440 −0.225204
\(37\) −34.0506 −0.151294 −0.0756470 0.997135i \(-0.524102\pi\)
−0.0756470 + 0.997135i \(0.524102\pi\)
\(38\) −59.8007 −0.255288
\(39\) 110.212 0.452514
\(40\) −87.3740 −0.345376
\(41\) −231.614 −0.882244 −0.441122 0.897447i \(-0.645419\pi\)
−0.441122 + 0.897447i \(0.645419\pi\)
\(42\) −33.8297 −0.124286
\(43\) −540.155 −1.91565 −0.957823 0.287357i \(-0.907223\pi\)
−0.957823 + 0.287357i \(0.907223\pi\)
\(44\) 204.889 0.702005
\(45\) −36.4153 −0.120633
\(46\) −37.0515 −0.118760
\(47\) 40.9660 0.127138 0.0635691 0.997977i \(-0.479752\pi\)
0.0635691 + 0.997977i \(0.479752\pi\)
\(48\) 25.3555 0.0762449
\(49\) 49.0000 0.142857
\(50\) 174.994 0.494958
\(51\) −213.839 −0.587128
\(52\) −198.561 −0.529528
\(53\) −600.378 −1.55601 −0.778003 0.628260i \(-0.783767\pi\)
−0.778003 + 0.628260i \(0.783767\pi\)
\(54\) −43.4953 −0.109610
\(55\) 153.382 0.376036
\(56\) 151.161 0.360709
\(57\) 111.365 0.258784
\(58\) −477.919 −1.08196
\(59\) −422.877 −0.933118 −0.466559 0.884490i \(-0.654506\pi\)
−0.466559 + 0.884490i \(0.654506\pi\)
\(60\) 65.6068 0.141163
\(61\) −414.267 −0.869531 −0.434766 0.900544i \(-0.643169\pi\)
−0.434766 + 0.900544i \(0.643169\pi\)
\(62\) −83.4232 −0.170883
\(63\) 63.0000 0.125988
\(64\) 232.617 0.454329
\(65\) −148.644 −0.283647
\(66\) 183.203 0.341677
\(67\) −191.224 −0.348683 −0.174342 0.984685i \(-0.555780\pi\)
−0.174342 + 0.984685i \(0.555780\pi\)
\(68\) 385.259 0.687052
\(69\) 69.0000 0.120386
\(70\) 45.6265 0.0779059
\(71\) −552.371 −0.923301 −0.461650 0.887062i \(-0.652743\pi\)
−0.461650 + 0.887062i \(0.652743\pi\)
\(72\) 194.350 0.318116
\(73\) 659.923 1.05806 0.529028 0.848604i \(-0.322557\pi\)
0.529028 + 0.848604i \(0.322557\pi\)
\(74\) 54.8533 0.0861698
\(75\) −325.886 −0.501735
\(76\) −200.639 −0.302827
\(77\) −265.357 −0.392730
\(78\) −177.544 −0.257730
\(79\) 883.564 1.25834 0.629169 0.777269i \(-0.283395\pi\)
0.629169 + 0.777269i \(0.283395\pi\)
\(80\) −34.1974 −0.0477923
\(81\) 81.0000 0.111111
\(82\) 373.115 0.502484
\(83\) −1304.64 −1.72534 −0.862668 0.505770i \(-0.831208\pi\)
−0.862668 + 0.505770i \(0.831208\pi\)
\(84\) −113.503 −0.147430
\(85\) 288.408 0.368027
\(86\) 870.155 1.09106
\(87\) 890.014 1.09678
\(88\) −818.604 −0.991631
\(89\) −1298.09 −1.54603 −0.773015 0.634387i \(-0.781253\pi\)
−0.773015 + 0.634387i \(0.781253\pi\)
\(90\) 58.6627 0.0687065
\(91\) 257.161 0.296240
\(92\) −124.312 −0.140875
\(93\) 155.357 0.173223
\(94\) −65.9935 −0.0724119
\(95\) −150.200 −0.162212
\(96\) −559.112 −0.594418
\(97\) 252.312 0.264107 0.132053 0.991243i \(-0.457843\pi\)
0.132053 + 0.991243i \(0.457843\pi\)
\(98\) −78.9359 −0.0813646
\(99\) −341.173 −0.346356
\(100\) 587.126 0.587126
\(101\) −576.043 −0.567509 −0.283755 0.958897i \(-0.591580\pi\)
−0.283755 + 0.958897i \(0.591580\pi\)
\(102\) 344.482 0.334400
\(103\) 761.268 0.728252 0.364126 0.931350i \(-0.381368\pi\)
0.364126 + 0.931350i \(0.381368\pi\)
\(104\) 793.321 0.747996
\(105\) −84.9690 −0.0789726
\(106\) 967.171 0.886226
\(107\) 700.798 0.633165 0.316583 0.948565i \(-0.397465\pi\)
0.316583 + 0.948565i \(0.397465\pi\)
\(108\) −145.932 −0.130021
\(109\) −1580.96 −1.38925 −0.694624 0.719373i \(-0.744429\pi\)
−0.694624 + 0.719373i \(0.744429\pi\)
\(110\) −247.088 −0.214172
\(111\) −102.152 −0.0873496
\(112\) 59.1629 0.0499140
\(113\) −1652.72 −1.37589 −0.687943 0.725764i \(-0.741486\pi\)
−0.687943 + 0.725764i \(0.741486\pi\)
\(114\) −179.402 −0.147391
\(115\) −93.0612 −0.0754609
\(116\) −1603.47 −1.28344
\(117\) 330.636 0.261259
\(118\) 681.229 0.531459
\(119\) −498.959 −0.384365
\(120\) −262.122 −0.199403
\(121\) 106.028 0.0796602
\(122\) 667.357 0.495243
\(123\) −694.841 −0.509364
\(124\) −279.895 −0.202704
\(125\) 945.295 0.676398
\(126\) −101.489 −0.0717568
\(127\) −1907.57 −1.33283 −0.666415 0.745581i \(-0.732172\pi\)
−0.666415 + 0.745581i \(0.732172\pi\)
\(128\) 1116.24 0.770798
\(129\) −1620.46 −1.10600
\(130\) 239.457 0.161552
\(131\) −1330.96 −0.887682 −0.443841 0.896106i \(-0.646384\pi\)
−0.443841 + 0.896106i \(0.646384\pi\)
\(132\) 614.667 0.405303
\(133\) 259.852 0.169414
\(134\) 308.050 0.198593
\(135\) −109.246 −0.0696473
\(136\) −1539.25 −0.970509
\(137\) −1189.85 −0.742016 −0.371008 0.928630i \(-0.620988\pi\)
−0.371008 + 0.928630i \(0.620988\pi\)
\(138\) −111.155 −0.0685660
\(139\) −1381.64 −0.843088 −0.421544 0.906808i \(-0.638512\pi\)
−0.421544 + 0.906808i \(0.638512\pi\)
\(140\) 153.082 0.0924131
\(141\) 122.898 0.0734033
\(142\) 889.834 0.525868
\(143\) −1392.64 −0.814397
\(144\) 76.0666 0.0440200
\(145\) −1200.37 −0.687487
\(146\) −1063.09 −0.602618
\(147\) 147.000 0.0824786
\(148\) 184.039 0.102216
\(149\) −2279.63 −1.25339 −0.626693 0.779267i \(-0.715592\pi\)
−0.626693 + 0.779267i \(0.715592\pi\)
\(150\) 524.982 0.285764
\(151\) 3484.05 1.87767 0.938834 0.344369i \(-0.111907\pi\)
0.938834 + 0.344369i \(0.111907\pi\)
\(152\) 801.622 0.427764
\(153\) −641.518 −0.338978
\(154\) 427.473 0.223680
\(155\) −209.532 −0.108581
\(156\) −595.683 −0.305723
\(157\) 3767.47 1.91514 0.957571 0.288198i \(-0.0930563\pi\)
0.957571 + 0.288198i \(0.0930563\pi\)
\(158\) −1423.36 −0.716689
\(159\) −1801.14 −0.898361
\(160\) 754.082 0.372596
\(161\) 161.000 0.0788110
\(162\) −130.486 −0.0632836
\(163\) 446.050 0.214339 0.107170 0.994241i \(-0.465821\pi\)
0.107170 + 0.994241i \(0.465821\pi\)
\(164\) 1251.85 0.596053
\(165\) 460.145 0.217105
\(166\) 2101.69 0.982669
\(167\) 879.939 0.407735 0.203867 0.978999i \(-0.434649\pi\)
0.203867 + 0.978999i \(0.434649\pi\)
\(168\) 453.483 0.208256
\(169\) −847.369 −0.385694
\(170\) −464.607 −0.209610
\(171\) 334.095 0.149409
\(172\) 2919.47 1.29423
\(173\) 4431.29 1.94743 0.973714 0.227776i \(-0.0731455\pi\)
0.973714 + 0.227776i \(0.0731455\pi\)
\(174\) −1433.76 −0.624671
\(175\) −760.401 −0.328462
\(176\) −320.394 −0.137219
\(177\) −1268.63 −0.538736
\(178\) 2091.13 0.880545
\(179\) 4538.30 1.89502 0.947510 0.319727i \(-0.103591\pi\)
0.947510 + 0.319727i \(0.103591\pi\)
\(180\) 196.820 0.0815007
\(181\) 3717.32 1.52655 0.763276 0.646072i \(-0.223590\pi\)
0.763276 + 0.646072i \(0.223590\pi\)
\(182\) −414.270 −0.168724
\(183\) −1242.80 −0.502024
\(184\) 496.672 0.198995
\(185\) 137.773 0.0547530
\(186\) −250.270 −0.0986595
\(187\) 2702.09 1.05666
\(188\) −221.416 −0.0858960
\(189\) 189.000 0.0727393
\(190\) 241.962 0.0923883
\(191\) −1075.79 −0.407547 −0.203774 0.979018i \(-0.565321\pi\)
−0.203774 + 0.979018i \(0.565321\pi\)
\(192\) 697.850 0.262307
\(193\) −2417.98 −0.901814 −0.450907 0.892571i \(-0.648899\pi\)
−0.450907 + 0.892571i \(0.648899\pi\)
\(194\) −406.458 −0.150423
\(195\) −445.933 −0.163764
\(196\) −264.839 −0.0965158
\(197\) 886.353 0.320559 0.160279 0.987072i \(-0.448760\pi\)
0.160279 + 0.987072i \(0.448760\pi\)
\(198\) 549.609 0.197268
\(199\) −3602.68 −1.28335 −0.641676 0.766976i \(-0.721761\pi\)
−0.641676 + 0.766976i \(0.721761\pi\)
\(200\) −2345.77 −0.829356
\(201\) −573.673 −0.201312
\(202\) 927.969 0.323226
\(203\) 2076.70 0.718008
\(204\) 1155.78 0.396670
\(205\) 937.142 0.319282
\(206\) −1226.35 −0.414778
\(207\) 207.000 0.0695048
\(208\) 310.498 0.103506
\(209\) −1407.22 −0.465738
\(210\) 136.880 0.0449790
\(211\) −2737.01 −0.893003 −0.446502 0.894783i \(-0.647330\pi\)
−0.446502 + 0.894783i \(0.647330\pi\)
\(212\) 3244.98 1.05125
\(213\) −1657.11 −0.533068
\(214\) −1128.94 −0.360621
\(215\) 2185.54 0.693268
\(216\) 583.049 0.183664
\(217\) 362.499 0.113401
\(218\) 2546.82 0.791249
\(219\) 1979.77 0.610869
\(220\) −829.010 −0.254054
\(221\) −2618.63 −0.797050
\(222\) 164.560 0.0497501
\(223\) 6322.74 1.89866 0.949331 0.314277i \(-0.101762\pi\)
0.949331 + 0.314277i \(0.101762\pi\)
\(224\) −1304.59 −0.389138
\(225\) −977.659 −0.289677
\(226\) 2662.43 0.783639
\(227\) −1798.05 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(228\) −601.916 −0.174837
\(229\) 3271.87 0.944154 0.472077 0.881557i \(-0.343504\pi\)
0.472077 + 0.881557i \(0.343504\pi\)
\(230\) 149.916 0.0429789
\(231\) −796.071 −0.226743
\(232\) 6406.44 1.81295
\(233\) 1183.50 0.332763 0.166382 0.986061i \(-0.446792\pi\)
0.166382 + 0.986061i \(0.446792\pi\)
\(234\) −532.633 −0.148801
\(235\) −165.754 −0.0460111
\(236\) 2285.60 0.630424
\(237\) 2650.69 0.726502
\(238\) 803.791 0.218916
\(239\) −1175.02 −0.318014 −0.159007 0.987277i \(-0.550829\pi\)
−0.159007 + 0.987277i \(0.550829\pi\)
\(240\) −102.592 −0.0275929
\(241\) 4850.47 1.29646 0.648229 0.761445i \(-0.275510\pi\)
0.648229 + 0.761445i \(0.275510\pi\)
\(242\) −170.804 −0.0453707
\(243\) 243.000 0.0641500
\(244\) 2239.06 0.587464
\(245\) −198.261 −0.0516997
\(246\) 1119.35 0.290109
\(247\) 1363.75 0.351310
\(248\) 1118.28 0.286334
\(249\) −3913.92 −0.996123
\(250\) −1522.81 −0.385244
\(251\) −2828.03 −0.711170 −0.355585 0.934644i \(-0.615718\pi\)
−0.355585 + 0.934644i \(0.615718\pi\)
\(252\) −340.508 −0.0851189
\(253\) −871.887 −0.216660
\(254\) 3072.97 0.759116
\(255\) 865.224 0.212480
\(256\) −3659.12 −0.893339
\(257\) −5468.22 −1.32723 −0.663615 0.748074i \(-0.730979\pi\)
−0.663615 + 0.748074i \(0.730979\pi\)
\(258\) 2610.46 0.629924
\(259\) −238.354 −0.0571837
\(260\) 803.406 0.191635
\(261\) 2670.04 0.633224
\(262\) 2144.09 0.505581
\(263\) −6201.76 −1.45406 −0.727028 0.686608i \(-0.759099\pi\)
−0.727028 + 0.686608i \(0.759099\pi\)
\(264\) −2455.81 −0.572518
\(265\) 2429.22 0.563115
\(266\) −418.605 −0.0964899
\(267\) −3894.26 −0.892601
\(268\) 1033.55 0.235574
\(269\) 5187.24 1.17573 0.587866 0.808958i \(-0.299968\pi\)
0.587866 + 0.808958i \(0.299968\pi\)
\(270\) 175.988 0.0396677
\(271\) 4454.25 0.998438 0.499219 0.866476i \(-0.333620\pi\)
0.499219 + 0.866476i \(0.333620\pi\)
\(272\) −602.446 −0.134297
\(273\) 771.484 0.171034
\(274\) 1916.78 0.422616
\(275\) 4117.91 0.902980
\(276\) −372.937 −0.0813339
\(277\) 3336.14 0.723643 0.361822 0.932247i \(-0.382155\pi\)
0.361822 + 0.932247i \(0.382155\pi\)
\(278\) 2225.74 0.480183
\(279\) 466.070 0.100010
\(280\) −611.618 −0.130540
\(281\) 1249.68 0.265301 0.132650 0.991163i \(-0.457651\pi\)
0.132650 + 0.991163i \(0.457651\pi\)
\(282\) −197.981 −0.0418070
\(283\) −5380.53 −1.13017 −0.565087 0.825031i \(-0.691157\pi\)
−0.565087 + 0.825031i \(0.691157\pi\)
\(284\) 2985.50 0.623792
\(285\) −450.599 −0.0936533
\(286\) 2243.46 0.463841
\(287\) −1621.30 −0.333457
\(288\) −1677.34 −0.343187
\(289\) 167.810 0.0341564
\(290\) 1933.73 0.391560
\(291\) 756.935 0.152482
\(292\) −3566.81 −0.714834
\(293\) 1856.93 0.370249 0.185125 0.982715i \(-0.440731\pi\)
0.185125 + 0.982715i \(0.440731\pi\)
\(294\) −236.808 −0.0469759
\(295\) 1711.02 0.337693
\(296\) −735.302 −0.144387
\(297\) −1023.52 −0.199969
\(298\) 3672.33 0.713868
\(299\) 844.959 0.163429
\(300\) 1761.38 0.338977
\(301\) −3781.08 −0.724046
\(302\) −5612.58 −1.06943
\(303\) −1728.13 −0.327652
\(304\) 313.747 0.0591929
\(305\) 1676.18 0.314681
\(306\) 1033.45 0.193066
\(307\) −5067.16 −0.942013 −0.471006 0.882130i \(-0.656109\pi\)
−0.471006 + 0.882130i \(0.656109\pi\)
\(308\) 1434.22 0.265333
\(309\) 2283.80 0.420457
\(310\) 337.542 0.0618423
\(311\) −7917.32 −1.44357 −0.721784 0.692118i \(-0.756678\pi\)
−0.721784 + 0.692118i \(0.756678\pi\)
\(312\) 2379.96 0.431855
\(313\) 693.815 0.125293 0.0626466 0.998036i \(-0.480046\pi\)
0.0626466 + 0.998036i \(0.480046\pi\)
\(314\) −6069.16 −1.09077
\(315\) −254.907 −0.0455948
\(316\) −4775.56 −0.850146
\(317\) 2953.25 0.523253 0.261627 0.965169i \(-0.415741\pi\)
0.261627 + 0.965169i \(0.415741\pi\)
\(318\) 2901.51 0.511663
\(319\) −11246.3 −1.97389
\(320\) −941.199 −0.164421
\(321\) 2102.39 0.365558
\(322\) −259.361 −0.0448870
\(323\) −2646.03 −0.455817
\(324\) −437.796 −0.0750678
\(325\) −3990.73 −0.681126
\(326\) −718.557 −0.122077
\(327\) −4742.87 −0.802083
\(328\) −5001.56 −0.841967
\(329\) 286.762 0.0480538
\(330\) −741.265 −0.123652
\(331\) −1053.07 −0.174871 −0.0874354 0.996170i \(-0.527867\pi\)
−0.0874354 + 0.996170i \(0.527867\pi\)
\(332\) 7051.43 1.16566
\(333\) −306.455 −0.0504313
\(334\) −1417.53 −0.232226
\(335\) 773.720 0.126188
\(336\) 177.489 0.0288179
\(337\) 7257.36 1.17310 0.586549 0.809914i \(-0.300486\pi\)
0.586549 + 0.809914i \(0.300486\pi\)
\(338\) 1365.06 0.219673
\(339\) −4958.17 −0.794368
\(340\) −1558.81 −0.248643
\(341\) −1963.09 −0.311752
\(342\) −538.207 −0.0850961
\(343\) 343.000 0.0539949
\(344\) −11664.3 −1.82819
\(345\) −279.184 −0.0435674
\(346\) −7138.53 −1.10916
\(347\) 4028.85 0.623286 0.311643 0.950199i \(-0.399121\pi\)
0.311643 + 0.950199i \(0.399121\pi\)
\(348\) −4810.42 −0.740993
\(349\) −1423.70 −0.218364 −0.109182 0.994022i \(-0.534823\pi\)
−0.109182 + 0.994022i \(0.534823\pi\)
\(350\) 1224.96 0.187076
\(351\) 991.908 0.150838
\(352\) 7064.97 1.06978
\(353\) −7711.80 −1.16277 −0.581385 0.813629i \(-0.697489\pi\)
−0.581385 + 0.813629i \(0.697489\pi\)
\(354\) 2043.69 0.306838
\(355\) 2234.97 0.334141
\(356\) 7016.00 1.04451
\(357\) −1496.88 −0.221913
\(358\) −7310.91 −1.07931
\(359\) 8981.25 1.32037 0.660184 0.751104i \(-0.270478\pi\)
0.660184 + 0.751104i \(0.270478\pi\)
\(360\) −786.366 −0.115125
\(361\) −5480.98 −0.799093
\(362\) −5988.36 −0.869451
\(363\) 318.083 0.0459919
\(364\) −1389.93 −0.200143
\(365\) −2670.14 −0.382908
\(366\) 2002.07 0.285929
\(367\) −5896.59 −0.838690 −0.419345 0.907827i \(-0.637740\pi\)
−0.419345 + 0.907827i \(0.637740\pi\)
\(368\) 194.392 0.0275364
\(369\) −2084.52 −0.294081
\(370\) −221.944 −0.0311847
\(371\) −4202.65 −0.588115
\(372\) −839.685 −0.117031
\(373\) −3400.56 −0.472050 −0.236025 0.971747i \(-0.575845\pi\)
−0.236025 + 0.971747i \(0.575845\pi\)
\(374\) −4352.89 −0.601825
\(375\) 2835.88 0.390519
\(376\) 884.636 0.121334
\(377\) 10898.9 1.48892
\(378\) −304.467 −0.0414288
\(379\) 12505.5 1.69489 0.847446 0.530882i \(-0.178139\pi\)
0.847446 + 0.530882i \(0.178139\pi\)
\(380\) 811.812 0.109592
\(381\) −5722.71 −0.769510
\(382\) 1733.03 0.232119
\(383\) −8730.52 −1.16478 −0.582388 0.812911i \(-0.697881\pi\)
−0.582388 + 0.812911i \(0.697881\pi\)
\(384\) 3348.71 0.445021
\(385\) 1073.67 0.142128
\(386\) 3895.21 0.513630
\(387\) −4861.39 −0.638549
\(388\) −1363.71 −0.178433
\(389\) 5867.29 0.764739 0.382370 0.924009i \(-0.375108\pi\)
0.382370 + 0.924009i \(0.375108\pi\)
\(390\) 718.370 0.0932720
\(391\) −1639.44 −0.212046
\(392\) 1058.13 0.136335
\(393\) −3992.87 −0.512503
\(394\) −1427.86 −0.182575
\(395\) −3575.02 −0.455390
\(396\) 1844.00 0.234002
\(397\) −10160.3 −1.28445 −0.642227 0.766514i \(-0.721989\pi\)
−0.642227 + 0.766514i \(0.721989\pi\)
\(398\) 5803.69 0.730936
\(399\) 779.556 0.0978111
\(400\) −918.113 −0.114764
\(401\) 5576.11 0.694408 0.347204 0.937790i \(-0.387131\pi\)
0.347204 + 0.937790i \(0.387131\pi\)
\(402\) 924.150 0.114658
\(403\) 1902.46 0.235157
\(404\) 3113.45 0.383415
\(405\) −327.737 −0.0402109
\(406\) −3345.43 −0.408943
\(407\) 1290.79 0.157205
\(408\) −4617.74 −0.560324
\(409\) −15856.5 −1.91701 −0.958503 0.285081i \(-0.907979\pi\)
−0.958503 + 0.285081i \(0.907979\pi\)
\(410\) −1509.68 −0.181848
\(411\) −3569.56 −0.428403
\(412\) −4114.57 −0.492015
\(413\) −2960.14 −0.352685
\(414\) −333.464 −0.0395866
\(415\) 5278.76 0.624396
\(416\) −6846.76 −0.806947
\(417\) −4144.92 −0.486757
\(418\) 2266.94 0.265262
\(419\) −10407.7 −1.21349 −0.606744 0.794897i \(-0.707525\pi\)
−0.606744 + 0.794897i \(0.707525\pi\)
\(420\) 459.247 0.0533547
\(421\) 2864.86 0.331650 0.165825 0.986155i \(-0.446971\pi\)
0.165825 + 0.986155i \(0.446971\pi\)
\(422\) 4409.15 0.508612
\(423\) 368.694 0.0423794
\(424\) −12964.8 −1.48497
\(425\) 7743.04 0.883747
\(426\) 2669.50 0.303610
\(427\) −2899.87 −0.328652
\(428\) −3787.73 −0.427773
\(429\) −4177.93 −0.470192
\(430\) −3520.77 −0.394852
\(431\) 4890.75 0.546587 0.273294 0.961931i \(-0.411887\pi\)
0.273294 + 0.961931i \(0.411887\pi\)
\(432\) 228.200 0.0254150
\(433\) 14356.2 1.59333 0.796667 0.604419i \(-0.206595\pi\)
0.796667 + 0.604419i \(0.206595\pi\)
\(434\) −583.962 −0.0645878
\(435\) −3601.12 −0.396921
\(436\) 8544.88 0.938591
\(437\) 853.800 0.0934617
\(438\) −3189.28 −0.347922
\(439\) −5195.73 −0.564872 −0.282436 0.959286i \(-0.591142\pi\)
−0.282436 + 0.959286i \(0.591142\pi\)
\(440\) 3312.19 0.358869
\(441\) 441.000 0.0476190
\(442\) 4218.45 0.453962
\(443\) 5017.86 0.538162 0.269081 0.963118i \(-0.413280\pi\)
0.269081 + 0.963118i \(0.413280\pi\)
\(444\) 552.118 0.0590143
\(445\) 5252.24 0.559505
\(446\) −10185.5 −1.08139
\(447\) −6838.88 −0.723642
\(448\) 1628.32 0.171720
\(449\) −3953.42 −0.415531 −0.207766 0.978179i \(-0.566619\pi\)
−0.207766 + 0.978179i \(0.566619\pi\)
\(450\) 1574.95 0.164986
\(451\) 8780.05 0.916710
\(452\) 8932.78 0.929563
\(453\) 10452.2 1.08407
\(454\) 2896.55 0.299431
\(455\) −1040.51 −0.107209
\(456\) 2404.87 0.246970
\(457\) −2109.06 −0.215881 −0.107940 0.994157i \(-0.534426\pi\)
−0.107940 + 0.994157i \(0.534426\pi\)
\(458\) −5270.78 −0.537745
\(459\) −1924.55 −0.195709
\(460\) 502.985 0.0509822
\(461\) −2124.35 −0.214622 −0.107311 0.994226i \(-0.534224\pi\)
−0.107311 + 0.994226i \(0.534224\pi\)
\(462\) 1282.42 0.129142
\(463\) 10276.7 1.03153 0.515764 0.856731i \(-0.327508\pi\)
0.515764 + 0.856731i \(0.327508\pi\)
\(464\) 2507.42 0.250871
\(465\) −628.595 −0.0626890
\(466\) −1906.55 −0.189526
\(467\) −5667.19 −0.561555 −0.280777 0.959773i \(-0.590592\pi\)
−0.280777 + 0.959773i \(0.590592\pi\)
\(468\) −1787.05 −0.176509
\(469\) −1338.57 −0.131790
\(470\) 267.019 0.0262057
\(471\) 11302.4 1.10571
\(472\) −9131.79 −0.890519
\(473\) 20476.3 1.99049
\(474\) −4270.09 −0.413780
\(475\) −4032.49 −0.389522
\(476\) 2696.81 0.259681
\(477\) −5403.41 −0.518669
\(478\) 1892.87 0.181126
\(479\) 6447.59 0.615027 0.307514 0.951544i \(-0.400503\pi\)
0.307514 + 0.951544i \(0.400503\pi\)
\(480\) 2262.25 0.215119
\(481\) −1250.93 −0.118581
\(482\) −7813.80 −0.738400
\(483\) 483.000 0.0455016
\(484\) −573.068 −0.0538193
\(485\) −1020.89 −0.0955797
\(486\) −391.458 −0.0365368
\(487\) −1615.33 −0.150303 −0.0751513 0.997172i \(-0.523944\pi\)
−0.0751513 + 0.997172i \(0.523944\pi\)
\(488\) −8945.84 −0.829835
\(489\) 1338.15 0.123749
\(490\) 319.386 0.0294457
\(491\) −84.4081 −0.00775822 −0.00387911 0.999992i \(-0.501235\pi\)
−0.00387911 + 0.999992i \(0.501235\pi\)
\(492\) 3755.54 0.344131
\(493\) −21146.7 −1.93184
\(494\) −2196.92 −0.200089
\(495\) 1380.44 0.125345
\(496\) 437.683 0.0396221
\(497\) −3866.60 −0.348975
\(498\) 6305.08 0.567344
\(499\) 5017.91 0.450166 0.225083 0.974340i \(-0.427735\pi\)
0.225083 + 0.974340i \(0.427735\pi\)
\(500\) −5109.21 −0.456982
\(501\) 2639.82 0.235406
\(502\) 4555.77 0.405048
\(503\) 5799.38 0.514079 0.257040 0.966401i \(-0.417253\pi\)
0.257040 + 0.966401i \(0.417253\pi\)
\(504\) 1360.45 0.120236
\(505\) 2330.75 0.205380
\(506\) 1404.56 0.123399
\(507\) −2542.11 −0.222680
\(508\) 10310.2 0.900474
\(509\) −21318.1 −1.85640 −0.928201 0.372079i \(-0.878645\pi\)
−0.928201 + 0.372079i \(0.878645\pi\)
\(510\) −1393.82 −0.121019
\(511\) 4619.46 0.399908
\(512\) −3035.28 −0.261995
\(513\) 1002.29 0.0862613
\(514\) 8808.95 0.755927
\(515\) −3080.20 −0.263553
\(516\) 8758.42 0.747225
\(517\) −1552.94 −0.132105
\(518\) 383.973 0.0325691
\(519\) 13293.9 1.12435
\(520\) −3209.89 −0.270698
\(521\) 5959.52 0.501135 0.250568 0.968099i \(-0.419383\pi\)
0.250568 + 0.968099i \(0.419383\pi\)
\(522\) −4301.27 −0.360654
\(523\) 6037.00 0.504741 0.252371 0.967631i \(-0.418790\pi\)
0.252371 + 0.967631i \(0.418790\pi\)
\(524\) 7193.67 0.599727
\(525\) −2281.20 −0.189638
\(526\) 9990.63 0.828160
\(527\) −3691.26 −0.305112
\(528\) −961.181 −0.0792236
\(529\) 529.000 0.0434783
\(530\) −3913.31 −0.320723
\(531\) −3805.90 −0.311039
\(532\) −1404.47 −0.114458
\(533\) −8508.87 −0.691482
\(534\) 6273.40 0.508383
\(535\) −2835.53 −0.229141
\(536\) −4129.38 −0.332765
\(537\) 13614.9 1.09409
\(538\) −8356.32 −0.669640
\(539\) −1857.50 −0.148438
\(540\) 590.461 0.0470544
\(541\) −3037.63 −0.241401 −0.120700 0.992689i \(-0.538514\pi\)
−0.120700 + 0.992689i \(0.538514\pi\)
\(542\) −7175.52 −0.568662
\(543\) 11151.9 0.881355
\(544\) 13284.5 1.04700
\(545\) 6396.77 0.502766
\(546\) −1242.81 −0.0974129
\(547\) 3998.58 0.312554 0.156277 0.987713i \(-0.450051\pi\)
0.156277 + 0.987713i \(0.450051\pi\)
\(548\) 6431.03 0.501314
\(549\) −3728.40 −0.289844
\(550\) −6633.70 −0.514294
\(551\) 11013.0 0.851484
\(552\) 1490.01 0.114890
\(553\) 6184.95 0.475607
\(554\) −5374.31 −0.412153
\(555\) 413.320 0.0316116
\(556\) 7467.61 0.569599
\(557\) −21661.6 −1.64781 −0.823906 0.566727i \(-0.808210\pi\)
−0.823906 + 0.566727i \(0.808210\pi\)
\(558\) −750.809 −0.0569611
\(559\) −19843.8 −1.50144
\(560\) −239.382 −0.0180638
\(561\) 8106.26 0.610065
\(562\) −2013.15 −0.151103
\(563\) 11236.4 0.841133 0.420567 0.907262i \(-0.361831\pi\)
0.420567 + 0.907262i \(0.361831\pi\)
\(564\) −664.249 −0.0495921
\(565\) 6687.15 0.497930
\(566\) 8667.69 0.643693
\(567\) 567.000 0.0419961
\(568\) −11928.1 −0.881150
\(569\) −7266.20 −0.535351 −0.267676 0.963509i \(-0.586256\pi\)
−0.267676 + 0.963509i \(0.586256\pi\)
\(570\) 725.887 0.0533404
\(571\) −7080.39 −0.518923 −0.259462 0.965753i \(-0.583545\pi\)
−0.259462 + 0.965753i \(0.583545\pi\)
\(572\) 7527.08 0.550215
\(573\) −3227.37 −0.235298
\(574\) 2611.81 0.189921
\(575\) −2498.46 −0.181205
\(576\) 2093.55 0.151443
\(577\) −20377.8 −1.47026 −0.735129 0.677928i \(-0.762878\pi\)
−0.735129 + 0.677928i \(0.762878\pi\)
\(578\) −270.332 −0.0194538
\(579\) −7253.95 −0.520663
\(580\) 6487.88 0.464474
\(581\) −9132.48 −0.652116
\(582\) −1219.37 −0.0868465
\(583\) 22759.2 1.61679
\(584\) 14250.6 1.00975
\(585\) −1337.80 −0.0945491
\(586\) −2991.40 −0.210876
\(587\) 23031.4 1.61944 0.809718 0.586820i \(-0.199620\pi\)
0.809718 + 0.586820i \(0.199620\pi\)
\(588\) −794.518 −0.0557234
\(589\) 1922.37 0.134482
\(590\) −2756.35 −0.192334
\(591\) 2659.06 0.185075
\(592\) −287.790 −0.0199799
\(593\) −25403.4 −1.75918 −0.879589 0.475734i \(-0.842183\pi\)
−0.879589 + 0.475734i \(0.842183\pi\)
\(594\) 1648.83 0.113892
\(595\) 2018.86 0.139101
\(596\) 12321.1 0.846800
\(597\) −10808.0 −0.740944
\(598\) −1361.17 −0.0930812
\(599\) −25230.6 −1.72102 −0.860512 0.509430i \(-0.829856\pi\)
−0.860512 + 0.509430i \(0.829856\pi\)
\(600\) −7037.32 −0.478829
\(601\) −12223.1 −0.829605 −0.414802 0.909912i \(-0.636149\pi\)
−0.414802 + 0.909912i \(0.636149\pi\)
\(602\) 6091.08 0.412382
\(603\) −1721.02 −0.116228
\(604\) −18830.9 −1.26857
\(605\) −429.003 −0.0288289
\(606\) 2783.91 0.186615
\(607\) −13254.9 −0.886326 −0.443163 0.896441i \(-0.646144\pi\)
−0.443163 + 0.896441i \(0.646144\pi\)
\(608\) −6918.40 −0.461477
\(609\) 6230.10 0.414542
\(610\) −2700.22 −0.179227
\(611\) 1504.98 0.0996481
\(612\) 3467.33 0.229017
\(613\) −27441.4 −1.80807 −0.904035 0.427457i \(-0.859409\pi\)
−0.904035 + 0.427457i \(0.859409\pi\)
\(614\) 8162.87 0.536525
\(615\) 2811.43 0.184338
\(616\) −5730.23 −0.374801
\(617\) −1618.50 −0.105605 −0.0528026 0.998605i \(-0.516815\pi\)
−0.0528026 + 0.998605i \(0.516815\pi\)
\(618\) −3679.06 −0.239472
\(619\) 2888.34 0.187548 0.0937739 0.995594i \(-0.470107\pi\)
0.0937739 + 0.995594i \(0.470107\pi\)
\(620\) 1132.49 0.0733582
\(621\) 621.000 0.0401286
\(622\) 12754.3 0.822188
\(623\) −9086.60 −0.584345
\(624\) 931.495 0.0597590
\(625\) 9753.80 0.624243
\(626\) −1117.69 −0.0713610
\(627\) −4221.65 −0.268894
\(628\) −20362.8 −1.29389
\(629\) 2427.12 0.153856
\(630\) 410.639 0.0259686
\(631\) 26700.7 1.68453 0.842265 0.539064i \(-0.181222\pi\)
0.842265 + 0.539064i \(0.181222\pi\)
\(632\) 19080.0 1.20089
\(633\) −8211.04 −0.515576
\(634\) −4757.50 −0.298020
\(635\) 7718.29 0.482348
\(636\) 9734.93 0.606942
\(637\) 1800.13 0.111968
\(638\) 18117.0 1.12423
\(639\) −4971.34 −0.307767
\(640\) −4516.44 −0.278950
\(641\) −567.551 −0.0349718 −0.0174859 0.999847i \(-0.505566\pi\)
−0.0174859 + 0.999847i \(0.505566\pi\)
\(642\) −3386.82 −0.208204
\(643\) −5374.45 −0.329623 −0.164812 0.986325i \(-0.552702\pi\)
−0.164812 + 0.986325i \(0.552702\pi\)
\(644\) −870.186 −0.0532456
\(645\) 6556.63 0.400259
\(646\) 4262.58 0.259612
\(647\) 24955.5 1.51638 0.758192 0.652031i \(-0.226083\pi\)
0.758192 + 0.652031i \(0.226083\pi\)
\(648\) 1749.15 0.106039
\(649\) 16030.5 0.969572
\(650\) 6428.81 0.387937
\(651\) 1087.50 0.0654721
\(652\) −2410.85 −0.144810
\(653\) 15748.9 0.943801 0.471900 0.881652i \(-0.343568\pi\)
0.471900 + 0.881652i \(0.343568\pi\)
\(654\) 7640.46 0.456828
\(655\) 5385.24 0.321250
\(656\) −1957.56 −0.116509
\(657\) 5939.30 0.352685
\(658\) −461.955 −0.0273691
\(659\) 5429.59 0.320951 0.160476 0.987040i \(-0.448697\pi\)
0.160476 + 0.987040i \(0.448697\pi\)
\(660\) −2487.03 −0.146678
\(661\) −4332.69 −0.254950 −0.127475 0.991842i \(-0.540687\pi\)
−0.127475 + 0.991842i \(0.540687\pi\)
\(662\) 1696.44 0.0995980
\(663\) −7855.89 −0.460177
\(664\) −28173.0 −1.64657
\(665\) −1051.40 −0.0613105
\(666\) 493.679 0.0287233
\(667\) 6823.44 0.396109
\(668\) −4755.97 −0.275470
\(669\) 18968.2 1.09619
\(670\) −1246.41 −0.0718704
\(671\) 15704.1 0.903501
\(672\) −3913.78 −0.224669
\(673\) −12090.4 −0.692496 −0.346248 0.938143i \(-0.612544\pi\)
−0.346248 + 0.938143i \(0.612544\pi\)
\(674\) −11691.1 −0.668140
\(675\) −2932.98 −0.167245
\(676\) 4579.93 0.260579
\(677\) −8307.52 −0.471616 −0.235808 0.971800i \(-0.575774\pi\)
−0.235808 + 0.971800i \(0.575774\pi\)
\(678\) 7987.30 0.452434
\(679\) 1766.18 0.0998230
\(680\) 6228.00 0.351225
\(681\) −5394.15 −0.303531
\(682\) 3162.42 0.177559
\(683\) 28267.1 1.58362 0.791808 0.610770i \(-0.209140\pi\)
0.791808 + 0.610770i \(0.209140\pi\)
\(684\) −1805.75 −0.100942
\(685\) 4814.32 0.268534
\(686\) −552.551 −0.0307529
\(687\) 9815.61 0.545108
\(688\) −4565.30 −0.252980
\(689\) −22056.3 −1.21956
\(690\) 449.747 0.0248139
\(691\) 5984.65 0.329475 0.164737 0.986337i \(-0.447322\pi\)
0.164737 + 0.986337i \(0.447322\pi\)
\(692\) −23950.6 −1.31570
\(693\) −2388.21 −0.130910
\(694\) −6490.22 −0.354994
\(695\) 5590.32 0.305112
\(696\) 19219.3 1.04671
\(697\) 16509.4 0.897184
\(698\) 2293.49 0.124370
\(699\) 3550.51 0.192121
\(700\) 4109.88 0.221913
\(701\) 788.610 0.0424899 0.0212449 0.999774i \(-0.493237\pi\)
0.0212449 + 0.999774i \(0.493237\pi\)
\(702\) −1597.90 −0.0859101
\(703\) −1264.02 −0.0678140
\(704\) −8818.06 −0.472079
\(705\) −497.262 −0.0265645
\(706\) 12423.2 0.662258
\(707\) −4032.30 −0.214498
\(708\) 6856.81 0.363976
\(709\) 24351.5 1.28990 0.644951 0.764224i \(-0.276878\pi\)
0.644951 + 0.764224i \(0.276878\pi\)
\(710\) −3600.39 −0.190310
\(711\) 7952.07 0.419446
\(712\) −28031.4 −1.47545
\(713\) 1191.07 0.0625608
\(714\) 2411.37 0.126391
\(715\) 5634.83 0.294728
\(716\) −24529.0 −1.28030
\(717\) −3525.05 −0.183606
\(718\) −14468.2 −0.752018
\(719\) 16646.7 0.863447 0.431724 0.902006i \(-0.357906\pi\)
0.431724 + 0.902006i \(0.357906\pi\)
\(720\) −307.776 −0.0159308
\(721\) 5328.88 0.275253
\(722\) 8829.51 0.455125
\(723\) 14551.4 0.748510
\(724\) −20091.7 −1.03135
\(725\) −32227.0 −1.65087
\(726\) −512.412 −0.0261948
\(727\) 29238.6 1.49161 0.745805 0.666164i \(-0.232065\pi\)
0.745805 + 0.666164i \(0.232065\pi\)
\(728\) 5553.25 0.282716
\(729\) 729.000 0.0370370
\(730\) 4301.43 0.218086
\(731\) 38502.1 1.94809
\(732\) 6717.19 0.339173
\(733\) −13939.6 −0.702418 −0.351209 0.936297i \(-0.614229\pi\)
−0.351209 + 0.936297i \(0.614229\pi\)
\(734\) 9499.02 0.477678
\(735\) −594.783 −0.0298488
\(736\) −4286.53 −0.214679
\(737\) 7248.96 0.362305
\(738\) 3358.04 0.167495
\(739\) −26277.9 −1.30805 −0.654025 0.756473i \(-0.726921\pi\)
−0.654025 + 0.756473i \(0.726921\pi\)
\(740\) −744.649 −0.0369917
\(741\) 4091.26 0.202829
\(742\) 6770.20 0.334962
\(743\) 35920.4 1.77361 0.886804 0.462146i \(-0.152920\pi\)
0.886804 + 0.462146i \(0.152920\pi\)
\(744\) 3354.84 0.165315
\(745\) 9223.69 0.453597
\(746\) 5478.09 0.268857
\(747\) −11741.8 −0.575112
\(748\) −14604.5 −0.713893
\(749\) 4905.59 0.239314
\(750\) −4568.43 −0.222421
\(751\) −1022.51 −0.0496831 −0.0248415 0.999691i \(-0.507908\pi\)
−0.0248415 + 0.999691i \(0.507908\pi\)
\(752\) 346.238 0.0167899
\(753\) −8484.09 −0.410594
\(754\) −17557.5 −0.848017
\(755\) −14097.0 −0.679524
\(756\) −1021.52 −0.0491434
\(757\) 22036.7 1.05804 0.529020 0.848610i \(-0.322560\pi\)
0.529020 + 0.848610i \(0.322560\pi\)
\(758\) −20145.5 −0.965329
\(759\) −2615.66 −0.125089
\(760\) −3243.48 −0.154807
\(761\) 24414.0 1.16295 0.581476 0.813564i \(-0.302475\pi\)
0.581476 + 0.813564i \(0.302475\pi\)
\(762\) 9218.92 0.438276
\(763\) −11066.7 −0.525087
\(764\) 5814.53 0.275343
\(765\) 2595.67 0.122676
\(766\) 14064.3 0.663400
\(767\) −15535.4 −0.731356
\(768\) −10977.3 −0.515769
\(769\) −16321.6 −0.765372 −0.382686 0.923878i \(-0.625001\pi\)
−0.382686 + 0.923878i \(0.625001\pi\)
\(770\) −1729.62 −0.0809495
\(771\) −16404.7 −0.766277
\(772\) 13068.9 0.609275
\(773\) −11794.0 −0.548770 −0.274385 0.961620i \(-0.588474\pi\)
−0.274385 + 0.961620i \(0.588474\pi\)
\(774\) 7831.39 0.363687
\(775\) −5625.40 −0.260736
\(776\) 5448.52 0.252050
\(777\) −715.062 −0.0330150
\(778\) −9451.84 −0.435559
\(779\) −8597.90 −0.395445
\(780\) 2410.22 0.110641
\(781\) 20939.4 0.959371
\(782\) 2641.03 0.120771
\(783\) 8010.13 0.365592
\(784\) 414.140 0.0188657
\(785\) −15243.7 −0.693086
\(786\) 6432.27 0.291897
\(787\) −14166.4 −0.641647 −0.320823 0.947139i \(-0.603960\pi\)
−0.320823 + 0.947139i \(0.603960\pi\)
\(788\) −4790.64 −0.216573
\(789\) −18605.3 −0.839499
\(790\) 5759.14 0.259368
\(791\) −11569.1 −0.520036
\(792\) −7367.44 −0.330544
\(793\) −15219.0 −0.681519
\(794\) 16367.5 0.731564
\(795\) 7287.65 0.325115
\(796\) 19472.1 0.867047
\(797\) 5736.99 0.254974 0.127487 0.991840i \(-0.459309\pi\)
0.127487 + 0.991840i \(0.459309\pi\)
\(798\) −1255.82 −0.0557085
\(799\) −2920.05 −0.129291
\(800\) 20245.2 0.894721
\(801\) −11682.8 −0.515344
\(802\) −8982.75 −0.395501
\(803\) −25016.4 −1.09939
\(804\) 3100.64 0.136009
\(805\) −651.429 −0.0285215
\(806\) −3064.75 −0.133934
\(807\) 15561.7 0.678809
\(808\) −12439.3 −0.541601
\(809\) 35831.8 1.55720 0.778602 0.627518i \(-0.215929\pi\)
0.778602 + 0.627518i \(0.215929\pi\)
\(810\) 527.964 0.0229022
\(811\) −6549.29 −0.283572 −0.141786 0.989897i \(-0.545284\pi\)
−0.141786 + 0.989897i \(0.545284\pi\)
\(812\) −11224.3 −0.485094
\(813\) 13362.8 0.576448
\(814\) −2079.39 −0.0895362
\(815\) −1804.78 −0.0775689
\(816\) −1807.34 −0.0775361
\(817\) −20051.5 −0.858644
\(818\) 25543.9 1.09184
\(819\) 2314.45 0.0987466
\(820\) −5065.14 −0.215710
\(821\) 36143.4 1.53644 0.768218 0.640189i \(-0.221144\pi\)
0.768218 + 0.640189i \(0.221144\pi\)
\(822\) 5750.34 0.243998
\(823\) 11915.0 0.504654 0.252327 0.967642i \(-0.418804\pi\)
0.252327 + 0.967642i \(0.418804\pi\)
\(824\) 16439.1 0.695006
\(825\) 12353.7 0.521336
\(826\) 4768.60 0.200873
\(827\) 13133.5 0.552234 0.276117 0.961124i \(-0.410952\pi\)
0.276117 + 0.961124i \(0.410952\pi\)
\(828\) −1118.81 −0.0469582
\(829\) 5123.37 0.214646 0.107323 0.994224i \(-0.465772\pi\)
0.107323 + 0.994224i \(0.465772\pi\)
\(830\) −8503.75 −0.355626
\(831\) 10008.4 0.417796
\(832\) 8545.71 0.356093
\(833\) −3492.71 −0.145276
\(834\) 6677.21 0.277234
\(835\) −3560.36 −0.147558
\(836\) 7605.84 0.314657
\(837\) 1398.21 0.0577410
\(838\) 16766.2 0.691145
\(839\) 8749.12 0.360016 0.180008 0.983665i \(-0.442388\pi\)
0.180008 + 0.983665i \(0.442388\pi\)
\(840\) −1834.85 −0.0753673
\(841\) 63624.9 2.60875
\(842\) −4615.11 −0.188892
\(843\) 3749.03 0.153172
\(844\) 14793.2 0.603322
\(845\) 3428.57 0.139582
\(846\) −593.942 −0.0241373
\(847\) 742.195 0.0301087
\(848\) −5074.31 −0.205486
\(849\) −16141.6 −0.652506
\(850\) −12473.5 −0.503340
\(851\) −783.163 −0.0315470
\(852\) 8956.50 0.360146
\(853\) −26878.7 −1.07891 −0.539455 0.842014i \(-0.681370\pi\)
−0.539455 + 0.842014i \(0.681370\pi\)
\(854\) 4671.50 0.187184
\(855\) −1351.80 −0.0540708
\(856\) 15133.3 0.604260
\(857\) 31098.8 1.23957 0.619787 0.784770i \(-0.287219\pi\)
0.619787 + 0.784770i \(0.287219\pi\)
\(858\) 6730.38 0.267799
\(859\) −23412.8 −0.929957 −0.464978 0.885322i \(-0.653938\pi\)
−0.464978 + 0.885322i \(0.653938\pi\)
\(860\) −11812.6 −0.468379
\(861\) −4863.89 −0.192521
\(862\) −7878.69 −0.311310
\(863\) −35821.8 −1.41296 −0.706481 0.707732i \(-0.749719\pi\)
−0.706481 + 0.707732i \(0.749719\pi\)
\(864\) −5032.01 −0.198139
\(865\) −17929.6 −0.704770
\(866\) −23126.9 −0.907486
\(867\) 503.431 0.0197202
\(868\) −1959.26 −0.0766149
\(869\) −33494.3 −1.30750
\(870\) 5801.18 0.226067
\(871\) −7025.07 −0.273290
\(872\) −34139.8 −1.32583
\(873\) 2270.80 0.0880356
\(874\) −1375.42 −0.0532313
\(875\) 6617.06 0.255654
\(876\) −10700.4 −0.412710
\(877\) −8604.53 −0.331305 −0.165652 0.986184i \(-0.552973\pi\)
−0.165652 + 0.986184i \(0.552973\pi\)
\(878\) 8369.99 0.321724
\(879\) 5570.79 0.213764
\(880\) 1296.36 0.0496594
\(881\) −4126.18 −0.157792 −0.0788958 0.996883i \(-0.525139\pi\)
−0.0788958 + 0.996883i \(0.525139\pi\)
\(882\) −710.423 −0.0271215
\(883\) 34690.5 1.32212 0.661058 0.750335i \(-0.270108\pi\)
0.661058 + 0.750335i \(0.270108\pi\)
\(884\) 14153.4 0.538495
\(885\) 5133.07 0.194967
\(886\) −8083.46 −0.306511
\(887\) −11433.0 −0.432786 −0.216393 0.976306i \(-0.569429\pi\)
−0.216393 + 0.976306i \(0.569429\pi\)
\(888\) −2205.91 −0.0833619
\(889\) −13353.0 −0.503762
\(890\) −8461.02 −0.318667
\(891\) −3070.56 −0.115452
\(892\) −34173.7 −1.28276
\(893\) 1520.73 0.0569868
\(894\) 11017.0 0.412152
\(895\) −18362.6 −0.685804
\(896\) 7813.65 0.291334
\(897\) 2534.88 0.0943557
\(898\) 6368.71 0.236667
\(899\) 15363.3 0.569960
\(900\) 5284.13 0.195709
\(901\) 42794.9 1.58236
\(902\) −14144.1 −0.522114
\(903\) −11343.2 −0.418028
\(904\) −35689.6 −1.31307
\(905\) −15040.8 −0.552456
\(906\) −16837.8 −0.617436
\(907\) 17054.8 0.624360 0.312180 0.950023i \(-0.398941\pi\)
0.312180 + 0.950023i \(0.398941\pi\)
\(908\) 9718.26 0.355189
\(909\) −5184.39 −0.189170
\(910\) 1676.20 0.0610609
\(911\) 7835.55 0.284965 0.142483 0.989797i \(-0.454491\pi\)
0.142483 + 0.989797i \(0.454491\pi\)
\(912\) 941.241 0.0341750
\(913\) 49456.5 1.79274
\(914\) 3397.56 0.122955
\(915\) 5028.54 0.181681
\(916\) −17684.1 −0.637880
\(917\) −9316.71 −0.335512
\(918\) 3100.34 0.111467
\(919\) 15183.1 0.544990 0.272495 0.962157i \(-0.412151\pi\)
0.272495 + 0.962157i \(0.412151\pi\)
\(920\) −2009.60 −0.0720159
\(921\) −15201.5 −0.543871
\(922\) 3422.19 0.122238
\(923\) −20292.6 −0.723662
\(924\) 4302.67 0.153190
\(925\) 3698.87 0.131479
\(926\) −16555.1 −0.587509
\(927\) 6851.41 0.242751
\(928\) −55290.8 −1.95583
\(929\) 7278.39 0.257047 0.128523 0.991706i \(-0.458976\pi\)
0.128523 + 0.991706i \(0.458976\pi\)
\(930\) 1012.63 0.0357046
\(931\) 1818.96 0.0640324
\(932\) −6396.69 −0.224818
\(933\) −23752.0 −0.833445
\(934\) 9129.47 0.319835
\(935\) −10933.0 −0.382404
\(936\) 7139.89 0.249332
\(937\) −35577.2 −1.24040 −0.620200 0.784443i \(-0.712949\pi\)
−0.620200 + 0.784443i \(0.712949\pi\)
\(938\) 2156.35 0.0750611
\(939\) 2081.45 0.0723380
\(940\) 895.881 0.0310856
\(941\) −22186.9 −0.768620 −0.384310 0.923204i \(-0.625561\pi\)
−0.384310 + 0.923204i \(0.625561\pi\)
\(942\) −18207.5 −0.629758
\(943\) −5327.12 −0.183961
\(944\) −3574.10 −0.123228
\(945\) −764.721 −0.0263242
\(946\) −32986.0 −1.13368
\(947\) 24859.4 0.853033 0.426517 0.904480i \(-0.359741\pi\)
0.426517 + 0.904480i \(0.359741\pi\)
\(948\) −14326.7 −0.490832
\(949\) 24243.8 0.829280
\(950\) 6496.08 0.221853
\(951\) 8859.76 0.302100
\(952\) −10774.7 −0.366818
\(953\) −13985.8 −0.475386 −0.237693 0.971340i \(-0.576391\pi\)
−0.237693 + 0.971340i \(0.576391\pi\)
\(954\) 8704.54 0.295409
\(955\) 4352.80 0.147491
\(956\) 6350.82 0.214854
\(957\) −33738.8 −1.13962
\(958\) −10386.7 −0.350290
\(959\) −8328.98 −0.280456
\(960\) −2823.60 −0.0949284
\(961\) −27109.3 −0.909981
\(962\) 2015.16 0.0675379
\(963\) 6307.18 0.211055
\(964\) −26216.2 −0.875901
\(965\) 9783.50 0.326365
\(966\) −778.082 −0.0259155
\(967\) 33255.9 1.10593 0.552966 0.833204i \(-0.313496\pi\)
0.552966 + 0.833204i \(0.313496\pi\)
\(968\) 2289.61 0.0760235
\(969\) −7938.09 −0.263166
\(970\) 1644.59 0.0544376
\(971\) 2092.57 0.0691594 0.0345797 0.999402i \(-0.488991\pi\)
0.0345797 + 0.999402i \(0.488991\pi\)
\(972\) −1313.39 −0.0433404
\(973\) −9671.49 −0.318657
\(974\) 2602.19 0.0856052
\(975\) −11972.2 −0.393248
\(976\) −3501.32 −0.114830
\(977\) 26887.9 0.880472 0.440236 0.897882i \(-0.354895\pi\)
0.440236 + 0.897882i \(0.354895\pi\)
\(978\) −2155.67 −0.0704814
\(979\) 49208.0 1.60643
\(980\) 1071.58 0.0349289
\(981\) −14228.6 −0.463083
\(982\) 135.976 0.00441871
\(983\) −3820.96 −0.123977 −0.0619886 0.998077i \(-0.519744\pi\)
−0.0619886 + 0.998077i \(0.519744\pi\)
\(984\) −15004.7 −0.486110
\(985\) −3586.31 −0.116010
\(986\) 34065.9 1.10028
\(987\) 860.285 0.0277438
\(988\) −7370.93 −0.237349
\(989\) −12423.6 −0.399440
\(990\) −2223.79 −0.0713907
\(991\) 14308.7 0.458657 0.229329 0.973349i \(-0.426347\pi\)
0.229329 + 0.973349i \(0.426347\pi\)
\(992\) −9651.31 −0.308901
\(993\) −3159.22 −0.100962
\(994\) 6228.84 0.198759
\(995\) 14576.9 0.464443
\(996\) 21154.3 0.672991
\(997\) 9997.27 0.317569 0.158785 0.987313i \(-0.449242\pi\)
0.158785 + 0.987313i \(0.449242\pi\)
\(998\) −8083.54 −0.256393
\(999\) −919.365 −0.0291165
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.4.a.c.1.4 7
3.2 odd 2 1449.4.a.h.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.c.1.4 7 1.1 even 1 trivial
1449.4.a.h.1.4 7 3.2 odd 2