Properties

Label 483.4.a.b.1.2
Level $483$
Weight $4$
Character 483.1
Self dual yes
Analytic conductor $28.498$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [483,4,Mod(1,483)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("483.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(483, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.8184789.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 76x^{2} - 8x + 1048 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.98040\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.70156 q^{2} +3.00000 q^{3} -0.701562 q^{4} +11.0488 q^{5} -8.10469 q^{6} -7.00000 q^{7} +23.5078 q^{8} +9.00000 q^{9} -29.8490 q^{10} +5.06549 q^{11} -2.10469 q^{12} -81.9300 q^{13} +18.9109 q^{14} +33.1464 q^{15} -57.8953 q^{16} -8.44696 q^{17} -24.3141 q^{18} -25.2119 q^{19} -7.75143 q^{20} -21.0000 q^{21} -13.6847 q^{22} -23.0000 q^{23} +70.5234 q^{24} -2.92381 q^{25} +221.339 q^{26} +27.0000 q^{27} +4.91093 q^{28} +67.5802 q^{29} -89.5471 q^{30} +25.8765 q^{31} -31.6547 q^{32} +15.1965 q^{33} +22.8200 q^{34} -77.3417 q^{35} -6.31406 q^{36} -133.509 q^{37} +68.1116 q^{38} -245.790 q^{39} +259.733 q^{40} -147.792 q^{41} +56.7328 q^{42} -54.6121 q^{43} -3.55375 q^{44} +99.4393 q^{45} +62.1359 q^{46} -39.1825 q^{47} -173.686 q^{48} +49.0000 q^{49} +7.89886 q^{50} -25.3409 q^{51} +57.4790 q^{52} +45.7824 q^{53} -72.9422 q^{54} +55.9676 q^{55} -164.555 q^{56} -75.6358 q^{57} -182.572 q^{58} +78.1391 q^{59} -23.2543 q^{60} +689.234 q^{61} -69.9069 q^{62} -63.0000 q^{63} +548.680 q^{64} -905.229 q^{65} -41.0542 q^{66} -971.267 q^{67} +5.92606 q^{68} -69.0000 q^{69} +208.943 q^{70} -1072.46 q^{71} +211.570 q^{72} -282.352 q^{73} +360.682 q^{74} -8.77143 q^{75} +17.6877 q^{76} -35.4584 q^{77} +664.017 q^{78} +129.920 q^{79} -639.674 q^{80} +81.0000 q^{81} +399.270 q^{82} -678.788 q^{83} +14.7328 q^{84} -93.3288 q^{85} +147.538 q^{86} +202.741 q^{87} +119.078 q^{88} -539.685 q^{89} -268.641 q^{90} +573.510 q^{91} +16.1359 q^{92} +77.6295 q^{93} +105.854 q^{94} -278.562 q^{95} -94.9641 q^{96} -663.687 q^{97} -132.377 q^{98} +45.5894 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 12 q^{3} + 10 q^{4} - 23 q^{5} + 6 q^{6} - 28 q^{7} + 30 q^{8} + 36 q^{9} - 32 q^{10} - 48 q^{11} + 30 q^{12} - 107 q^{13} - 14 q^{14} - 69 q^{15} - 270 q^{16} - 6 q^{17} + 18 q^{18} + 76 q^{19}+ \cdots - 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.70156 −0.955146 −0.477573 0.878592i \(-0.658483\pi\)
−0.477573 + 0.878592i \(0.658483\pi\)
\(3\) 3.00000 0.577350
\(4\) −0.701562 −0.0876953
\(5\) 11.0488 0.988236 0.494118 0.869395i \(-0.335491\pi\)
0.494118 + 0.869395i \(0.335491\pi\)
\(6\) −8.10469 −0.551454
\(7\) −7.00000 −0.377964
\(8\) 23.5078 1.03891
\(9\) 9.00000 0.333333
\(10\) −29.8490 −0.943910
\(11\) 5.06549 0.138846 0.0694228 0.997587i \(-0.477884\pi\)
0.0694228 + 0.997587i \(0.477884\pi\)
\(12\) −2.10469 −0.0506309
\(13\) −81.9300 −1.74795 −0.873973 0.485975i \(-0.838465\pi\)
−0.873973 + 0.485975i \(0.838465\pi\)
\(14\) 18.9109 0.361011
\(15\) 33.1464 0.570558
\(16\) −57.8953 −0.904614
\(17\) −8.44696 −0.120511 −0.0602555 0.998183i \(-0.519192\pi\)
−0.0602555 + 0.998183i \(0.519192\pi\)
\(18\) −24.3141 −0.318382
\(19\) −25.2119 −0.304422 −0.152211 0.988348i \(-0.548639\pi\)
−0.152211 + 0.988348i \(0.548639\pi\)
\(20\) −7.75143 −0.0866636
\(21\) −21.0000 −0.218218
\(22\) −13.6847 −0.132618
\(23\) −23.0000 −0.208514
\(24\) 70.5234 0.599814
\(25\) −2.92381 −0.0233905
\(26\) 221.339 1.66954
\(27\) 27.0000 0.192450
\(28\) 4.91093 0.0331457
\(29\) 67.5802 0.432735 0.216368 0.976312i \(-0.430579\pi\)
0.216368 + 0.976312i \(0.430579\pi\)
\(30\) −89.5471 −0.544967
\(31\) 25.8765 0.149921 0.0749606 0.997186i \(-0.476117\pi\)
0.0749606 + 0.997186i \(0.476117\pi\)
\(32\) −31.6547 −0.174869
\(33\) 15.1965 0.0801625
\(34\) 22.8200 0.115106
\(35\) −77.3417 −0.373518
\(36\) −6.31406 −0.0292318
\(37\) −133.509 −0.593208 −0.296604 0.955001i \(-0.595854\pi\)
−0.296604 + 0.955001i \(0.595854\pi\)
\(38\) 68.1116 0.290767
\(39\) −245.790 −1.00918
\(40\) 259.733 1.02669
\(41\) −147.792 −0.562958 −0.281479 0.959567i \(-0.590825\pi\)
−0.281479 + 0.959567i \(0.590825\pi\)
\(42\) 56.7328 0.208430
\(43\) −54.6121 −0.193681 −0.0968403 0.995300i \(-0.530874\pi\)
−0.0968403 + 0.995300i \(0.530874\pi\)
\(44\) −3.55375 −0.0121761
\(45\) 99.4393 0.329412
\(46\) 62.1359 0.199162
\(47\) −39.1825 −0.121603 −0.0608016 0.998150i \(-0.519366\pi\)
−0.0608016 + 0.998150i \(0.519366\pi\)
\(48\) −173.686 −0.522279
\(49\) 49.0000 0.142857
\(50\) 7.89886 0.0223413
\(51\) −25.3409 −0.0695771
\(52\) 57.4790 0.153287
\(53\) 45.7824 0.118655 0.0593273 0.998239i \(-0.481104\pi\)
0.0593273 + 0.998239i \(0.481104\pi\)
\(54\) −72.9422 −0.183818
\(55\) 55.9676 0.137212
\(56\) −164.555 −0.392670
\(57\) −75.6358 −0.175758
\(58\) −182.572 −0.413326
\(59\) 78.1391 0.172421 0.0862106 0.996277i \(-0.472524\pi\)
0.0862106 + 0.996277i \(0.472524\pi\)
\(60\) −23.2543 −0.0500352
\(61\) 689.234 1.44668 0.723339 0.690493i \(-0.242606\pi\)
0.723339 + 0.690493i \(0.242606\pi\)
\(62\) −69.9069 −0.143197
\(63\) −63.0000 −0.125988
\(64\) 548.680 1.07164
\(65\) −905.229 −1.72738
\(66\) −41.0542 −0.0765670
\(67\) −971.267 −1.77103 −0.885516 0.464609i \(-0.846195\pi\)
−0.885516 + 0.464609i \(0.846195\pi\)
\(68\) 5.92606 0.0105682
\(69\) −69.0000 −0.120386
\(70\) 208.943 0.356764
\(71\) −1072.46 −1.79264 −0.896320 0.443409i \(-0.853769\pi\)
−0.896320 + 0.443409i \(0.853769\pi\)
\(72\) 211.570 0.346303
\(73\) −282.352 −0.452696 −0.226348 0.974046i \(-0.572679\pi\)
−0.226348 + 0.974046i \(0.572679\pi\)
\(74\) 360.682 0.566600
\(75\) −8.77143 −0.0135045
\(76\) 17.6877 0.0266963
\(77\) −35.4584 −0.0524787
\(78\) 664.017 0.963912
\(79\) 129.920 0.185027 0.0925134 0.995711i \(-0.470510\pi\)
0.0925134 + 0.995711i \(0.470510\pi\)
\(80\) −639.674 −0.893972
\(81\) 81.0000 0.111111
\(82\) 399.270 0.537707
\(83\) −678.788 −0.897670 −0.448835 0.893615i \(-0.648161\pi\)
−0.448835 + 0.893615i \(0.648161\pi\)
\(84\) 14.7328 0.0191367
\(85\) −93.3288 −0.119093
\(86\) 147.538 0.184993
\(87\) 202.741 0.249840
\(88\) 119.078 0.144248
\(89\) −539.685 −0.642769 −0.321385 0.946949i \(-0.604148\pi\)
−0.321385 + 0.946949i \(0.604148\pi\)
\(90\) −268.641 −0.314637
\(91\) 573.510 0.660661
\(92\) 16.1359 0.0182857
\(93\) 77.6295 0.0865570
\(94\) 105.854 0.116149
\(95\) −278.562 −0.300840
\(96\) −94.9641 −0.100961
\(97\) −663.687 −0.694713 −0.347357 0.937733i \(-0.612921\pi\)
−0.347357 + 0.937733i \(0.612921\pi\)
\(98\) −132.377 −0.136449
\(99\) 45.5894 0.0462819
\(100\) 2.05124 0.00205124
\(101\) −315.732 −0.311055 −0.155527 0.987832i \(-0.549708\pi\)
−0.155527 + 0.987832i \(0.549708\pi\)
\(102\) 68.4599 0.0664563
\(103\) −1031.29 −0.986561 −0.493280 0.869870i \(-0.664202\pi\)
−0.493280 + 0.869870i \(0.664202\pi\)
\(104\) −1925.99 −1.81595
\(105\) −232.025 −0.215651
\(106\) −123.684 −0.113333
\(107\) −228.018 −0.206012 −0.103006 0.994681i \(-0.532846\pi\)
−0.103006 + 0.994681i \(0.532846\pi\)
\(108\) −18.9422 −0.0168770
\(109\) −200.916 −0.176553 −0.0882766 0.996096i \(-0.528136\pi\)
−0.0882766 + 0.996096i \(0.528136\pi\)
\(110\) −151.200 −0.131058
\(111\) −400.526 −0.342489
\(112\) 405.267 0.341912
\(113\) 701.703 0.584166 0.292083 0.956393i \(-0.405652\pi\)
0.292083 + 0.956393i \(0.405652\pi\)
\(114\) 204.335 0.167875
\(115\) −254.123 −0.206061
\(116\) −47.4117 −0.0379488
\(117\) −737.370 −0.582648
\(118\) −211.098 −0.164687
\(119\) 59.1287 0.0455489
\(120\) 779.200 0.592757
\(121\) −1305.34 −0.980722
\(122\) −1862.01 −1.38179
\(123\) −443.377 −0.325024
\(124\) −18.1540 −0.0131474
\(125\) −1413.41 −1.01135
\(126\) 170.198 0.120337
\(127\) −867.507 −0.606132 −0.303066 0.952969i \(-0.598010\pi\)
−0.303066 + 0.952969i \(0.598010\pi\)
\(128\) −1229.05 −0.848704
\(129\) −163.836 −0.111822
\(130\) 2445.53 1.64990
\(131\) −1969.26 −1.31340 −0.656699 0.754153i \(-0.728048\pi\)
−0.656699 + 0.754153i \(0.728048\pi\)
\(132\) −10.6613 −0.00702987
\(133\) 176.484 0.115061
\(134\) 2623.94 1.69159
\(135\) 298.318 0.190186
\(136\) −198.569 −0.125200
\(137\) −274.640 −0.171271 −0.0856353 0.996327i \(-0.527292\pi\)
−0.0856353 + 0.996327i \(0.527292\pi\)
\(138\) 186.408 0.114986
\(139\) 1516.45 0.925348 0.462674 0.886528i \(-0.346890\pi\)
0.462674 + 0.886528i \(0.346890\pi\)
\(140\) 54.2600 0.0327558
\(141\) −117.547 −0.0702077
\(142\) 2897.31 1.71223
\(143\) −415.015 −0.242694
\(144\) −521.058 −0.301538
\(145\) 746.681 0.427644
\(146\) 762.792 0.432391
\(147\) 147.000 0.0824786
\(148\) 93.6646 0.0520215
\(149\) −2025.02 −1.11340 −0.556698 0.830715i \(-0.687932\pi\)
−0.556698 + 0.830715i \(0.687932\pi\)
\(150\) 23.6966 0.0128988
\(151\) 978.358 0.527269 0.263635 0.964623i \(-0.415079\pi\)
0.263635 + 0.964623i \(0.415079\pi\)
\(152\) −592.677 −0.316266
\(153\) −76.0226 −0.0401704
\(154\) 95.7931 0.0501248
\(155\) 285.904 0.148157
\(156\) 172.437 0.0885000
\(157\) 1462.18 0.743276 0.371638 0.928378i \(-0.378796\pi\)
0.371638 + 0.928378i \(0.378796\pi\)
\(158\) −350.986 −0.176728
\(159\) 137.347 0.0685053
\(160\) −349.747 −0.172812
\(161\) 161.000 0.0788110
\(162\) −218.827 −0.106127
\(163\) −1351.52 −0.649441 −0.324720 0.945810i \(-0.605270\pi\)
−0.324720 + 0.945810i \(0.605270\pi\)
\(164\) 103.685 0.0493688
\(165\) 167.903 0.0792195
\(166\) 1833.79 0.857406
\(167\) 2595.94 1.20287 0.601436 0.798921i \(-0.294596\pi\)
0.601436 + 0.798921i \(0.294596\pi\)
\(168\) −493.664 −0.226708
\(169\) 4515.52 2.05531
\(170\) 252.134 0.113752
\(171\) −226.907 −0.101474
\(172\) 38.3138 0.0169849
\(173\) −2118.21 −0.930895 −0.465447 0.885075i \(-0.654107\pi\)
−0.465447 + 0.885075i \(0.654107\pi\)
\(174\) −547.716 −0.238634
\(175\) 20.4667 0.00884077
\(176\) −293.268 −0.125602
\(177\) 234.417 0.0995474
\(178\) 1457.99 0.613939
\(179\) 4575.65 1.91061 0.955307 0.295617i \(-0.0955251\pi\)
0.955307 + 0.295617i \(0.0955251\pi\)
\(180\) −69.7628 −0.0288879
\(181\) −1256.35 −0.515933 −0.257967 0.966154i \(-0.583052\pi\)
−0.257967 + 0.966154i \(0.583052\pi\)
\(182\) −1549.37 −0.631028
\(183\) 2067.70 0.835240
\(184\) −540.680 −0.216627
\(185\) −1475.11 −0.586229
\(186\) −209.721 −0.0826746
\(187\) −42.7879 −0.0167324
\(188\) 27.4890 0.0106640
\(189\) −189.000 −0.0727393
\(190\) 752.552 0.287347
\(191\) 288.941 0.109461 0.0547304 0.998501i \(-0.482570\pi\)
0.0547304 + 0.998501i \(0.482570\pi\)
\(192\) 1646.04 0.618712
\(193\) 3627.48 1.35291 0.676456 0.736483i \(-0.263515\pi\)
0.676456 + 0.736483i \(0.263515\pi\)
\(194\) 1792.99 0.663553
\(195\) −2715.69 −0.997304
\(196\) −34.3765 −0.0125279
\(197\) 1727.23 0.624671 0.312336 0.949972i \(-0.398889\pi\)
0.312336 + 0.949972i \(0.398889\pi\)
\(198\) −123.163 −0.0442060
\(199\) −904.370 −0.322156 −0.161078 0.986942i \(-0.551497\pi\)
−0.161078 + 0.986942i \(0.551497\pi\)
\(200\) −68.7324 −0.0243006
\(201\) −2913.80 −1.02251
\(202\) 852.970 0.297103
\(203\) −473.061 −0.163559
\(204\) 17.7782 0.00610158
\(205\) −1632.93 −0.556335
\(206\) 2786.09 0.942310
\(207\) −207.000 −0.0695048
\(208\) 4743.36 1.58122
\(209\) −127.711 −0.0422676
\(210\) 626.830 0.205978
\(211\) 2923.19 0.953746 0.476873 0.878972i \(-0.341770\pi\)
0.476873 + 0.878972i \(0.341770\pi\)
\(212\) −32.1192 −0.0104054
\(213\) −3217.37 −1.03498
\(214\) 616.004 0.196772
\(215\) −603.399 −0.191402
\(216\) 634.711 0.199938
\(217\) −181.135 −0.0566649
\(218\) 542.788 0.168634
\(219\) −847.056 −0.261364
\(220\) −39.2647 −0.0120329
\(221\) 692.059 0.210647
\(222\) 1082.05 0.327127
\(223\) 431.948 0.129710 0.0648550 0.997895i \(-0.479341\pi\)
0.0648550 + 0.997895i \(0.479341\pi\)
\(224\) 221.583 0.0660943
\(225\) −26.3143 −0.00779683
\(226\) −1895.70 −0.557964
\(227\) 5017.96 1.46720 0.733599 0.679583i \(-0.237839\pi\)
0.733599 + 0.679583i \(0.237839\pi\)
\(228\) 53.0632 0.0154131
\(229\) −6077.16 −1.75367 −0.876835 0.480792i \(-0.840349\pi\)
−0.876835 + 0.480792i \(0.840349\pi\)
\(230\) 686.528 0.196819
\(231\) −106.375 −0.0302986
\(232\) 1588.66 0.449572
\(233\) −5392.50 −1.51620 −0.758099 0.652139i \(-0.773872\pi\)
−0.758099 + 0.652139i \(0.773872\pi\)
\(234\) 1992.05 0.556515
\(235\) −432.920 −0.120173
\(236\) −54.8195 −0.0151205
\(237\) 389.759 0.106825
\(238\) −159.740 −0.0435059
\(239\) 1093.36 0.295916 0.147958 0.988994i \(-0.452730\pi\)
0.147958 + 0.988994i \(0.452730\pi\)
\(240\) −1919.02 −0.516135
\(241\) 5619.17 1.50192 0.750959 0.660348i \(-0.229591\pi\)
0.750959 + 0.660348i \(0.229591\pi\)
\(242\) 3526.46 0.936733
\(243\) 243.000 0.0641500
\(244\) −483.541 −0.126867
\(245\) 541.392 0.141177
\(246\) 1197.81 0.310446
\(247\) 2065.61 0.532113
\(248\) 608.300 0.155754
\(249\) −2036.36 −0.518270
\(250\) 3818.40 0.965988
\(251\) 1747.14 0.439356 0.219678 0.975572i \(-0.429499\pi\)
0.219678 + 0.975572i \(0.429499\pi\)
\(252\) 44.1984 0.0110486
\(253\) −116.506 −0.0289513
\(254\) 2343.62 0.578945
\(255\) −279.986 −0.0687586
\(256\) −1069.07 −0.261003
\(257\) 4285.41 1.04014 0.520071 0.854123i \(-0.325906\pi\)
0.520071 + 0.854123i \(0.325906\pi\)
\(258\) 442.614 0.106806
\(259\) 934.561 0.224211
\(260\) 635.074 0.151483
\(261\) 608.222 0.144245
\(262\) 5320.08 1.25449
\(263\) 1597.20 0.374478 0.187239 0.982314i \(-0.440046\pi\)
0.187239 + 0.982314i \(0.440046\pi\)
\(264\) 357.235 0.0832815
\(265\) 505.841 0.117259
\(266\) −476.781 −0.109900
\(267\) −1619.05 −0.371103
\(268\) 681.404 0.155311
\(269\) −6208.44 −1.40719 −0.703597 0.710600i \(-0.748424\pi\)
−0.703597 + 0.710600i \(0.748424\pi\)
\(270\) −805.924 −0.181656
\(271\) 1697.92 0.380596 0.190298 0.981726i \(-0.439055\pi\)
0.190298 + 0.981726i \(0.439055\pi\)
\(272\) 489.039 0.109016
\(273\) 1720.53 0.381433
\(274\) 741.956 0.163588
\(275\) −14.8105 −0.00324767
\(276\) 48.4078 0.0105573
\(277\) −1914.18 −0.415205 −0.207603 0.978213i \(-0.566566\pi\)
−0.207603 + 0.978213i \(0.566566\pi\)
\(278\) −4096.78 −0.883843
\(279\) 232.888 0.0499737
\(280\) −1818.13 −0.388051
\(281\) −245.161 −0.0520464 −0.0260232 0.999661i \(-0.508284\pi\)
−0.0260232 + 0.999661i \(0.508284\pi\)
\(282\) 317.562 0.0670586
\(283\) 6792.06 1.42666 0.713332 0.700826i \(-0.247185\pi\)
0.713332 + 0.700826i \(0.247185\pi\)
\(284\) 752.396 0.157206
\(285\) −835.685 −0.173690
\(286\) 1121.19 0.231809
\(287\) 1034.55 0.212778
\(288\) −284.892 −0.0582897
\(289\) −4841.65 −0.985477
\(290\) −2017.20 −0.408463
\(291\) −1991.06 −0.401093
\(292\) 198.088 0.0396993
\(293\) 3391.95 0.676313 0.338157 0.941090i \(-0.390197\pi\)
0.338157 + 0.941090i \(0.390197\pi\)
\(294\) −397.130 −0.0787792
\(295\) 863.344 0.170393
\(296\) −3138.50 −0.616288
\(297\) 136.768 0.0267208
\(298\) 5470.72 1.06346
\(299\) 1884.39 0.364472
\(300\) 6.15371 0.00118428
\(301\) 382.285 0.0732044
\(302\) −2643.10 −0.503619
\(303\) −947.197 −0.179588
\(304\) 1459.65 0.275384
\(305\) 7615.22 1.42966
\(306\) 205.380 0.0383686
\(307\) −3908.07 −0.726531 −0.363266 0.931686i \(-0.618338\pi\)
−0.363266 + 0.931686i \(0.618338\pi\)
\(308\) 24.8763 0.00460213
\(309\) −3093.86 −0.569591
\(310\) −772.388 −0.141512
\(311\) 3103.41 0.565846 0.282923 0.959143i \(-0.408696\pi\)
0.282923 + 0.959143i \(0.408696\pi\)
\(312\) −5777.98 −1.04844
\(313\) −3831.76 −0.691962 −0.345981 0.938241i \(-0.612454\pi\)
−0.345981 + 0.938241i \(0.612454\pi\)
\(314\) −3950.16 −0.709938
\(315\) −696.075 −0.124506
\(316\) −91.1468 −0.0162260
\(317\) 4114.51 0.729003 0.364502 0.931203i \(-0.381239\pi\)
0.364502 + 0.931203i \(0.381239\pi\)
\(318\) −371.052 −0.0654326
\(319\) 342.326 0.0600834
\(320\) 6062.26 1.05903
\(321\) −684.053 −0.118941
\(322\) −434.952 −0.0752761
\(323\) 212.964 0.0366862
\(324\) −56.8265 −0.00974392
\(325\) 239.548 0.0408853
\(326\) 3651.20 0.620311
\(327\) −602.749 −0.101933
\(328\) −3474.27 −0.584862
\(329\) 274.277 0.0459617
\(330\) −453.600 −0.0756662
\(331\) −1915.85 −0.318141 −0.159070 0.987267i \(-0.550850\pi\)
−0.159070 + 0.987267i \(0.550850\pi\)
\(332\) 476.212 0.0787214
\(333\) −1201.58 −0.197736
\(334\) −7013.08 −1.14892
\(335\) −10731.3 −1.75020
\(336\) 1215.80 0.197403
\(337\) 2648.33 0.428082 0.214041 0.976825i \(-0.431337\pi\)
0.214041 + 0.976825i \(0.431337\pi\)
\(338\) −12199.0 −1.96313
\(339\) 2105.11 0.337268
\(340\) 65.4760 0.0104439
\(341\) 131.077 0.0208159
\(342\) 613.004 0.0969225
\(343\) −343.000 −0.0539949
\(344\) −1283.81 −0.201216
\(345\) −762.368 −0.118970
\(346\) 5722.49 0.889141
\(347\) 7438.35 1.15075 0.575377 0.817888i \(-0.304855\pi\)
0.575377 + 0.817888i \(0.304855\pi\)
\(348\) −142.235 −0.0219098
\(349\) −771.263 −0.118294 −0.0591472 0.998249i \(-0.518838\pi\)
−0.0591472 + 0.998249i \(0.518838\pi\)
\(350\) −55.2920 −0.00844423
\(351\) −2212.11 −0.336392
\(352\) −160.346 −0.0242798
\(353\) −9266.53 −1.39719 −0.698594 0.715518i \(-0.746191\pi\)
−0.698594 + 0.715518i \(0.746191\pi\)
\(354\) −633.293 −0.0950823
\(355\) −11849.4 −1.77155
\(356\) 378.622 0.0563678
\(357\) 177.386 0.0262977
\(358\) −12361.4 −1.82492
\(359\) −5507.13 −0.809625 −0.404813 0.914400i \(-0.632663\pi\)
−0.404813 + 0.914400i \(0.632663\pi\)
\(360\) 2337.60 0.342229
\(361\) −6223.36 −0.907327
\(362\) 3394.11 0.492792
\(363\) −3916.02 −0.566220
\(364\) −402.353 −0.0579369
\(365\) −3119.65 −0.447370
\(366\) −5586.03 −0.797777
\(367\) 8044.21 1.14415 0.572077 0.820200i \(-0.306138\pi\)
0.572077 + 0.820200i \(0.306138\pi\)
\(368\) 1331.59 0.188625
\(369\) −1330.13 −0.187653
\(370\) 3985.11 0.559935
\(371\) −320.477 −0.0448472
\(372\) −54.4619 −0.00759064
\(373\) −12537.9 −1.74046 −0.870228 0.492649i \(-0.836029\pi\)
−0.870228 + 0.492649i \(0.836029\pi\)
\(374\) 115.594 0.0159819
\(375\) −4240.22 −0.583904
\(376\) −921.095 −0.126335
\(377\) −5536.84 −0.756398
\(378\) 510.595 0.0694767
\(379\) −10643.8 −1.44257 −0.721284 0.692640i \(-0.756448\pi\)
−0.721284 + 0.692640i \(0.756448\pi\)
\(380\) 195.428 0.0263823
\(381\) −2602.52 −0.349951
\(382\) −780.591 −0.104551
\(383\) −9178.18 −1.22450 −0.612249 0.790665i \(-0.709735\pi\)
−0.612249 + 0.790665i \(0.709735\pi\)
\(384\) −3687.16 −0.489999
\(385\) −391.773 −0.0518613
\(386\) −9799.87 −1.29223
\(387\) −491.509 −0.0645602
\(388\) 465.617 0.0609230
\(389\) −157.993 −0.0205927 −0.0102964 0.999947i \(-0.503277\pi\)
−0.0102964 + 0.999947i \(0.503277\pi\)
\(390\) 7336.60 0.952572
\(391\) 194.280 0.0251283
\(392\) 1151.88 0.148415
\(393\) −5907.78 −0.758290
\(394\) −4666.23 −0.596653
\(395\) 1435.46 0.182850
\(396\) −31.9838 −0.00405870
\(397\) −6072.45 −0.767677 −0.383838 0.923400i \(-0.625398\pi\)
−0.383838 + 0.923400i \(0.625398\pi\)
\(398\) 2443.21 0.307706
\(399\) 529.451 0.0664303
\(400\) 169.275 0.0211594
\(401\) −884.530 −0.110153 −0.0550765 0.998482i \(-0.517540\pi\)
−0.0550765 + 0.998482i \(0.517540\pi\)
\(402\) 7871.81 0.976642
\(403\) −2120.06 −0.262054
\(404\) 221.506 0.0272780
\(405\) 894.954 0.109804
\(406\) 1278.00 0.156222
\(407\) −676.286 −0.0823643
\(408\) −595.708 −0.0722842
\(409\) 8494.54 1.02696 0.513482 0.858101i \(-0.328355\pi\)
0.513482 + 0.858101i \(0.328355\pi\)
\(410\) 4411.46 0.531382
\(411\) −823.919 −0.0988831
\(412\) 723.512 0.0865167
\(413\) −546.974 −0.0651691
\(414\) 559.223 0.0663873
\(415\) −7499.79 −0.887109
\(416\) 2593.47 0.305662
\(417\) 4549.34 0.534250
\(418\) 345.018 0.0403718
\(419\) −4732.06 −0.551734 −0.275867 0.961196i \(-0.588965\pi\)
−0.275867 + 0.961196i \(0.588965\pi\)
\(420\) 162.780 0.0189115
\(421\) 15503.2 1.79472 0.897360 0.441299i \(-0.145482\pi\)
0.897360 + 0.441299i \(0.145482\pi\)
\(422\) −7897.17 −0.910968
\(423\) −352.642 −0.0405344
\(424\) 1076.24 0.123271
\(425\) 24.6973 0.00281881
\(426\) 8691.94 0.988558
\(427\) −4824.64 −0.546793
\(428\) 159.968 0.0180663
\(429\) −1245.05 −0.140120
\(430\) 1630.12 0.182817
\(431\) 12454.0 1.39185 0.695926 0.718113i \(-0.254994\pi\)
0.695926 + 0.718113i \(0.254994\pi\)
\(432\) −1563.17 −0.174093
\(433\) −1395.56 −0.154888 −0.0774438 0.996997i \(-0.524676\pi\)
−0.0774438 + 0.996997i \(0.524676\pi\)
\(434\) 489.349 0.0541232
\(435\) 2240.04 0.246901
\(436\) 140.955 0.0154829
\(437\) 579.874 0.0634763
\(438\) 2288.37 0.249641
\(439\) 15803.8 1.71817 0.859084 0.511835i \(-0.171034\pi\)
0.859084 + 0.511835i \(0.171034\pi\)
\(440\) 1315.68 0.142551
\(441\) 441.000 0.0476190
\(442\) −1869.64 −0.201198
\(443\) −2298.95 −0.246560 −0.123280 0.992372i \(-0.539341\pi\)
−0.123280 + 0.992372i \(0.539341\pi\)
\(444\) 280.994 0.0300346
\(445\) −5962.88 −0.635208
\(446\) −1166.93 −0.123892
\(447\) −6075.06 −0.642820
\(448\) −3840.76 −0.405042
\(449\) 6997.31 0.735464 0.367732 0.929932i \(-0.380134\pi\)
0.367732 + 0.929932i \(0.380134\pi\)
\(450\) 71.0897 0.00744711
\(451\) −748.640 −0.0781642
\(452\) −492.289 −0.0512286
\(453\) 2935.07 0.304419
\(454\) −13556.3 −1.40139
\(455\) 6336.60 0.652889
\(456\) −1778.03 −0.182596
\(457\) 6324.83 0.647403 0.323702 0.946159i \(-0.395073\pi\)
0.323702 + 0.946159i \(0.395073\pi\)
\(458\) 16417.8 1.67501
\(459\) −228.068 −0.0231924
\(460\) 178.283 0.0180706
\(461\) 1697.19 0.171466 0.0857330 0.996318i \(-0.472677\pi\)
0.0857330 + 0.996318i \(0.472677\pi\)
\(462\) 287.379 0.0289396
\(463\) 10300.9 1.03396 0.516978 0.855999i \(-0.327057\pi\)
0.516978 + 0.855999i \(0.327057\pi\)
\(464\) −3912.58 −0.391459
\(465\) 857.713 0.0855387
\(466\) 14568.2 1.44819
\(467\) 15658.6 1.55159 0.775795 0.630985i \(-0.217349\pi\)
0.775795 + 0.630985i \(0.217349\pi\)
\(468\) 517.311 0.0510955
\(469\) 6798.87 0.669387
\(470\) 1169.56 0.114783
\(471\) 4386.53 0.429131
\(472\) 1836.88 0.179130
\(473\) −276.637 −0.0268917
\(474\) −1052.96 −0.102034
\(475\) 73.7149 0.00712057
\(476\) −41.4825 −0.00399442
\(477\) 412.042 0.0395515
\(478\) −2953.79 −0.282643
\(479\) −10225.0 −0.975345 −0.487673 0.873027i \(-0.662154\pi\)
−0.487673 + 0.873027i \(0.662154\pi\)
\(480\) −1049.24 −0.0997730
\(481\) 10938.4 1.03689
\(482\) −15180.5 −1.43455
\(483\) 483.000 0.0455016
\(484\) 915.778 0.0860047
\(485\) −7332.95 −0.686540
\(486\) −656.480 −0.0612727
\(487\) −13801.7 −1.28421 −0.642107 0.766615i \(-0.721940\pi\)
−0.642107 + 0.766615i \(0.721940\pi\)
\(488\) 16202.4 1.50297
\(489\) −4054.55 −0.374955
\(490\) −1462.60 −0.134844
\(491\) 552.789 0.0508086 0.0254043 0.999677i \(-0.491913\pi\)
0.0254043 + 0.999677i \(0.491913\pi\)
\(492\) 311.056 0.0285031
\(493\) −570.847 −0.0521494
\(494\) −5580.38 −0.508246
\(495\) 503.708 0.0457374
\(496\) −1498.13 −0.135621
\(497\) 7507.21 0.677554
\(498\) 5501.36 0.495024
\(499\) −7556.91 −0.677943 −0.338972 0.940797i \(-0.610079\pi\)
−0.338972 + 0.940797i \(0.610079\pi\)
\(500\) 991.592 0.0886907
\(501\) 7787.81 0.694478
\(502\) −4720.00 −0.419649
\(503\) −17797.4 −1.57763 −0.788815 0.614630i \(-0.789305\pi\)
−0.788815 + 0.614630i \(0.789305\pi\)
\(504\) −1480.99 −0.130890
\(505\) −3488.47 −0.307395
\(506\) 314.749 0.0276527
\(507\) 13546.6 1.18664
\(508\) 608.610 0.0531549
\(509\) 9266.40 0.806927 0.403464 0.914996i \(-0.367806\pi\)
0.403464 + 0.914996i \(0.367806\pi\)
\(510\) 756.401 0.0656745
\(511\) 1976.46 0.171103
\(512\) 12720.6 1.09800
\(513\) −680.722 −0.0585860
\(514\) −11577.3 −0.993487
\(515\) −11394.5 −0.974954
\(516\) 114.941 0.00980622
\(517\) −198.478 −0.0168841
\(518\) −2524.77 −0.214155
\(519\) −6354.64 −0.537452
\(520\) −21279.9 −1.79459
\(521\) −10723.1 −0.901706 −0.450853 0.892598i \(-0.648880\pi\)
−0.450853 + 0.892598i \(0.648880\pi\)
\(522\) −1643.15 −0.137775
\(523\) 45.8634 0.00383455 0.00191727 0.999998i \(-0.499390\pi\)
0.00191727 + 0.999998i \(0.499390\pi\)
\(524\) 1381.56 0.115179
\(525\) 61.4000 0.00510422
\(526\) −4314.94 −0.357681
\(527\) −218.578 −0.0180672
\(528\) −879.804 −0.0725162
\(529\) 529.000 0.0434783
\(530\) −1366.56 −0.111999
\(531\) 703.252 0.0574737
\(532\) −123.814 −0.0100903
\(533\) 12108.6 0.984020
\(534\) 4373.98 0.354458
\(535\) −2519.32 −0.203588
\(536\) −22832.4 −1.83994
\(537\) 13726.9 1.10309
\(538\) 16772.5 1.34408
\(539\) 248.209 0.0198351
\(540\) −209.289 −0.0166784
\(541\) 21416.3 1.70196 0.850980 0.525198i \(-0.176009\pi\)
0.850980 + 0.525198i \(0.176009\pi\)
\(542\) −4587.04 −0.363525
\(543\) −3769.06 −0.297874
\(544\) 267.386 0.0210737
\(545\) −2219.89 −0.174476
\(546\) −4648.12 −0.364324
\(547\) 918.228 0.0717744 0.0358872 0.999356i \(-0.488574\pi\)
0.0358872 + 0.999356i \(0.488574\pi\)
\(548\) 192.677 0.0150196
\(549\) 6203.11 0.482226
\(550\) 40.0115 0.00310200
\(551\) −1703.83 −0.131734
\(552\) −1622.04 −0.125070
\(553\) −909.438 −0.0699335
\(554\) 5171.27 0.396582
\(555\) −4425.33 −0.338459
\(556\) −1063.88 −0.0811487
\(557\) −13770.2 −1.04751 −0.523753 0.851870i \(-0.675469\pi\)
−0.523753 + 0.851870i \(0.675469\pi\)
\(558\) −629.162 −0.0477322
\(559\) 4474.37 0.338543
\(560\) 4477.72 0.337890
\(561\) −128.364 −0.00966047
\(562\) 662.316 0.0497120
\(563\) −4467.58 −0.334434 −0.167217 0.985920i \(-0.553478\pi\)
−0.167217 + 0.985920i \(0.553478\pi\)
\(564\) 82.4669 0.00615688
\(565\) 7752.99 0.577293
\(566\) −18349.2 −1.36267
\(567\) −567.000 −0.0419961
\(568\) −25211.1 −1.86239
\(569\) 11208.9 0.825834 0.412917 0.910769i \(-0.364510\pi\)
0.412917 + 0.910769i \(0.364510\pi\)
\(570\) 2257.66 0.165900
\(571\) 13057.0 0.956953 0.478477 0.878100i \(-0.341189\pi\)
0.478477 + 0.878100i \(0.341189\pi\)
\(572\) 291.159 0.0212832
\(573\) 866.822 0.0631972
\(574\) −2794.89 −0.203234
\(575\) 67.2477 0.00487725
\(576\) 4938.12 0.357213
\(577\) 4809.36 0.346995 0.173498 0.984834i \(-0.444493\pi\)
0.173498 + 0.984834i \(0.444493\pi\)
\(578\) 13080.0 0.941275
\(579\) 10882.5 0.781104
\(580\) −523.843 −0.0375024
\(581\) 4751.51 0.339287
\(582\) 5378.97 0.383102
\(583\) 231.910 0.0164747
\(584\) −6637.48 −0.470310
\(585\) −8147.06 −0.575794
\(586\) −9163.56 −0.645978
\(587\) 25161.8 1.76923 0.884616 0.466320i \(-0.154420\pi\)
0.884616 + 0.466320i \(0.154420\pi\)
\(588\) −103.130 −0.00723298
\(589\) −652.396 −0.0456393
\(590\) −2332.38 −0.162750
\(591\) 5181.70 0.360654
\(592\) 7729.52 0.536624
\(593\) 7113.26 0.492591 0.246296 0.969195i \(-0.420787\pi\)
0.246296 + 0.969195i \(0.420787\pi\)
\(594\) −369.488 −0.0255223
\(595\) 653.302 0.0450130
\(596\) 1420.68 0.0976396
\(597\) −2713.11 −0.185997
\(598\) −5090.80 −0.348124
\(599\) 9718.30 0.662903 0.331452 0.943472i \(-0.392462\pi\)
0.331452 + 0.943472i \(0.392462\pi\)
\(600\) −206.197 −0.0140299
\(601\) 18339.2 1.24471 0.622355 0.782735i \(-0.286176\pi\)
0.622355 + 0.782735i \(0.286176\pi\)
\(602\) −1032.77 −0.0699209
\(603\) −8741.40 −0.590344
\(604\) −686.379 −0.0462390
\(605\) −14422.5 −0.969184
\(606\) 2558.91 0.171532
\(607\) 10365.7 0.693132 0.346566 0.938026i \(-0.387348\pi\)
0.346566 + 0.938026i \(0.387348\pi\)
\(608\) 798.076 0.0532340
\(609\) −1419.18 −0.0944306
\(610\) −20573.0 −1.36553
\(611\) 3210.22 0.212556
\(612\) 53.3346 0.00352275
\(613\) −508.126 −0.0334796 −0.0167398 0.999860i \(-0.505329\pi\)
−0.0167398 + 0.999860i \(0.505329\pi\)
\(614\) 10557.9 0.693944
\(615\) −4898.79 −0.321200
\(616\) −833.549 −0.0545205
\(617\) 7691.28 0.501846 0.250923 0.968007i \(-0.419266\pi\)
0.250923 + 0.968007i \(0.419266\pi\)
\(618\) 8358.26 0.544043
\(619\) 10937.2 0.710184 0.355092 0.934831i \(-0.384449\pi\)
0.355092 + 0.934831i \(0.384449\pi\)
\(620\) −200.580 −0.0129927
\(621\) −621.000 −0.0401286
\(622\) −8384.05 −0.540466
\(623\) 3777.79 0.242944
\(624\) 14230.1 0.912916
\(625\) −15251.0 −0.976062
\(626\) 10351.8 0.660925
\(627\) −383.132 −0.0244032
\(628\) −1025.81 −0.0651818
\(629\) 1127.74 0.0714881
\(630\) 1880.49 0.118921
\(631\) −18952.8 −1.19572 −0.597860 0.801601i \(-0.703982\pi\)
−0.597860 + 0.801601i \(0.703982\pi\)
\(632\) 3054.13 0.192226
\(633\) 8769.56 0.550646
\(634\) −11115.6 −0.696305
\(635\) −9584.92 −0.599002
\(636\) −96.3576 −0.00600759
\(637\) −4014.57 −0.249706
\(638\) −924.816 −0.0573884
\(639\) −9652.12 −0.597546
\(640\) −13579.6 −0.838719
\(641\) −14280.9 −0.879973 −0.439986 0.898004i \(-0.645017\pi\)
−0.439986 + 0.898004i \(0.645017\pi\)
\(642\) 1848.01 0.113606
\(643\) 7937.32 0.486808 0.243404 0.969925i \(-0.421736\pi\)
0.243404 + 0.969925i \(0.421736\pi\)
\(644\) −112.952 −0.00691136
\(645\) −1810.20 −0.110506
\(646\) −575.336 −0.0350407
\(647\) 12925.5 0.785398 0.392699 0.919667i \(-0.371541\pi\)
0.392699 + 0.919667i \(0.371541\pi\)
\(648\) 1904.13 0.115434
\(649\) 395.813 0.0239399
\(650\) −647.153 −0.0390515
\(651\) −543.406 −0.0327155
\(652\) 948.172 0.0569529
\(653\) −6414.51 −0.384409 −0.192204 0.981355i \(-0.561564\pi\)
−0.192204 + 0.981355i \(0.561564\pi\)
\(654\) 1628.36 0.0973610
\(655\) −21758.0 −1.29795
\(656\) 8556.48 0.509260
\(657\) −2541.17 −0.150899
\(658\) −740.978 −0.0439002
\(659\) 9454.36 0.558861 0.279431 0.960166i \(-0.409854\pi\)
0.279431 + 0.960166i \(0.409854\pi\)
\(660\) −117.794 −0.00694717
\(661\) 5643.48 0.332081 0.166041 0.986119i \(-0.446902\pi\)
0.166041 + 0.986119i \(0.446902\pi\)
\(662\) 5175.79 0.303871
\(663\) 2076.18 0.121617
\(664\) −15956.8 −0.932597
\(665\) 1949.93 0.113707
\(666\) 3246.14 0.188867
\(667\) −1554.34 −0.0902316
\(668\) −1821.21 −0.105486
\(669\) 1295.84 0.0748882
\(670\) 28991.4 1.67169
\(671\) 3491.31 0.200865
\(672\) 664.749 0.0381596
\(673\) −24861.0 −1.42395 −0.711977 0.702203i \(-0.752200\pi\)
−0.711977 + 0.702203i \(0.752200\pi\)
\(674\) −7154.62 −0.408881
\(675\) −78.9429 −0.00450150
\(676\) −3167.92 −0.180241
\(677\) −19628.6 −1.11431 −0.557155 0.830409i \(-0.688107\pi\)
−0.557155 + 0.830409i \(0.688107\pi\)
\(678\) −5687.09 −0.322140
\(679\) 4645.81 0.262577
\(680\) −2193.96 −0.123727
\(681\) 15053.9 0.847087
\(682\) −354.113 −0.0198822
\(683\) −7782.34 −0.435993 −0.217996 0.975950i \(-0.569952\pi\)
−0.217996 + 0.975950i \(0.569952\pi\)
\(684\) 159.190 0.00889878
\(685\) −3034.44 −0.169256
\(686\) 926.636 0.0515731
\(687\) −18231.5 −1.01248
\(688\) 3161.78 0.175206
\(689\) −3750.95 −0.207402
\(690\) 2059.58 0.113633
\(691\) −5876.77 −0.323535 −0.161768 0.986829i \(-0.551719\pi\)
−0.161768 + 0.986829i \(0.551719\pi\)
\(692\) 1486.06 0.0816351
\(693\) −319.126 −0.0174929
\(694\) −20095.2 −1.09914
\(695\) 16754.9 0.914462
\(696\) 4765.99 0.259561
\(697\) 1248.40 0.0678427
\(698\) 2083.62 0.112989
\(699\) −16177.5 −0.875378
\(700\) −14.3586 −0.000775294 0
\(701\) −10760.8 −0.579784 −0.289892 0.957059i \(-0.593619\pi\)
−0.289892 + 0.957059i \(0.593619\pi\)
\(702\) 5976.15 0.321304
\(703\) 3366.01 0.180585
\(704\) 2779.33 0.148792
\(705\) −1298.76 −0.0693817
\(706\) 25034.1 1.33452
\(707\) 2210.13 0.117568
\(708\) −164.458 −0.00872984
\(709\) 12169.4 0.644616 0.322308 0.946635i \(-0.395541\pi\)
0.322308 + 0.946635i \(0.395541\pi\)
\(710\) 32011.9 1.69209
\(711\) 1169.28 0.0616756
\(712\) −12686.8 −0.667779
\(713\) −595.159 −0.0312607
\(714\) −479.220 −0.0251181
\(715\) −4585.42 −0.239839
\(716\) −3210.10 −0.167552
\(717\) 3280.09 0.170847
\(718\) 14877.9 0.773311
\(719\) 7664.29 0.397538 0.198769 0.980046i \(-0.436306\pi\)
0.198769 + 0.980046i \(0.436306\pi\)
\(720\) −5757.07 −0.297991
\(721\) 7219.01 0.372885
\(722\) 16812.8 0.866631
\(723\) 16857.5 0.867133
\(724\) 881.409 0.0452449
\(725\) −197.592 −0.0101219
\(726\) 10579.4 0.540823
\(727\) 8789.39 0.448391 0.224196 0.974544i \(-0.428025\pi\)
0.224196 + 0.974544i \(0.428025\pi\)
\(728\) 13482.0 0.686366
\(729\) 729.000 0.0370370
\(730\) 8427.94 0.427304
\(731\) 461.306 0.0233407
\(732\) −1450.62 −0.0732466
\(733\) 7263.23 0.365994 0.182997 0.983113i \(-0.441420\pi\)
0.182997 + 0.983113i \(0.441420\pi\)
\(734\) −21731.9 −1.09283
\(735\) 1624.17 0.0815083
\(736\) 728.058 0.0364627
\(737\) −4919.94 −0.245900
\(738\) 3593.43 0.179236
\(739\) 27025.1 1.34524 0.672621 0.739987i \(-0.265169\pi\)
0.672621 + 0.739987i \(0.265169\pi\)
\(740\) 1034.88 0.0514095
\(741\) 6196.84 0.307215
\(742\) 865.788 0.0428357
\(743\) −30932.3 −1.52731 −0.763657 0.645622i \(-0.776598\pi\)
−0.763657 + 0.645622i \(0.776598\pi\)
\(744\) 1824.90 0.0899248
\(745\) −22374.1 −1.10030
\(746\) 33872.0 1.66239
\(747\) −6109.09 −0.299223
\(748\) 30.0184 0.00146735
\(749\) 1596.12 0.0778652
\(750\) 11455.2 0.557714
\(751\) 18156.0 0.882186 0.441093 0.897461i \(-0.354591\pi\)
0.441093 + 0.897461i \(0.354591\pi\)
\(752\) 2268.48 0.110004
\(753\) 5241.41 0.253662
\(754\) 14958.1 0.722471
\(755\) 10809.7 0.521066
\(756\) 132.595 0.00637889
\(757\) −33793.4 −1.62251 −0.811257 0.584689i \(-0.801216\pi\)
−0.811257 + 0.584689i \(0.801216\pi\)
\(758\) 28754.8 1.37786
\(759\) −349.518 −0.0167150
\(760\) −6548.38 −0.312546
\(761\) −7171.08 −0.341592 −0.170796 0.985306i \(-0.554634\pi\)
−0.170796 + 0.985306i \(0.554634\pi\)
\(762\) 7030.87 0.334254
\(763\) 1406.42 0.0667309
\(764\) −202.710 −0.00959919
\(765\) −839.959 −0.0396978
\(766\) 24795.4 1.16958
\(767\) −6401.94 −0.301383
\(768\) −3207.21 −0.150690
\(769\) −1990.29 −0.0933313 −0.0466657 0.998911i \(-0.514860\pi\)
−0.0466657 + 0.998911i \(0.514860\pi\)
\(770\) 1058.40 0.0495351
\(771\) 12856.2 0.600526
\(772\) −2544.91 −0.118644
\(773\) −33550.3 −1.56109 −0.780544 0.625101i \(-0.785058\pi\)
−0.780544 + 0.625101i \(0.785058\pi\)
\(774\) 1327.84 0.0616644
\(775\) −75.6580 −0.00350673
\(776\) −15601.8 −0.721743
\(777\) 2803.68 0.129449
\(778\) 426.828 0.0196691
\(779\) 3726.13 0.171377
\(780\) 1905.22 0.0874589
\(781\) −5432.52 −0.248900
\(782\) −524.860 −0.0240012
\(783\) 1824.66 0.0832800
\(784\) −2836.87 −0.129231
\(785\) 16155.3 0.734532
\(786\) 15960.2 0.724278
\(787\) 22933.3 1.03873 0.519366 0.854552i \(-0.326168\pi\)
0.519366 + 0.854552i \(0.326168\pi\)
\(788\) −1211.76 −0.0547807
\(789\) 4791.60 0.216205
\(790\) −3877.98 −0.174649
\(791\) −4911.92 −0.220794
\(792\) 1071.71 0.0480826
\(793\) −56469.0 −2.52872
\(794\) 16405.1 0.733244
\(795\) 1517.52 0.0676994
\(796\) 634.472 0.0282516
\(797\) 11705.6 0.520241 0.260121 0.965576i \(-0.416238\pi\)
0.260121 + 0.965576i \(0.416238\pi\)
\(798\) −1430.34 −0.0634506
\(799\) 330.973 0.0146545
\(800\) 92.5524 0.00409028
\(801\) −4857.16 −0.214256
\(802\) 2389.61 0.105212
\(803\) −1430.25 −0.0628548
\(804\) 2044.21 0.0896689
\(805\) 1778.86 0.0778839
\(806\) 5727.47 0.250300
\(807\) −18625.3 −0.812443
\(808\) −7422.17 −0.323157
\(809\) 18616.1 0.809032 0.404516 0.914531i \(-0.367440\pi\)
0.404516 + 0.914531i \(0.367440\pi\)
\(810\) −2417.77 −0.104879
\(811\) 9553.42 0.413645 0.206822 0.978379i \(-0.433688\pi\)
0.206822 + 0.978379i \(0.433688\pi\)
\(812\) 331.882 0.0143433
\(813\) 5093.77 0.219737
\(814\) 1827.03 0.0786699
\(815\) −14932.6 −0.641800
\(816\) 1467.12 0.0629404
\(817\) 1376.88 0.0589606
\(818\) −22948.5 −0.980900
\(819\) 5161.59 0.220220
\(820\) 1145.60 0.0487880
\(821\) −26584.5 −1.13009 −0.565045 0.825060i \(-0.691141\pi\)
−0.565045 + 0.825060i \(0.691141\pi\)
\(822\) 2225.87 0.0944478
\(823\) 3253.63 0.137806 0.0689030 0.997623i \(-0.478050\pi\)
0.0689030 + 0.997623i \(0.478050\pi\)
\(824\) −24243.3 −1.02495
\(825\) −44.4316 −0.00187504
\(826\) 1477.68 0.0622460
\(827\) −7484.07 −0.314687 −0.157344 0.987544i \(-0.550293\pi\)
−0.157344 + 0.987544i \(0.550293\pi\)
\(828\) 145.223 0.00609524
\(829\) 21105.8 0.884240 0.442120 0.896956i \(-0.354226\pi\)
0.442120 + 0.896956i \(0.354226\pi\)
\(830\) 20261.2 0.847319
\(831\) −5742.54 −0.239719
\(832\) −44953.3 −1.87317
\(833\) −413.901 −0.0172159
\(834\) −12290.3 −0.510287
\(835\) 28682.0 1.18872
\(836\) 89.5970 0.00370667
\(837\) 698.665 0.0288523
\(838\) 12784.0 0.526987
\(839\) −17901.4 −0.736622 −0.368311 0.929703i \(-0.620064\pi\)
−0.368311 + 0.929703i \(0.620064\pi\)
\(840\) −5454.40 −0.224041
\(841\) −19821.9 −0.812740
\(842\) −41882.7 −1.71422
\(843\) −735.482 −0.0300490
\(844\) −2050.80 −0.0836391
\(845\) 49891.2 2.03113
\(846\) 952.685 0.0387163
\(847\) 9137.39 0.370678
\(848\) −2650.59 −0.107337
\(849\) 20376.2 0.823685
\(850\) −66.7213 −0.00269238
\(851\) 3070.70 0.123692
\(852\) 2257.19 0.0907629
\(853\) 12762.9 0.512304 0.256152 0.966637i \(-0.417545\pi\)
0.256152 + 0.966637i \(0.417545\pi\)
\(854\) 13034.1 0.522268
\(855\) −2507.06 −0.100280
\(856\) −5360.19 −0.214028
\(857\) −45558.2 −1.81591 −0.907957 0.419063i \(-0.862359\pi\)
−0.907957 + 0.419063i \(0.862359\pi\)
\(858\) 3363.57 0.133835
\(859\) −23541.1 −0.935054 −0.467527 0.883979i \(-0.654855\pi\)
−0.467527 + 0.883979i \(0.654855\pi\)
\(860\) 423.322 0.0167851
\(861\) 3103.64 0.122848
\(862\) −33645.3 −1.32942
\(863\) 11338.0 0.447220 0.223610 0.974679i \(-0.428216\pi\)
0.223610 + 0.974679i \(0.428216\pi\)
\(864\) −854.677 −0.0336536
\(865\) −23403.7 −0.919944
\(866\) 3770.19 0.147940
\(867\) −14524.9 −0.568965
\(868\) 127.078 0.00496924
\(869\) 658.106 0.0256901
\(870\) −6051.61 −0.235826
\(871\) 79575.9 3.09567
\(872\) −4723.11 −0.183423
\(873\) −5973.18 −0.231571
\(874\) −1566.57 −0.0606292
\(875\) 9893.84 0.382255
\(876\) 594.263 0.0229204
\(877\) −39984.3 −1.53954 −0.769768 0.638324i \(-0.779628\pi\)
−0.769768 + 0.638324i \(0.779628\pi\)
\(878\) −42695.0 −1.64110
\(879\) 10175.8 0.390470
\(880\) −3240.26 −0.124124
\(881\) 34093.0 1.30377 0.651886 0.758317i \(-0.273978\pi\)
0.651886 + 0.758317i \(0.273978\pi\)
\(882\) −1191.39 −0.0454832
\(883\) −32229.5 −1.22832 −0.614162 0.789180i \(-0.710506\pi\)
−0.614162 + 0.789180i \(0.710506\pi\)
\(884\) −485.522 −0.0184727
\(885\) 2590.03 0.0983763
\(886\) 6210.75 0.235501
\(887\) −12262.0 −0.464170 −0.232085 0.972695i \(-0.574555\pi\)
−0.232085 + 0.972695i \(0.574555\pi\)
\(888\) −9415.49 −0.355814
\(889\) 6072.55 0.229097
\(890\) 16109.1 0.606716
\(891\) 410.304 0.0154273
\(892\) −303.038 −0.0113750
\(893\) 987.866 0.0370187
\(894\) 16412.2 0.613987
\(895\) 50555.4 1.88814
\(896\) 8603.38 0.320780
\(897\) 5653.17 0.210428
\(898\) −18903.7 −0.702476
\(899\) 1748.74 0.0648762
\(900\) 18.4611 0.000683745 0
\(901\) −386.722 −0.0142992
\(902\) 2022.50 0.0746583
\(903\) 1146.85 0.0422646
\(904\) 16495.5 0.606894
\(905\) −13881.2 −0.509864
\(906\) −7929.29 −0.290765
\(907\) 29124.6 1.06622 0.533112 0.846044i \(-0.321022\pi\)
0.533112 + 0.846044i \(0.321022\pi\)
\(908\) −3520.41 −0.128666
\(909\) −2841.59 −0.103685
\(910\) −17118.7 −0.623605
\(911\) 29393.3 1.06898 0.534491 0.845174i \(-0.320503\pi\)
0.534491 + 0.845174i \(0.320503\pi\)
\(912\) 4378.96 0.158993
\(913\) −3438.39 −0.124638
\(914\) −17086.9 −0.618365
\(915\) 22845.7 0.825414
\(916\) 4263.51 0.153788
\(917\) 13784.8 0.496418
\(918\) 616.139 0.0221521
\(919\) −17009.6 −0.610548 −0.305274 0.952265i \(-0.598748\pi\)
−0.305274 + 0.952265i \(0.598748\pi\)
\(920\) −5973.87 −0.214079
\(921\) −11724.2 −0.419463
\(922\) −4585.05 −0.163775
\(923\) 87866.5 3.13344
\(924\) 74.6288 0.00265704
\(925\) 390.354 0.0138754
\(926\) −27828.4 −0.987580
\(927\) −9281.58 −0.328854
\(928\) −2139.23 −0.0756721
\(929\) −45754.7 −1.61589 −0.807946 0.589256i \(-0.799421\pi\)
−0.807946 + 0.589256i \(0.799421\pi\)
\(930\) −2317.17 −0.0817020
\(931\) −1235.38 −0.0434888
\(932\) 3783.17 0.132963
\(933\) 9310.23 0.326691
\(934\) −42302.6 −1.48200
\(935\) −472.756 −0.0165356
\(936\) −17334.0 −0.605318
\(937\) 16733.5 0.583414 0.291707 0.956508i \(-0.405777\pi\)
0.291707 + 0.956508i \(0.405777\pi\)
\(938\) −18367.6 −0.639363
\(939\) −11495.3 −0.399505
\(940\) 303.720 0.0105386
\(941\) 18537.9 0.642210 0.321105 0.947044i \(-0.395946\pi\)
0.321105 + 0.947044i \(0.395946\pi\)
\(942\) −11850.5 −0.409883
\(943\) 3399.22 0.117385
\(944\) −4523.89 −0.155975
\(945\) −2088.22 −0.0718836
\(946\) 747.351 0.0256855
\(947\) 45985.3 1.57795 0.788976 0.614424i \(-0.210612\pi\)
0.788976 + 0.614424i \(0.210612\pi\)
\(948\) −273.440 −0.00936807
\(949\) 23133.1 0.791288
\(950\) −199.145 −0.00680119
\(951\) 12343.5 0.420890
\(952\) 1389.99 0.0473211
\(953\) −22078.0 −0.750446 −0.375223 0.926935i \(-0.622434\pi\)
−0.375223 + 0.926935i \(0.622434\pi\)
\(954\) −1113.16 −0.0377775
\(955\) 3192.45 0.108173
\(956\) −767.063 −0.0259504
\(957\) 1026.98 0.0346892
\(958\) 27623.4 0.931597
\(959\) 1922.48 0.0647342
\(960\) 18186.8 0.611433
\(961\) −29121.4 −0.977524
\(962\) −29550.7 −0.990386
\(963\) −2052.16 −0.0686707
\(964\) −3942.20 −0.131711
\(965\) 40079.4 1.33700
\(966\) −1304.85 −0.0434607
\(967\) −49520.4 −1.64681 −0.823406 0.567452i \(-0.807929\pi\)
−0.823406 + 0.567452i \(0.807929\pi\)
\(968\) −30685.7 −1.01888
\(969\) 638.892 0.0211808
\(970\) 19810.4 0.655746
\(971\) 36856.6 1.21811 0.609055 0.793128i \(-0.291549\pi\)
0.609055 + 0.793128i \(0.291549\pi\)
\(972\) −170.480 −0.00562565
\(973\) −10615.1 −0.349749
\(974\) 37286.0 1.22661
\(975\) 718.643 0.0236051
\(976\) −39903.4 −1.30869
\(977\) −50521.1 −1.65437 −0.827183 0.561933i \(-0.810058\pi\)
−0.827183 + 0.561933i \(0.810058\pi\)
\(978\) 10953.6 0.358137
\(979\) −2733.77 −0.0892457
\(980\) −379.820 −0.0123805
\(981\) −1808.25 −0.0588511
\(982\) −1493.39 −0.0485297
\(983\) −18922.1 −0.613958 −0.306979 0.951716i \(-0.599318\pi\)
−0.306979 + 0.951716i \(0.599318\pi\)
\(984\) −10422.8 −0.337670
\(985\) 19083.9 0.617322
\(986\) 1542.18 0.0498103
\(987\) 822.832 0.0265360
\(988\) −1449.16 −0.0466638
\(989\) 1256.08 0.0403852
\(990\) −1360.80 −0.0436859
\(991\) 55980.2 1.79442 0.897209 0.441606i \(-0.145591\pi\)
0.897209 + 0.441606i \(0.145591\pi\)
\(992\) −819.112 −0.0262166
\(993\) −5747.55 −0.183679
\(994\) −20281.2 −0.647163
\(995\) −9992.21 −0.318366
\(996\) 1428.63 0.0454498
\(997\) 7718.29 0.245176 0.122588 0.992458i \(-0.460881\pi\)
0.122588 + 0.992458i \(0.460881\pi\)
\(998\) 20415.5 0.647535
\(999\) −3604.73 −0.114163
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.4.a.b.1.2 4
3.2 odd 2 1449.4.a.d.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.b.1.2 4 1.1 even 1 trivial
1449.4.a.d.1.3 4 3.2 odd 2