Properties

Label 483.4.a.c
Level $483$
Weight $4$
Character orbit 483.a
Self dual yes
Analytic conductor $28.498$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,4,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 34x^{5} + 7x^{4} + 295x^{3} + 84x^{2} - 524x - 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + 3 q^{3} + (\beta_{2} - \beta_1 + 3) q^{4} + ( - \beta_{6} - \beta_{4} - \beta_{2} - 6) q^{5} + (3 \beta_1 - 3) q^{6} + 7 q^{7} + (\beta_{5} + 2 \beta_{3} - \beta_{2} + \cdots - 5) q^{8}+ \cdots + (18 \beta_{6} - 27 \beta_{5} + \cdots - 180) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 6 q^{2} + 21 q^{3} + 18 q^{4} - 41 q^{5} - 18 q^{6} + 49 q^{7} - 33 q^{8} + 63 q^{9} + q^{10} - 126 q^{11} + 54 q^{12} - 87 q^{13} - 42 q^{14} - 123 q^{15} + 2 q^{16} - 204 q^{17} - 54 q^{18} - 286 q^{19}+ \cdots - 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 34x^{5} + 7x^{4} + 295x^{3} + 84x^{2} - 524x - 288 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{6} - 4\nu^{5} - 112\nu^{4} + 149\nu^{3} + 926\nu^{2} - 1360\nu - 824 ) / 136 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{6} + \nu^{5} + 164\nu^{4} + 69\nu^{3} - 1175\nu^{2} - 646\nu + 784 ) / 136 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{6} + 4\nu^{5} + 112\nu^{4} - 81\nu^{3} - 1062\nu^{2} + 340\nu + 1504 ) / 68 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 11\nu^{6} - 26\nu^{5} - 320\nu^{4} + 501\nu^{3} + 2092\nu^{2} - 1972\nu - 1616 ) / 136 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 2\beta_{3} + 2\beta_{2} + 17\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} + 5\beta_{5} - 2\beta_{4} + 3\beta_{3} + 25\beta_{2} + 35\beta _1 + 181 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -4\beta_{6} + 36\beta_{5} - 16\beta_{4} + 60\beta_{3} + 77\beta_{2} + 363\beta _1 + 382 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 32\beta_{6} + 185\beta_{5} - 96\beta_{4} + 138\beta_{3} + 628\beta_{2} + 1091\beta _1 + 3958 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.12074
−3.01159
−1.37660
−0.610936
1.60339
3.29766
5.21883
−5.12074 3.00000 18.2220 −15.2134 −15.3622 7.00000 −52.3444 9.00000 77.9040
1.2 −4.01159 3.00000 8.09283 9.29066 −12.0348 7.00000 −0.372383 9.00000 −37.2703
1.3 −2.37660 3.00000 −2.35176 −18.5873 −7.12981 7.00000 24.6020 9.00000 44.1746
1.4 −1.61094 3.00000 −5.40488 −4.04614 −4.83281 7.00000 21.5944 9.00000 6.51808
1.5 0.603389 3.00000 −7.63592 14.1843 1.81017 7.00000 −9.43454 9.00000 8.55866
1.6 2.29766 3.00000 −2.72078 −7.00327 6.89297 7.00000 −24.6327 9.00000 −16.0911
1.7 4.21883 3.00000 9.79849 −19.6249 12.6565 7.00000 7.58752 9.00000 −82.7940
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.4.a.c 7
3.b odd 2 1 1449.4.a.h 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.4.a.c 7 1.a even 1 1 trivial
1449.4.a.h 7 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} + 6T_{2}^{6} - 19T_{2}^{5} - 143T_{2}^{4} - 2T_{2}^{3} + 677T_{2}^{2} + 388T_{2} - 460 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(483))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 6 T^{6} + \cdots - 460 \) Copy content Toggle raw display
$3$ \( (T - 3)^{7} \) Copy content Toggle raw display
$5$ \( T^{7} + 41 T^{6} + \cdots + 20722732 \) Copy content Toggle raw display
$7$ \( (T - 7)^{7} \) Copy content Toggle raw display
$11$ \( T^{7} + \cdots + 224017353856 \) Copy content Toggle raw display
$13$ \( T^{7} + 87 T^{6} + \cdots + 868269144 \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots + 12051705641600 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots + 7302931600672 \) Copy content Toggle raw display
$23$ \( (T - 23)^{7} \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots - 10\!\cdots\!40 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots - 623763925110016 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 701389545056212 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 237579020750652 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots + 25\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots - 14\!\cdots\!40 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots - 15\!\cdots\!28 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots + 27\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots + 18\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots - 21\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 76\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots - 20\!\cdots\!04 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 82\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots + 75\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots + 43\!\cdots\!92 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots - 83\!\cdots\!52 \) Copy content Toggle raw display
show more
show less