Properties

Label 483.4.a.c.1.2
Level $483$
Weight $4$
Character 483.1
Self dual yes
Analytic conductor $28.498$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,4,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 34x^{5} + 7x^{4} + 295x^{3} + 84x^{2} - 524x - 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.01159\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.01159 q^{2} +3.00000 q^{3} +8.09283 q^{4} +9.29066 q^{5} -12.0348 q^{6} +7.00000 q^{7} -0.372383 q^{8} +9.00000 q^{9} -37.2703 q^{10} -26.0262 q^{11} +24.2785 q^{12} +0.0530670 q^{13} -28.0811 q^{14} +27.8720 q^{15} -63.2488 q^{16} -107.068 q^{17} -36.1043 q^{18} -37.1814 q^{19} +75.1877 q^{20} +21.0000 q^{21} +104.406 q^{22} +23.0000 q^{23} -1.11715 q^{24} -38.6836 q^{25} -0.212883 q^{26} +27.0000 q^{27} +56.6498 q^{28} -270.783 q^{29} -111.811 q^{30} -215.781 q^{31} +256.707 q^{32} -78.0787 q^{33} +429.513 q^{34} +65.0346 q^{35} +72.8354 q^{36} +186.628 q^{37} +149.157 q^{38} +0.159201 q^{39} -3.45969 q^{40} +10.8910 q^{41} -84.2433 q^{42} +205.043 q^{43} -210.626 q^{44} +83.6159 q^{45} -92.2665 q^{46} -471.928 q^{47} -189.746 q^{48} +49.0000 q^{49} +155.183 q^{50} -321.204 q^{51} +0.429462 q^{52} +267.226 q^{53} -108.313 q^{54} -241.801 q^{55} -2.60668 q^{56} -111.544 q^{57} +1086.27 q^{58} -30.0157 q^{59} +225.563 q^{60} +539.671 q^{61} +865.624 q^{62} +63.0000 q^{63} -523.812 q^{64} +0.493028 q^{65} +313.219 q^{66} +679.592 q^{67} -866.484 q^{68} +69.0000 q^{69} -260.892 q^{70} -1111.20 q^{71} -3.35145 q^{72} -182.981 q^{73} -748.673 q^{74} -116.051 q^{75} -300.903 q^{76} -182.184 q^{77} -0.638649 q^{78} +162.187 q^{79} -587.623 q^{80} +81.0000 q^{81} -43.6901 q^{82} -740.972 q^{83} +169.949 q^{84} -994.733 q^{85} -822.549 q^{86} -812.350 q^{87} +9.69174 q^{88} -378.808 q^{89} -335.433 q^{90} +0.371469 q^{91} +186.135 q^{92} -647.343 q^{93} +1893.18 q^{94} -345.440 q^{95} +770.121 q^{96} -1398.66 q^{97} -196.568 q^{98} -234.236 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 6 q^{2} + 21 q^{3} + 18 q^{4} - 41 q^{5} - 18 q^{6} + 49 q^{7} - 33 q^{8} + 63 q^{9} + q^{10} - 126 q^{11} + 54 q^{12} - 87 q^{13} - 42 q^{14} - 123 q^{15} + 2 q^{16} - 204 q^{17} - 54 q^{18} - 286 q^{19}+ \cdots - 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.01159 −1.41831 −0.709155 0.705053i \(-0.750923\pi\)
−0.709155 + 0.705053i \(0.750923\pi\)
\(3\) 3.00000 0.577350
\(4\) 8.09283 1.01160
\(5\) 9.29066 0.830982 0.415491 0.909597i \(-0.363610\pi\)
0.415491 + 0.909597i \(0.363610\pi\)
\(6\) −12.0348 −0.818862
\(7\) 7.00000 0.377964
\(8\) −0.372383 −0.0164572
\(9\) 9.00000 0.333333
\(10\) −37.2703 −1.17859
\(11\) −26.0262 −0.713382 −0.356691 0.934222i \(-0.616095\pi\)
−0.356691 + 0.934222i \(0.616095\pi\)
\(12\) 24.2785 0.584049
\(13\) 0.0530670 0.00113217 0.000566083 1.00000i \(-0.499820\pi\)
0.000566083 1.00000i \(0.499820\pi\)
\(14\) −28.0811 −0.536071
\(15\) 27.8720 0.479768
\(16\) −63.2488 −0.988262
\(17\) −107.068 −1.52752 −0.763760 0.645501i \(-0.776649\pi\)
−0.763760 + 0.645501i \(0.776649\pi\)
\(18\) −36.1043 −0.472770
\(19\) −37.1814 −0.448948 −0.224474 0.974480i \(-0.572066\pi\)
−0.224474 + 0.974480i \(0.572066\pi\)
\(20\) 75.1877 0.840624
\(21\) 21.0000 0.218218
\(22\) 104.406 1.01180
\(23\) 23.0000 0.208514
\(24\) −1.11715 −0.00950156
\(25\) −38.6836 −0.309469
\(26\) −0.212883 −0.00160576
\(27\) 27.0000 0.192450
\(28\) 56.6498 0.382350
\(29\) −270.783 −1.73390 −0.866952 0.498392i \(-0.833924\pi\)
−0.866952 + 0.498392i \(0.833924\pi\)
\(30\) −111.811 −0.680459
\(31\) −215.781 −1.25017 −0.625087 0.780555i \(-0.714937\pi\)
−0.625087 + 0.780555i \(0.714937\pi\)
\(32\) 256.707 1.41812
\(33\) −78.0787 −0.411871
\(34\) 429.513 2.16650
\(35\) 65.0346 0.314082
\(36\) 72.8354 0.337201
\(37\) 186.628 0.829227 0.414614 0.909998i \(-0.363917\pi\)
0.414614 + 0.909998i \(0.363917\pi\)
\(38\) 149.157 0.636747
\(39\) 0.159201 0.000653656 0
\(40\) −3.45969 −0.0136756
\(41\) 10.8910 0.0414850 0.0207425 0.999785i \(-0.493397\pi\)
0.0207425 + 0.999785i \(0.493397\pi\)
\(42\) −84.2433 −0.309501
\(43\) 205.043 0.727182 0.363591 0.931559i \(-0.381551\pi\)
0.363591 + 0.931559i \(0.381551\pi\)
\(44\) −210.626 −0.721660
\(45\) 83.6159 0.276994
\(46\) −92.2665 −0.295738
\(47\) −471.928 −1.46463 −0.732316 0.680965i \(-0.761561\pi\)
−0.732316 + 0.680965i \(0.761561\pi\)
\(48\) −189.746 −0.570573
\(49\) 49.0000 0.142857
\(50\) 155.183 0.438923
\(51\) −321.204 −0.881914
\(52\) 0.429462 0.00114530
\(53\) 267.226 0.692571 0.346286 0.938129i \(-0.387443\pi\)
0.346286 + 0.938129i \(0.387443\pi\)
\(54\) −108.313 −0.272954
\(55\) −241.801 −0.592808
\(56\) −2.60668 −0.00622023
\(57\) −111.544 −0.259200
\(58\) 1086.27 2.45921
\(59\) −30.0157 −0.0662324 −0.0331162 0.999452i \(-0.510543\pi\)
−0.0331162 + 0.999452i \(0.510543\pi\)
\(60\) 225.563 0.485335
\(61\) 539.671 1.13275 0.566375 0.824147i \(-0.308345\pi\)
0.566375 + 0.824147i \(0.308345\pi\)
\(62\) 865.624 1.77314
\(63\) 63.0000 0.125988
\(64\) −523.812 −1.02307
\(65\) 0.493028 0.000940809 0
\(66\) 313.219 0.584161
\(67\) 679.592 1.23918 0.619592 0.784924i \(-0.287298\pi\)
0.619592 + 0.784924i \(0.287298\pi\)
\(68\) −866.484 −1.54524
\(69\) 69.0000 0.120386
\(70\) −260.892 −0.445465
\(71\) −1111.20 −1.85739 −0.928697 0.370840i \(-0.879070\pi\)
−0.928697 + 0.370840i \(0.879070\pi\)
\(72\) −3.35145 −0.00548573
\(73\) −182.981 −0.293374 −0.146687 0.989183i \(-0.546861\pi\)
−0.146687 + 0.989183i \(0.546861\pi\)
\(74\) −748.673 −1.17610
\(75\) −116.051 −0.178672
\(76\) −300.903 −0.454157
\(77\) −182.184 −0.269633
\(78\) −0.638649 −0.000927087 0
\(79\) 162.187 0.230980 0.115490 0.993309i \(-0.463156\pi\)
0.115490 + 0.993309i \(0.463156\pi\)
\(80\) −587.623 −0.821228
\(81\) 81.0000 0.111111
\(82\) −43.6901 −0.0588386
\(83\) −740.972 −0.979907 −0.489954 0.871749i \(-0.662986\pi\)
−0.489954 + 0.871749i \(0.662986\pi\)
\(84\) 169.949 0.220750
\(85\) −994.733 −1.26934
\(86\) −822.549 −1.03137
\(87\) −812.350 −1.00107
\(88\) 9.69174 0.0117403
\(89\) −378.808 −0.451164 −0.225582 0.974224i \(-0.572428\pi\)
−0.225582 + 0.974224i \(0.572428\pi\)
\(90\) −335.433 −0.392863
\(91\) 0.371469 0.000427918 0
\(92\) 186.135 0.210934
\(93\) −647.343 −0.721789
\(94\) 1893.18 2.07730
\(95\) −345.440 −0.373068
\(96\) 770.121 0.818751
\(97\) −1398.66 −1.46404 −0.732021 0.681282i \(-0.761423\pi\)
−0.732021 + 0.681282i \(0.761423\pi\)
\(98\) −196.568 −0.202616
\(99\) −234.236 −0.237794
\(100\) −313.060 −0.313060
\(101\) −1080.66 −1.06465 −0.532324 0.846541i \(-0.678681\pi\)
−0.532324 + 0.846541i \(0.678681\pi\)
\(102\) 1288.54 1.25083
\(103\) 370.703 0.354626 0.177313 0.984155i \(-0.443259\pi\)
0.177313 + 0.984155i \(0.443259\pi\)
\(104\) −0.0197613 −1.86322e−5 0
\(105\) 195.104 0.181335
\(106\) −1072.00 −0.982281
\(107\) −557.976 −0.504127 −0.252064 0.967711i \(-0.581109\pi\)
−0.252064 + 0.967711i \(0.581109\pi\)
\(108\) 218.506 0.194683
\(109\) 1602.50 1.40818 0.704092 0.710109i \(-0.251354\pi\)
0.704092 + 0.710109i \(0.251354\pi\)
\(110\) 970.005 0.840785
\(111\) 559.883 0.478755
\(112\) −442.741 −0.373528
\(113\) −1506.65 −1.25428 −0.627139 0.778907i \(-0.715774\pi\)
−0.627139 + 0.778907i \(0.715774\pi\)
\(114\) 447.470 0.367626
\(115\) 213.685 0.173272
\(116\) −2191.40 −1.75402
\(117\) 0.477603 0.000377388 0
\(118\) 120.411 0.0939381
\(119\) −749.477 −0.577348
\(120\) −10.3791 −0.00789562
\(121\) −653.636 −0.491086
\(122\) −2164.94 −1.60659
\(123\) 32.6730 0.0239514
\(124\) −1746.28 −1.26468
\(125\) −1520.73 −1.08815
\(126\) −252.730 −0.178690
\(127\) −827.281 −0.578026 −0.289013 0.957325i \(-0.593327\pi\)
−0.289013 + 0.957325i \(0.593327\pi\)
\(128\) 47.6619 0.0329121
\(129\) 615.130 0.419839
\(130\) −1.97782 −0.00133436
\(131\) 1303.11 0.869107 0.434553 0.900646i \(-0.356906\pi\)
0.434553 + 0.900646i \(0.356906\pi\)
\(132\) −631.877 −0.416650
\(133\) −260.270 −0.169686
\(134\) −2726.24 −1.75755
\(135\) 250.848 0.159923
\(136\) 39.8704 0.0251387
\(137\) 247.574 0.154392 0.0771958 0.997016i \(-0.475403\pi\)
0.0771958 + 0.997016i \(0.475403\pi\)
\(138\) −276.799 −0.170744
\(139\) 560.415 0.341969 0.170985 0.985274i \(-0.445305\pi\)
0.170985 + 0.985274i \(0.445305\pi\)
\(140\) 526.314 0.317726
\(141\) −1415.78 −0.845606
\(142\) 4457.67 2.63436
\(143\) −1.38113 −0.000807666 0
\(144\) −569.239 −0.329421
\(145\) −2515.76 −1.44084
\(146\) 734.045 0.416096
\(147\) 147.000 0.0824786
\(148\) 1510.35 0.838849
\(149\) 2650.36 1.45722 0.728612 0.684927i \(-0.240166\pi\)
0.728612 + 0.684927i \(0.240166\pi\)
\(150\) 465.548 0.253412
\(151\) −734.446 −0.395817 −0.197908 0.980220i \(-0.563415\pi\)
−0.197908 + 0.980220i \(0.563415\pi\)
\(152\) 13.8458 0.00738841
\(153\) −963.613 −0.509173
\(154\) 730.845 0.382423
\(155\) −2004.75 −1.03887
\(156\) 1.28839 0.000661241 0
\(157\) −2448.16 −1.24449 −0.622243 0.782824i \(-0.713778\pi\)
−0.622243 + 0.782824i \(0.713778\pi\)
\(158\) −650.627 −0.327602
\(159\) 801.677 0.399856
\(160\) 2384.98 1.17843
\(161\) 161.000 0.0788110
\(162\) −324.939 −0.157590
\(163\) 3698.40 1.77718 0.888592 0.458699i \(-0.151684\pi\)
0.888592 + 0.458699i \(0.151684\pi\)
\(164\) 88.1388 0.0419664
\(165\) −725.403 −0.342258
\(166\) 2972.47 1.38981
\(167\) 3599.66 1.66796 0.833981 0.551793i \(-0.186056\pi\)
0.833981 + 0.551793i \(0.186056\pi\)
\(168\) −7.82005 −0.00359125
\(169\) −2197.00 −0.999999
\(170\) 3990.46 1.80032
\(171\) −334.633 −0.149649
\(172\) 1659.38 0.735619
\(173\) 1644.62 0.722764 0.361382 0.932418i \(-0.382305\pi\)
0.361382 + 0.932418i \(0.382305\pi\)
\(174\) 3258.81 1.41983
\(175\) −270.785 −0.116968
\(176\) 1646.13 0.705008
\(177\) −90.0472 −0.0382393
\(178\) 1519.62 0.639891
\(179\) −4760.11 −1.98764 −0.993819 0.111008i \(-0.964592\pi\)
−0.993819 + 0.111008i \(0.964592\pi\)
\(180\) 676.689 0.280208
\(181\) 799.206 0.328202 0.164101 0.986444i \(-0.447528\pi\)
0.164101 + 0.986444i \(0.447528\pi\)
\(182\) −1.49018 −0.000606921 0
\(183\) 1619.01 0.653994
\(184\) −8.56482 −0.00343156
\(185\) 1733.89 0.689073
\(186\) 2596.87 1.02372
\(187\) 2786.58 1.08970
\(188\) −3819.23 −1.48163
\(189\) 189.000 0.0727393
\(190\) 1385.76 0.529125
\(191\) −2733.54 −1.03556 −0.517781 0.855513i \(-0.673242\pi\)
−0.517781 + 0.855513i \(0.673242\pi\)
\(192\) −1571.44 −0.590670
\(193\) 2516.43 0.938533 0.469266 0.883057i \(-0.344518\pi\)
0.469266 + 0.883057i \(0.344518\pi\)
\(194\) 5610.83 2.07647
\(195\) 1.47908 0.000543176 0
\(196\) 396.549 0.144515
\(197\) 2839.10 1.02679 0.513395 0.858152i \(-0.328387\pi\)
0.513395 + 0.858152i \(0.328387\pi\)
\(198\) 939.658 0.337266
\(199\) 11.6659 0.00415566 0.00207783 0.999998i \(-0.499339\pi\)
0.00207783 + 0.999998i \(0.499339\pi\)
\(200\) 14.4051 0.00509299
\(201\) 2038.78 0.715444
\(202\) 4335.15 1.51000
\(203\) −1895.48 −0.655354
\(204\) −2599.45 −0.892147
\(205\) 101.184 0.0344733
\(206\) −1487.11 −0.502970
\(207\) 207.000 0.0695048
\(208\) −3.35643 −0.00111888
\(209\) 967.693 0.320271
\(210\) −782.676 −0.257189
\(211\) −3294.35 −1.07484 −0.537422 0.843313i \(-0.680602\pi\)
−0.537422 + 0.843313i \(0.680602\pi\)
\(212\) 2162.61 0.700607
\(213\) −3333.59 −1.07237
\(214\) 2238.37 0.715009
\(215\) 1904.99 0.604275
\(216\) −10.0544 −0.00316719
\(217\) −1510.47 −0.472522
\(218\) −6428.58 −1.99724
\(219\) −548.943 −0.169380
\(220\) −1956.85 −0.599686
\(221\) −5.68179 −0.00172940
\(222\) −2246.02 −0.679022
\(223\) 1709.66 0.513397 0.256699 0.966491i \(-0.417365\pi\)
0.256699 + 0.966491i \(0.417365\pi\)
\(224\) 1796.95 0.535999
\(225\) −348.153 −0.103156
\(226\) 6044.05 1.77896
\(227\) 4910.88 1.43589 0.717944 0.696101i \(-0.245083\pi\)
0.717944 + 0.696101i \(0.245083\pi\)
\(228\) −902.709 −0.262208
\(229\) 657.414 0.189708 0.0948540 0.995491i \(-0.469762\pi\)
0.0948540 + 0.995491i \(0.469762\pi\)
\(230\) −857.217 −0.245753
\(231\) −546.551 −0.155673
\(232\) 100.835 0.0285352
\(233\) −4042.94 −1.13675 −0.568373 0.822771i \(-0.692427\pi\)
−0.568373 + 0.822771i \(0.692427\pi\)
\(234\) −1.91595 −0.000535254 0
\(235\) −4384.52 −1.21708
\(236\) −242.912 −0.0670010
\(237\) 486.561 0.133357
\(238\) 3006.59 0.818858
\(239\) 5849.57 1.58317 0.791584 0.611060i \(-0.209257\pi\)
0.791584 + 0.611060i \(0.209257\pi\)
\(240\) −1762.87 −0.474136
\(241\) −1520.34 −0.406364 −0.203182 0.979141i \(-0.565128\pi\)
−0.203182 + 0.979141i \(0.565128\pi\)
\(242\) 2622.12 0.696512
\(243\) 243.000 0.0641500
\(244\) 4367.46 1.14589
\(245\) 455.242 0.118712
\(246\) −131.070 −0.0339705
\(247\) −1.97311 −0.000508283 0
\(248\) 80.3533 0.0205743
\(249\) −2222.92 −0.565750
\(250\) 6100.54 1.54333
\(251\) 2027.33 0.509817 0.254909 0.966965i \(-0.417955\pi\)
0.254909 + 0.966965i \(0.417955\pi\)
\(252\) 509.848 0.127450
\(253\) −598.603 −0.148750
\(254\) 3318.71 0.819820
\(255\) −2984.20 −0.732854
\(256\) 3999.30 0.976391
\(257\) 460.382 0.111742 0.0558712 0.998438i \(-0.482206\pi\)
0.0558712 + 0.998438i \(0.482206\pi\)
\(258\) −2467.65 −0.595461
\(259\) 1306.39 0.313418
\(260\) 3.98999 0.000951726 0
\(261\) −2437.05 −0.577968
\(262\) −5227.53 −1.23266
\(263\) 855.717 0.200630 0.100315 0.994956i \(-0.468015\pi\)
0.100315 + 0.994956i \(0.468015\pi\)
\(264\) 29.0752 0.00677824
\(265\) 2482.70 0.575514
\(266\) 1044.10 0.240668
\(267\) −1136.43 −0.260480
\(268\) 5499.82 1.25356
\(269\) 4915.03 1.11403 0.557016 0.830502i \(-0.311946\pi\)
0.557016 + 0.830502i \(0.311946\pi\)
\(270\) −1006.30 −0.226820
\(271\) −4904.12 −1.09928 −0.549638 0.835403i \(-0.685234\pi\)
−0.549638 + 0.835403i \(0.685234\pi\)
\(272\) 6771.92 1.50959
\(273\) 1.11441 0.000247059 0
\(274\) −993.163 −0.218975
\(275\) 1006.79 0.220770
\(276\) 558.405 0.121783
\(277\) −1522.94 −0.330341 −0.165171 0.986265i \(-0.552818\pi\)
−0.165171 + 0.986265i \(0.552818\pi\)
\(278\) −2248.15 −0.485019
\(279\) −1942.03 −0.416725
\(280\) −24.2178 −0.00516890
\(281\) −7847.92 −1.66608 −0.833038 0.553215i \(-0.813401\pi\)
−0.833038 + 0.553215i \(0.813401\pi\)
\(282\) 5679.53 1.19933
\(283\) −8315.72 −1.74671 −0.873354 0.487086i \(-0.838060\pi\)
−0.873354 + 0.487086i \(0.838060\pi\)
\(284\) −8992.73 −1.87895
\(285\) −1036.32 −0.215391
\(286\) 5.54054 0.00114552
\(287\) 76.2369 0.0156799
\(288\) 2310.36 0.472706
\(289\) 6550.58 1.33331
\(290\) 10092.2 2.04356
\(291\) −4195.97 −0.845265
\(292\) −1480.83 −0.296778
\(293\) −3652.35 −0.728235 −0.364117 0.931353i \(-0.618629\pi\)
−0.364117 + 0.931353i \(0.618629\pi\)
\(294\) −589.703 −0.116980
\(295\) −278.866 −0.0550380
\(296\) −69.4971 −0.0136467
\(297\) −702.708 −0.137290
\(298\) −10632.2 −2.06679
\(299\) 1.22054 0.000236073 0
\(300\) −939.180 −0.180745
\(301\) 1435.30 0.274849
\(302\) 2946.29 0.561391
\(303\) −3241.97 −0.614675
\(304\) 2351.68 0.443678
\(305\) 5013.90 0.941295
\(306\) 3865.62 0.722165
\(307\) −3056.40 −0.568201 −0.284101 0.958794i \(-0.591695\pi\)
−0.284101 + 0.958794i \(0.591695\pi\)
\(308\) −1474.38 −0.272762
\(309\) 1112.11 0.204743
\(310\) 8042.22 1.47344
\(311\) 3317.56 0.604893 0.302446 0.953166i \(-0.402197\pi\)
0.302446 + 0.953166i \(0.402197\pi\)
\(312\) −0.0592839 −1.07573e−5 0
\(313\) 5004.23 0.903693 0.451846 0.892096i \(-0.350766\pi\)
0.451846 + 0.892096i \(0.350766\pi\)
\(314\) 9820.99 1.76507
\(315\) 585.312 0.104694
\(316\) 1312.55 0.233661
\(317\) −8828.01 −1.56413 −0.782066 0.623195i \(-0.785834\pi\)
−0.782066 + 0.623195i \(0.785834\pi\)
\(318\) −3216.00 −0.567120
\(319\) 7047.47 1.23694
\(320\) −4866.56 −0.850153
\(321\) −1673.93 −0.291058
\(322\) −645.865 −0.111778
\(323\) 3980.95 0.685776
\(324\) 655.519 0.112400
\(325\) −2.05283 −0.000350370 0
\(326\) −14836.4 −2.52060
\(327\) 4807.51 0.813015
\(328\) −4.05562 −0.000682726 0
\(329\) −3303.49 −0.553579
\(330\) 2910.01 0.485427
\(331\) −312.884 −0.0519567 −0.0259784 0.999663i \(-0.508270\pi\)
−0.0259784 + 0.999663i \(0.508270\pi\)
\(332\) −5996.56 −0.991277
\(333\) 1679.65 0.276409
\(334\) −14440.3 −2.36569
\(335\) 6313.86 1.02974
\(336\) −1328.22 −0.215656
\(337\) −6915.33 −1.11781 −0.558905 0.829232i \(-0.688778\pi\)
−0.558905 + 0.829232i \(0.688778\pi\)
\(338\) 8813.44 1.41831
\(339\) −4519.94 −0.724158
\(340\) −8050.20 −1.28407
\(341\) 5615.97 0.891852
\(342\) 1342.41 0.212249
\(343\) 343.000 0.0539949
\(344\) −76.3547 −0.0119674
\(345\) 641.056 0.100038
\(346\) −6597.53 −1.02510
\(347\) −8630.76 −1.33523 −0.667613 0.744508i \(-0.732684\pi\)
−0.667613 + 0.744508i \(0.732684\pi\)
\(348\) −6574.21 −1.01269
\(349\) 1398.48 0.214495 0.107248 0.994232i \(-0.465796\pi\)
0.107248 + 0.994232i \(0.465796\pi\)
\(350\) 1086.28 0.165897
\(351\) 1.43281 0.000217885 0
\(352\) −6681.11 −1.01166
\(353\) −7272.15 −1.09648 −0.548240 0.836321i \(-0.684702\pi\)
−0.548240 + 0.836321i \(0.684702\pi\)
\(354\) 361.232 0.0542352
\(355\) −10323.8 −1.54346
\(356\) −3065.63 −0.456399
\(357\) −2248.43 −0.333332
\(358\) 19095.6 2.81909
\(359\) 3938.05 0.578948 0.289474 0.957186i \(-0.406520\pi\)
0.289474 + 0.957186i \(0.406520\pi\)
\(360\) −31.1372 −0.00455854
\(361\) −5476.54 −0.798446
\(362\) −3206.09 −0.465492
\(363\) −1960.91 −0.283529
\(364\) 3.00624 0.000432884 0
\(365\) −1700.02 −0.243789
\(366\) −6494.81 −0.927566
\(367\) 4038.29 0.574379 0.287190 0.957874i \(-0.407279\pi\)
0.287190 + 0.957874i \(0.407279\pi\)
\(368\) −1454.72 −0.206067
\(369\) 98.0189 0.0138283
\(370\) −6955.67 −0.977319
\(371\) 1870.58 0.261767
\(372\) −5238.84 −0.730164
\(373\) 2809.11 0.389947 0.194973 0.980809i \(-0.437538\pi\)
0.194973 + 0.980809i \(0.437538\pi\)
\(374\) −11178.6 −1.54554
\(375\) −4562.19 −0.628241
\(376\) 175.738 0.0241037
\(377\) −14.3697 −0.00196307
\(378\) −758.190 −0.103167
\(379\) 4091.32 0.554504 0.277252 0.960797i \(-0.410576\pi\)
0.277252 + 0.960797i \(0.410576\pi\)
\(380\) −2795.59 −0.377396
\(381\) −2481.84 −0.333724
\(382\) 10965.8 1.46875
\(383\) 4096.95 0.546591 0.273295 0.961930i \(-0.411886\pi\)
0.273295 + 0.961930i \(0.411886\pi\)
\(384\) 142.986 0.0190018
\(385\) −1692.61 −0.224060
\(386\) −10094.9 −1.33113
\(387\) 1845.39 0.242394
\(388\) −11319.1 −1.48103
\(389\) −54.3187 −0.00707986 −0.00353993 0.999994i \(-0.501127\pi\)
−0.00353993 + 0.999994i \(0.501127\pi\)
\(390\) −5.93347 −0.000770392 0
\(391\) −2462.57 −0.318510
\(392\) −18.2468 −0.00235103
\(393\) 3909.32 0.501779
\(394\) −11389.3 −1.45631
\(395\) 1506.82 0.191941
\(396\) −1895.63 −0.240553
\(397\) 9273.44 1.17234 0.586172 0.810187i \(-0.300634\pi\)
0.586172 + 0.810187i \(0.300634\pi\)
\(398\) −46.7989 −0.00589402
\(399\) −780.810 −0.0979684
\(400\) 2446.69 0.305836
\(401\) 13718.2 1.70837 0.854185 0.519969i \(-0.174056\pi\)
0.854185 + 0.519969i \(0.174056\pi\)
\(402\) −8178.73 −1.01472
\(403\) −11.4509 −0.00141540
\(404\) −8745.58 −1.07700
\(405\) 752.544 0.0923313
\(406\) 7603.90 0.929495
\(407\) −4857.22 −0.591556
\(408\) 119.611 0.0145138
\(409\) −2397.58 −0.289860 −0.144930 0.989442i \(-0.546296\pi\)
−0.144930 + 0.989442i \(0.546296\pi\)
\(410\) −405.910 −0.0488938
\(411\) 742.721 0.0891380
\(412\) 3000.04 0.358741
\(413\) −210.110 −0.0250335
\(414\) −830.398 −0.0985794
\(415\) −6884.12 −0.814285
\(416\) 13.6227 0.00160555
\(417\) 1681.24 0.197436
\(418\) −3881.98 −0.454244
\(419\) 1423.39 0.165960 0.0829799 0.996551i \(-0.473556\pi\)
0.0829799 + 0.996551i \(0.473556\pi\)
\(420\) 1578.94 0.183439
\(421\) −3069.10 −0.355294 −0.177647 0.984094i \(-0.556849\pi\)
−0.177647 + 0.984094i \(0.556849\pi\)
\(422\) 13215.6 1.52446
\(423\) −4247.35 −0.488211
\(424\) −99.5104 −0.0113978
\(425\) 4141.78 0.472720
\(426\) 13373.0 1.52095
\(427\) 3777.70 0.428139
\(428\) −4515.61 −0.509977
\(429\) −4.14340 −0.000466306 0
\(430\) −7642.02 −0.857049
\(431\) −6600.69 −0.737690 −0.368845 0.929491i \(-0.620247\pi\)
−0.368845 + 0.929491i \(0.620247\pi\)
\(432\) −1707.72 −0.190191
\(433\) −8663.43 −0.961519 −0.480760 0.876852i \(-0.659639\pi\)
−0.480760 + 0.876852i \(0.659639\pi\)
\(434\) 6059.37 0.670182
\(435\) −7547.27 −0.831871
\(436\) 12968.8 1.42452
\(437\) −855.173 −0.0936121
\(438\) 2202.13 0.240233
\(439\) 6948.87 0.755471 0.377735 0.925914i \(-0.376703\pi\)
0.377735 + 0.925914i \(0.376703\pi\)
\(440\) 90.0426 0.00975594
\(441\) 441.000 0.0476190
\(442\) 22.7930 0.00245283
\(443\) 3400.22 0.364672 0.182336 0.983236i \(-0.441634\pi\)
0.182336 + 0.983236i \(0.441634\pi\)
\(444\) 4531.04 0.484310
\(445\) −3519.38 −0.374909
\(446\) −6858.47 −0.728157
\(447\) 7951.09 0.841328
\(448\) −3666.68 −0.386684
\(449\) −11407.2 −1.19897 −0.599487 0.800384i \(-0.704629\pi\)
−0.599487 + 0.800384i \(0.704629\pi\)
\(450\) 1396.64 0.146308
\(451\) −283.451 −0.0295947
\(452\) −12193.0 −1.26883
\(453\) −2203.34 −0.228525
\(454\) −19700.4 −2.03654
\(455\) 3.45120 0.000355592 0
\(456\) 41.5373 0.00426570
\(457\) 9912.76 1.01466 0.507330 0.861752i \(-0.330633\pi\)
0.507330 + 0.861752i \(0.330633\pi\)
\(458\) −2637.27 −0.269065
\(459\) −2890.84 −0.293971
\(460\) 1729.32 0.175282
\(461\) 10159.1 1.02637 0.513185 0.858278i \(-0.328465\pi\)
0.513185 + 0.858278i \(0.328465\pi\)
\(462\) 2192.54 0.220792
\(463\) −9046.25 −0.908024 −0.454012 0.890996i \(-0.650008\pi\)
−0.454012 + 0.890996i \(0.650008\pi\)
\(464\) 17126.7 1.71355
\(465\) −6014.24 −0.599793
\(466\) 16218.6 1.61226
\(467\) −3959.37 −0.392329 −0.196165 0.980571i \(-0.562849\pi\)
−0.196165 + 0.980571i \(0.562849\pi\)
\(468\) 3.86516 0.000381767 0
\(469\) 4757.14 0.468368
\(470\) 17588.9 1.72620
\(471\) −7344.47 −0.718504
\(472\) 11.1774 0.00109000
\(473\) −5336.50 −0.518758
\(474\) −1951.88 −0.189141
\(475\) 1438.31 0.138935
\(476\) −6065.38 −0.584047
\(477\) 2405.03 0.230857
\(478\) −23466.1 −2.24542
\(479\) 16222.6 1.54745 0.773726 0.633520i \(-0.218391\pi\)
0.773726 + 0.633520i \(0.218391\pi\)
\(480\) 7154.93 0.680368
\(481\) 9.90378 0.000938823 0
\(482\) 6098.97 0.576350
\(483\) 483.000 0.0455016
\(484\) −5289.76 −0.496784
\(485\) −12994.4 −1.21659
\(486\) −974.816 −0.0909846
\(487\) 6774.14 0.630320 0.315160 0.949039i \(-0.397942\pi\)
0.315160 + 0.949039i \(0.397942\pi\)
\(488\) −200.965 −0.0186419
\(489\) 11095.2 1.02606
\(490\) −1826.24 −0.168370
\(491\) 14659.7 1.34742 0.673710 0.738996i \(-0.264700\pi\)
0.673710 + 0.738996i \(0.264700\pi\)
\(492\) 264.417 0.0242293
\(493\) 28992.3 2.64857
\(494\) 7.91530 0.000720903 0
\(495\) −2176.21 −0.197603
\(496\) 13647.9 1.23550
\(497\) −7778.38 −0.702029
\(498\) 8917.42 0.802408
\(499\) 12484.8 1.12003 0.560015 0.828483i \(-0.310795\pi\)
0.560015 + 0.828483i \(0.310795\pi\)
\(500\) −12307.0 −1.10077
\(501\) 10799.0 0.962999
\(502\) −8132.82 −0.723079
\(503\) −17938.9 −1.59017 −0.795085 0.606498i \(-0.792574\pi\)
−0.795085 + 0.606498i \(0.792574\pi\)
\(504\) −23.4602 −0.00207341
\(505\) −10040.0 −0.884703
\(506\) 2401.35 0.210974
\(507\) −6590.99 −0.577350
\(508\) −6695.04 −0.584733
\(509\) −10505.0 −0.914785 −0.457392 0.889265i \(-0.651217\pi\)
−0.457392 + 0.889265i \(0.651217\pi\)
\(510\) 11971.4 1.03941
\(511\) −1280.87 −0.110885
\(512\) −16424.8 −1.41774
\(513\) −1003.90 −0.0864000
\(514\) −1846.86 −0.158485
\(515\) 3444.08 0.294688
\(516\) 4978.14 0.424710
\(517\) 12282.5 1.04484
\(518\) −5240.71 −0.444525
\(519\) 4933.86 0.417288
\(520\) −0.183595 −1.54831e−5 0
\(521\) 3758.58 0.316058 0.158029 0.987434i \(-0.449486\pi\)
0.158029 + 0.987434i \(0.449486\pi\)
\(522\) 9776.44 0.819738
\(523\) −20595.1 −1.72191 −0.860955 0.508681i \(-0.830133\pi\)
−0.860955 + 0.508681i \(0.830133\pi\)
\(524\) 10545.8 0.879191
\(525\) −812.356 −0.0675317
\(526\) −3432.78 −0.284556
\(527\) 23103.3 1.90967
\(528\) 4938.38 0.407037
\(529\) 529.000 0.0434783
\(530\) −9959.58 −0.816258
\(531\) −270.142 −0.0220775
\(532\) −2106.32 −0.171655
\(533\) 0.577952 4.69679e−5 0
\(534\) 4558.87 0.369441
\(535\) −5183.97 −0.418921
\(536\) −253.069 −0.0203935
\(537\) −14280.3 −1.14756
\(538\) −19717.1 −1.58004
\(539\) −1275.29 −0.101912
\(540\) 2030.07 0.161778
\(541\) 6685.37 0.531288 0.265644 0.964071i \(-0.414415\pi\)
0.265644 + 0.964071i \(0.414415\pi\)
\(542\) 19673.3 1.55912
\(543\) 2397.62 0.189487
\(544\) −27485.1 −2.16620
\(545\) 14888.3 1.17017
\(546\) −4.47054 −0.000350406 0
\(547\) 12675.1 0.990763 0.495381 0.868676i \(-0.335028\pi\)
0.495381 + 0.868676i \(0.335028\pi\)
\(548\) 2003.57 0.156183
\(549\) 4857.04 0.377584
\(550\) −4038.82 −0.313120
\(551\) 10068.1 0.778432
\(552\) −25.6945 −0.00198121
\(553\) 1135.31 0.0873024
\(554\) 6109.41 0.468527
\(555\) 5201.68 0.397836
\(556\) 4535.34 0.345937
\(557\) 12756.8 0.970418 0.485209 0.874398i \(-0.338744\pi\)
0.485209 + 0.874398i \(0.338744\pi\)
\(558\) 7790.62 0.591045
\(559\) 10.8810 0.000823290 0
\(560\) −4113.36 −0.310395
\(561\) 8359.73 0.629141
\(562\) 31482.6 2.36301
\(563\) 11448.9 0.857039 0.428519 0.903533i \(-0.359035\pi\)
0.428519 + 0.903533i \(0.359035\pi\)
\(564\) −11457.7 −0.855418
\(565\) −13997.7 −1.04228
\(566\) 33359.2 2.47737
\(567\) 567.000 0.0419961
\(568\) 413.792 0.0305675
\(569\) 5508.53 0.405852 0.202926 0.979194i \(-0.434955\pi\)
0.202926 + 0.979194i \(0.434955\pi\)
\(570\) 4157.29 0.305491
\(571\) 743.477 0.0544895 0.0272448 0.999629i \(-0.491327\pi\)
0.0272448 + 0.999629i \(0.491327\pi\)
\(572\) −11.1773 −0.000817038 0
\(573\) −8200.63 −0.597882
\(574\) −305.831 −0.0222389
\(575\) −889.723 −0.0645287
\(576\) −4714.31 −0.341024
\(577\) −17770.7 −1.28215 −0.641077 0.767477i \(-0.721512\pi\)
−0.641077 + 0.767477i \(0.721512\pi\)
\(578\) −26278.2 −1.89105
\(579\) 7549.30 0.541862
\(580\) −20359.6 −1.45756
\(581\) −5186.81 −0.370370
\(582\) 16832.5 1.19885
\(583\) −6954.88 −0.494068
\(584\) 68.1391 0.00482811
\(585\) 4.43725 0.000313603 0
\(586\) 14651.7 1.03286
\(587\) −15758.0 −1.10801 −0.554007 0.832512i \(-0.686902\pi\)
−0.554007 + 0.832512i \(0.686902\pi\)
\(588\) 1189.65 0.0834356
\(589\) 8023.05 0.561263
\(590\) 1118.69 0.0780609
\(591\) 8517.31 0.592818
\(592\) −11804.0 −0.819494
\(593\) −6098.60 −0.422326 −0.211163 0.977451i \(-0.567725\pi\)
−0.211163 + 0.977451i \(0.567725\pi\)
\(594\) 2818.97 0.194720
\(595\) −6963.13 −0.479766
\(596\) 21448.9 1.47413
\(597\) 34.9978 0.00239927
\(598\) −4.89631 −0.000334824 0
\(599\) 13811.2 0.942087 0.471044 0.882110i \(-0.343877\pi\)
0.471044 + 0.882110i \(0.343877\pi\)
\(600\) 43.2154 0.00294044
\(601\) 24341.1 1.65207 0.826034 0.563620i \(-0.190592\pi\)
0.826034 + 0.563620i \(0.190592\pi\)
\(602\) −5757.84 −0.389821
\(603\) 6116.33 0.413062
\(604\) −5943.74 −0.400410
\(605\) −6072.71 −0.408084
\(606\) 13005.5 0.871800
\(607\) 18529.0 1.23899 0.619497 0.784999i \(-0.287337\pi\)
0.619497 + 0.784999i \(0.287337\pi\)
\(608\) −9544.74 −0.636661
\(609\) −5686.45 −0.378369
\(610\) −20113.7 −1.33505
\(611\) −25.0438 −0.00165821
\(612\) −7798.35 −0.515081
\(613\) −9236.65 −0.608589 −0.304294 0.952578i \(-0.598421\pi\)
−0.304294 + 0.952578i \(0.598421\pi\)
\(614\) 12261.0 0.805886
\(615\) 303.553 0.0199032
\(616\) 67.8422 0.00443740
\(617\) −19494.7 −1.27201 −0.636004 0.771686i \(-0.719414\pi\)
−0.636004 + 0.771686i \(0.719414\pi\)
\(618\) −4461.33 −0.290390
\(619\) −17261.4 −1.12083 −0.560417 0.828211i \(-0.689359\pi\)
−0.560417 + 0.828211i \(0.689359\pi\)
\(620\) −16224.1 −1.05093
\(621\) 621.000 0.0401286
\(622\) −13308.7 −0.857926
\(623\) −2651.66 −0.170524
\(624\) −10.0693 −0.000645983 0
\(625\) −9293.12 −0.594760
\(626\) −20074.9 −1.28172
\(627\) 2903.08 0.184909
\(628\) −19812.5 −1.25893
\(629\) −19981.9 −1.26666
\(630\) −2348.03 −0.148488
\(631\) 3497.01 0.220624 0.110312 0.993897i \(-0.464815\pi\)
0.110312 + 0.993897i \(0.464815\pi\)
\(632\) −60.3957 −0.00380129
\(633\) −9883.04 −0.620562
\(634\) 35414.3 2.21843
\(635\) −7685.99 −0.480329
\(636\) 6487.83 0.404496
\(637\) 2.60029 0.000161738 0
\(638\) −28271.5 −1.75436
\(639\) −10000.8 −0.619131
\(640\) 442.810 0.0273494
\(641\) 16199.9 0.998219 0.499110 0.866539i \(-0.333660\pi\)
0.499110 + 0.866539i \(0.333660\pi\)
\(642\) 6715.11 0.412811
\(643\) 17595.3 1.07915 0.539574 0.841938i \(-0.318585\pi\)
0.539574 + 0.841938i \(0.318585\pi\)
\(644\) 1302.95 0.0797255
\(645\) 5714.96 0.348878
\(646\) −15969.9 −0.972644
\(647\) 1534.38 0.0932343 0.0466172 0.998913i \(-0.485156\pi\)
0.0466172 + 0.998913i \(0.485156\pi\)
\(648\) −30.1631 −0.00182858
\(649\) 781.196 0.0472490
\(650\) 8.23509 0.000496933 0
\(651\) −4531.40 −0.272810
\(652\) 29930.5 1.79780
\(653\) −9932.96 −0.595263 −0.297631 0.954681i \(-0.596197\pi\)
−0.297631 + 0.954681i \(0.596197\pi\)
\(654\) −19285.7 −1.15311
\(655\) 12106.7 0.722212
\(656\) −688.841 −0.0409981
\(657\) −1646.83 −0.0977914
\(658\) 13252.2 0.785147
\(659\) 24631.9 1.45603 0.728013 0.685564i \(-0.240444\pi\)
0.728013 + 0.685564i \(0.240444\pi\)
\(660\) −5870.56 −0.346229
\(661\) −24286.5 −1.42910 −0.714549 0.699585i \(-0.753368\pi\)
−0.714549 + 0.699585i \(0.753368\pi\)
\(662\) 1255.16 0.0736907
\(663\) −17.0454 −0.000998472 0
\(664\) 275.926 0.0161265
\(665\) −2418.08 −0.141006
\(666\) −6738.06 −0.392034
\(667\) −6228.02 −0.361544
\(668\) 29131.4 1.68732
\(669\) 5128.99 0.296410
\(670\) −25328.6 −1.46049
\(671\) −14045.6 −0.808084
\(672\) 5390.85 0.309459
\(673\) 12874.3 0.737394 0.368697 0.929550i \(-0.379804\pi\)
0.368697 + 0.929550i \(0.379804\pi\)
\(674\) 27741.4 1.58540
\(675\) −1044.46 −0.0595573
\(676\) −17779.9 −1.01160
\(677\) −17431.5 −0.989584 −0.494792 0.869012i \(-0.664756\pi\)
−0.494792 + 0.869012i \(0.664756\pi\)
\(678\) 18132.1 1.02708
\(679\) −9790.60 −0.553356
\(680\) 370.422 0.0208898
\(681\) 14732.6 0.829011
\(682\) −22528.9 −1.26492
\(683\) 6488.50 0.363507 0.181754 0.983344i \(-0.441823\pi\)
0.181754 + 0.983344i \(0.441823\pi\)
\(684\) −2708.13 −0.151386
\(685\) 2300.12 0.128297
\(686\) −1375.97 −0.0765815
\(687\) 1972.24 0.109528
\(688\) −12968.7 −0.718646
\(689\) 14.1809 0.000784105 0
\(690\) −2571.65 −0.141886
\(691\) 34226.6 1.88428 0.942142 0.335215i \(-0.108809\pi\)
0.942142 + 0.335215i \(0.108809\pi\)
\(692\) 13309.6 0.731150
\(693\) −1639.65 −0.0898777
\(694\) 34623.0 1.89376
\(695\) 5206.62 0.284170
\(696\) 302.506 0.0164748
\(697\) −1166.08 −0.0633692
\(698\) −5610.12 −0.304221
\(699\) −12128.8 −0.656300
\(700\) −2191.42 −0.118326
\(701\) 27477.7 1.48048 0.740242 0.672341i \(-0.234711\pi\)
0.740242 + 0.672341i \(0.234711\pi\)
\(702\) −5.74784 −0.000309029 0
\(703\) −6939.09 −0.372280
\(704\) 13632.9 0.729840
\(705\) −13153.6 −0.702683
\(706\) 29172.8 1.55515
\(707\) −7564.60 −0.402399
\(708\) −728.736 −0.0386830
\(709\) −7049.88 −0.373433 −0.186716 0.982414i \(-0.559785\pi\)
−0.186716 + 0.982414i \(0.559785\pi\)
\(710\) 41414.7 2.18911
\(711\) 1459.68 0.0769935
\(712\) 141.062 0.00742489
\(713\) −4962.96 −0.260679
\(714\) 9019.77 0.472768
\(715\) −12.8317 −0.000671156 0
\(716\) −38522.8 −2.01070
\(717\) 17548.7 0.914043
\(718\) −15797.8 −0.821128
\(719\) −26340.1 −1.36623 −0.683114 0.730311i \(-0.739375\pi\)
−0.683114 + 0.730311i \(0.739375\pi\)
\(720\) −5288.61 −0.273743
\(721\) 2594.92 0.134036
\(722\) 21969.6 1.13244
\(723\) −4561.02 −0.234614
\(724\) 6467.84 0.332010
\(725\) 10474.9 0.536589
\(726\) 7866.35 0.402132
\(727\) −16913.3 −0.862833 −0.431416 0.902153i \(-0.641986\pi\)
−0.431416 + 0.902153i \(0.641986\pi\)
\(728\) −0.138329 −7.04233e−6 0
\(729\) 729.000 0.0370370
\(730\) 6819.76 0.345768
\(731\) −21953.6 −1.11078
\(732\) 13102.4 0.661582
\(733\) −21070.8 −1.06176 −0.530878 0.847448i \(-0.678138\pi\)
−0.530878 + 0.847448i \(0.678138\pi\)
\(734\) −16200.0 −0.814648
\(735\) 1365.73 0.0685382
\(736\) 5904.26 0.295698
\(737\) −17687.2 −0.884012
\(738\) −393.211 −0.0196129
\(739\) 32778.5 1.63163 0.815816 0.578311i \(-0.196288\pi\)
0.815816 + 0.578311i \(0.196288\pi\)
\(740\) 14032.1 0.697069
\(741\) −5.91933 −0.000293457 0
\(742\) −7503.99 −0.371267
\(743\) −24391.3 −1.20435 −0.602173 0.798365i \(-0.705698\pi\)
−0.602173 + 0.798365i \(0.705698\pi\)
\(744\) 241.060 0.0118786
\(745\) 24623.6 1.21093
\(746\) −11269.0 −0.553065
\(747\) −6668.75 −0.326636
\(748\) 22551.3 1.10235
\(749\) −3905.83 −0.190542
\(750\) 18301.6 0.891040
\(751\) 33092.5 1.60794 0.803969 0.594671i \(-0.202718\pi\)
0.803969 + 0.594671i \(0.202718\pi\)
\(752\) 29848.8 1.44744
\(753\) 6082.00 0.294343
\(754\) 57.6452 0.00278424
\(755\) −6823.49 −0.328917
\(756\) 1529.54 0.0735833
\(757\) −7638.71 −0.366755 −0.183378 0.983043i \(-0.558703\pi\)
−0.183378 + 0.983043i \(0.558703\pi\)
\(758\) −16412.7 −0.786459
\(759\) −1795.81 −0.0858811
\(760\) 128.636 0.00613964
\(761\) 2717.83 0.129463 0.0647314 0.997903i \(-0.479381\pi\)
0.0647314 + 0.997903i \(0.479381\pi\)
\(762\) 9956.13 0.473324
\(763\) 11217.5 0.532243
\(764\) −22122.1 −1.04758
\(765\) −8952.60 −0.423114
\(766\) −16435.3 −0.775235
\(767\) −1.59285 −7.49861e−5 0
\(768\) 11997.9 0.563720
\(769\) −32383.5 −1.51857 −0.759285 0.650758i \(-0.774451\pi\)
−0.759285 + 0.650758i \(0.774451\pi\)
\(770\) 6790.03 0.317787
\(771\) 1381.14 0.0645145
\(772\) 20365.1 0.949423
\(773\) −18976.7 −0.882979 −0.441490 0.897266i \(-0.645550\pi\)
−0.441490 + 0.897266i \(0.645550\pi\)
\(774\) −7402.94 −0.343790
\(775\) 8347.19 0.386890
\(776\) 520.837 0.0240940
\(777\) 3919.18 0.180952
\(778\) 217.904 0.0100414
\(779\) −404.943 −0.0186246
\(780\) 11.9700 0.000549479 0
\(781\) 28920.3 1.32503
\(782\) 9878.80 0.451746
\(783\) −7311.15 −0.333690
\(784\) −3099.19 −0.141180
\(785\) −22745.0 −1.03414
\(786\) −15682.6 −0.711678
\(787\) −25315.0 −1.14661 −0.573304 0.819342i \(-0.694339\pi\)
−0.573304 + 0.819342i \(0.694339\pi\)
\(788\) 22976.4 1.03870
\(789\) 2567.15 0.115834
\(790\) −6044.75 −0.272231
\(791\) −10546.5 −0.474073
\(792\) 87.2256 0.00391342
\(793\) 28.6387 0.00128246
\(794\) −37201.2 −1.66275
\(795\) 7448.11 0.332273
\(796\) 94.4104 0.00420388
\(797\) −38523.5 −1.71214 −0.856068 0.516863i \(-0.827100\pi\)
−0.856068 + 0.516863i \(0.827100\pi\)
\(798\) 3132.29 0.138950
\(799\) 50528.4 2.23725
\(800\) −9930.36 −0.438864
\(801\) −3409.28 −0.150388
\(802\) −55031.9 −2.42300
\(803\) 4762.31 0.209288
\(804\) 16499.5 0.723745
\(805\) 1495.80 0.0654906
\(806\) 45.9361 0.00200748
\(807\) 14745.1 0.643187
\(808\) 402.419 0.0175211
\(809\) −27469.5 −1.19379 −0.596895 0.802319i \(-0.703599\pi\)
−0.596895 + 0.802319i \(0.703599\pi\)
\(810\) −3018.89 −0.130954
\(811\) −24345.5 −1.05411 −0.527056 0.849830i \(-0.676704\pi\)
−0.527056 + 0.849830i \(0.676704\pi\)
\(812\) −15339.8 −0.662958
\(813\) −14712.4 −0.634668
\(814\) 19485.1 0.839010
\(815\) 34360.6 1.47681
\(816\) 20315.8 0.871562
\(817\) −7623.81 −0.326467
\(818\) 9618.11 0.411111
\(819\) 3.34322 0.000142639 0
\(820\) 818.868 0.0348733
\(821\) 27134.4 1.15347 0.576733 0.816933i \(-0.304327\pi\)
0.576733 + 0.816933i \(0.304327\pi\)
\(822\) −2979.49 −0.126425
\(823\) −15641.7 −0.662496 −0.331248 0.943544i \(-0.607470\pi\)
−0.331248 + 0.943544i \(0.607470\pi\)
\(824\) −138.044 −0.00583615
\(825\) 3020.37 0.127461
\(826\) 842.875 0.0355053
\(827\) 37881.7 1.59284 0.796418 0.604746i \(-0.206725\pi\)
0.796418 + 0.604746i \(0.206725\pi\)
\(828\) 1675.22 0.0703113
\(829\) −23483.1 −0.983840 −0.491920 0.870640i \(-0.663705\pi\)
−0.491920 + 0.870640i \(0.663705\pi\)
\(830\) 27616.3 1.15491
\(831\) −4568.82 −0.190723
\(832\) −27.7972 −0.00115829
\(833\) −5246.34 −0.218217
\(834\) −6744.45 −0.280026
\(835\) 33443.2 1.38605
\(836\) 7831.37 0.323988
\(837\) −5826.09 −0.240596
\(838\) −5710.05 −0.235382
\(839\) −33381.1 −1.37359 −0.686796 0.726850i \(-0.740984\pi\)
−0.686796 + 0.726850i \(0.740984\pi\)
\(840\) −72.6535 −0.00298426
\(841\) 48934.6 2.00642
\(842\) 12312.0 0.503917
\(843\) −23543.8 −0.961910
\(844\) −26660.6 −1.08732
\(845\) −20411.6 −0.830981
\(846\) 17038.6 0.692434
\(847\) −4575.45 −0.185613
\(848\) −16901.7 −0.684442
\(849\) −24947.2 −1.00846
\(850\) −16615.1 −0.670463
\(851\) 4292.44 0.172906
\(852\) −26978.2 −1.08481
\(853\) −26043.1 −1.04537 −0.522683 0.852527i \(-0.675069\pi\)
−0.522683 + 0.852527i \(0.675069\pi\)
\(854\) −15154.6 −0.607234
\(855\) −3108.96 −0.124356
\(856\) 207.781 0.00829651
\(857\) 45096.7 1.79752 0.898759 0.438443i \(-0.144470\pi\)
0.898759 + 0.438443i \(0.144470\pi\)
\(858\) 16.6216 0.000661367 0
\(859\) 19006.0 0.754921 0.377460 0.926026i \(-0.376797\pi\)
0.377460 + 0.926026i \(0.376797\pi\)
\(860\) 15416.7 0.611286
\(861\) 228.711 0.00905277
\(862\) 26479.3 1.04627
\(863\) −36333.2 −1.43314 −0.716568 0.697518i \(-0.754288\pi\)
−0.716568 + 0.697518i \(0.754288\pi\)
\(864\) 6931.09 0.272917
\(865\) 15279.6 0.600603
\(866\) 34754.1 1.36373
\(867\) 19651.7 0.769790
\(868\) −12223.9 −0.478004
\(869\) −4221.11 −0.164777
\(870\) 30276.5 1.17985
\(871\) 36.0639 0.00140296
\(872\) −596.746 −0.0231747
\(873\) −12587.9 −0.488014
\(874\) 3430.60 0.132771
\(875\) −10645.1 −0.411280
\(876\) −4442.50 −0.171345
\(877\) −20443.5 −0.787145 −0.393573 0.919294i \(-0.628761\pi\)
−0.393573 + 0.919294i \(0.628761\pi\)
\(878\) −27876.0 −1.07149
\(879\) −10957.1 −0.420446
\(880\) 15293.6 0.585849
\(881\) 26429.0 1.01069 0.505345 0.862918i \(-0.331365\pi\)
0.505345 + 0.862918i \(0.331365\pi\)
\(882\) −1769.11 −0.0675386
\(883\) 16823.1 0.641156 0.320578 0.947222i \(-0.396123\pi\)
0.320578 + 0.947222i \(0.396123\pi\)
\(884\) −45.9817 −0.00174947
\(885\) −836.598 −0.0317762
\(886\) −13640.3 −0.517217
\(887\) 37841.3 1.43245 0.716226 0.697868i \(-0.245868\pi\)
0.716226 + 0.697868i \(0.245868\pi\)
\(888\) −208.491 −0.00787895
\(889\) −5790.97 −0.218473
\(890\) 14118.3 0.531738
\(891\) −2108.12 −0.0792647
\(892\) 13836.0 0.519354
\(893\) 17546.9 0.657543
\(894\) −31896.5 −1.19326
\(895\) −44224.6 −1.65169
\(896\) 333.633 0.0124396
\(897\) 3.66163 0.000136297 0
\(898\) 45761.0 1.70052
\(899\) 58429.9 2.16768
\(900\) −2817.54 −0.104353
\(901\) −28611.3 −1.05792
\(902\) 1137.09 0.0419744
\(903\) 4305.91 0.158684
\(904\) 561.051 0.0206419
\(905\) 7425.16 0.272730
\(906\) 8838.88 0.324119
\(907\) 19199.0 0.702858 0.351429 0.936214i \(-0.385696\pi\)
0.351429 + 0.936214i \(0.385696\pi\)
\(908\) 39742.9 1.45255
\(909\) −9725.92 −0.354883
\(910\) −13.8448 −0.000504340 0
\(911\) −13080.8 −0.475727 −0.237863 0.971299i \(-0.576447\pi\)
−0.237863 + 0.971299i \(0.576447\pi\)
\(912\) 7055.04 0.256158
\(913\) 19284.7 0.699048
\(914\) −39765.9 −1.43910
\(915\) 15041.7 0.543457
\(916\) 5320.34 0.191909
\(917\) 9121.75 0.328491
\(918\) 11596.8 0.416942
\(919\) 301.836 0.0108342 0.00541712 0.999985i \(-0.498276\pi\)
0.00541712 + 0.999985i \(0.498276\pi\)
\(920\) −79.5728 −0.00285156
\(921\) −9169.19 −0.328051
\(922\) −40754.1 −1.45571
\(923\) −58.9680 −0.00210288
\(924\) −4423.14 −0.157479
\(925\) −7219.44 −0.256620
\(926\) 36289.8 1.28786
\(927\) 3336.33 0.118209
\(928\) −69512.0 −2.45888
\(929\) 49106.4 1.73426 0.867130 0.498082i \(-0.165962\pi\)
0.867130 + 0.498082i \(0.165962\pi\)
\(930\) 24126.7 0.850693
\(931\) −1821.89 −0.0641354
\(932\) −32718.8 −1.14994
\(933\) 9952.69 0.349235
\(934\) 15883.4 0.556444
\(935\) 25889.2 0.905525
\(936\) −0.177852 −6.21075e−6 0
\(937\) −16868.0 −0.588104 −0.294052 0.955789i \(-0.595004\pi\)
−0.294052 + 0.955789i \(0.595004\pi\)
\(938\) −19083.7 −0.664291
\(939\) 15012.7 0.521747
\(940\) −35483.2 −1.23121
\(941\) −15141.3 −0.524541 −0.262271 0.964994i \(-0.584471\pi\)
−0.262271 + 0.964994i \(0.584471\pi\)
\(942\) 29463.0 1.01906
\(943\) 250.493 0.00865023
\(944\) 1898.46 0.0654550
\(945\) 1755.93 0.0604450
\(946\) 21407.8 0.735760
\(947\) 41117.0 1.41090 0.705450 0.708760i \(-0.250745\pi\)
0.705450 + 0.708760i \(0.250745\pi\)
\(948\) 3937.65 0.134904
\(949\) −9.71027 −0.000332148 0
\(950\) −5769.92 −0.197054
\(951\) −26484.0 −0.903053
\(952\) 279.093 0.00950152
\(953\) −304.023 −0.0103340 −0.00516698 0.999987i \(-0.501645\pi\)
−0.00516698 + 0.999987i \(0.501645\pi\)
\(954\) −9647.99 −0.327427
\(955\) −25396.4 −0.860533
\(956\) 47339.6 1.60154
\(957\) 21142.4 0.714145
\(958\) −65078.4 −2.19477
\(959\) 1733.02 0.0583545
\(960\) −14599.7 −0.490836
\(961\) 16770.4 0.562937
\(962\) −39.7299 −0.00133154
\(963\) −5021.79 −0.168042
\(964\) −12303.8 −0.411079
\(965\) 23379.3 0.779904
\(966\) −1937.60 −0.0645353
\(967\) 26528.3 0.882204 0.441102 0.897457i \(-0.354588\pi\)
0.441102 + 0.897457i \(0.354588\pi\)
\(968\) 243.403 0.00808189
\(969\) 11942.8 0.395933
\(970\) 52128.3 1.72551
\(971\) 43836.5 1.44879 0.724397 0.689383i \(-0.242118\pi\)
0.724397 + 0.689383i \(0.242118\pi\)
\(972\) 1966.56 0.0648944
\(973\) 3922.90 0.129252
\(974\) −27175.1 −0.893989
\(975\) −6.15848 −0.000202286 0
\(976\) −34133.5 −1.11945
\(977\) 26128.0 0.855588 0.427794 0.903876i \(-0.359291\pi\)
0.427794 + 0.903876i \(0.359291\pi\)
\(978\) −44509.3 −1.45527
\(979\) 9858.95 0.321852
\(980\) 3684.20 0.120089
\(981\) 14422.5 0.469394
\(982\) −58808.7 −1.91106
\(983\) 22600.8 0.733321 0.366661 0.930355i \(-0.380501\pi\)
0.366661 + 0.930355i \(0.380501\pi\)
\(984\) −12.1669 −0.000394172 0
\(985\) 26377.1 0.853244
\(986\) −116305. −3.75650
\(987\) −9910.48 −0.319609
\(988\) −15.9680 −0.000514181 0
\(989\) 4716.00 0.151628
\(990\) 8730.04 0.280262
\(991\) 1642.25 0.0526417 0.0263208 0.999654i \(-0.491621\pi\)
0.0263208 + 0.999654i \(0.491621\pi\)
\(992\) −55392.5 −1.77290
\(993\) −938.653 −0.0299972
\(994\) 31203.7 0.995694
\(995\) 108.384 0.00345328
\(996\) −17989.7 −0.572314
\(997\) 8390.31 0.266523 0.133262 0.991081i \(-0.457455\pi\)
0.133262 + 0.991081i \(0.457455\pi\)
\(998\) −50083.7 −1.58855
\(999\) 5038.95 0.159585
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.4.a.c.1.2 7
3.2 odd 2 1449.4.a.h.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.c.1.2 7 1.1 even 1 trivial
1449.4.a.h.1.6 7 3.2 odd 2