Properties

Label 483.4.a.a
Level $483$
Weight $4$
Character orbit 483.a
Self dual yes
Analytic conductor $28.498$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [483,4,Mod(1,483)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("483.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(483, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-4,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3877.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 13x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{2} + 3 q^{3} + (\beta_{2} + 4 \beta_1 + 1) q^{4} + (\beta_{2} - 2 \beta_1 + 1) q^{5} + ( - 3 \beta_1 - 3) q^{6} - 7 q^{7} + ( - 4 \beta_{2} - 8 \beta_1 - 27) q^{8} + 9 q^{9} + (2 \beta_{2} + 2 \beta_1 + 13) q^{10}+ \cdots + ( - 81 \beta_{2} + 63 \beta_1 + 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{2} + 9 q^{3} + 8 q^{4} + 2 q^{5} - 12 q^{6} - 21 q^{7} - 93 q^{8} + 27 q^{9} + 43 q^{10} + 4 q^{11} + 24 q^{12} + 32 q^{13} + 28 q^{14} + 6 q^{15} + 304 q^{16} - 86 q^{17} - 36 q^{18} + 32 q^{19}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 13x - 10 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.43745
−0.881781
−2.55567
−5.43745 3.00000 21.5659 −5.05882 −16.3124 −7.00000 −73.7640 9.00000 27.5071
1.2 −0.118219 3.00000 −7.98602 −2.69534 −0.354656 −7.00000 1.88985 9.00000 0.318639
1.3 1.55567 3.00000 −5.57988 9.75415 4.66702 −7.00000 −21.1259 9.00000 15.1743
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.4.a.a 3
3.b odd 2 1 1449.4.a.c 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.4.a.a 3 1.a even 1 1 trivial
1449.4.a.c 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + 4T_{2}^{2} - 8T_{2} - 1 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(483))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 4 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots - 133 \) Copy content Toggle raw display
$7$ \( (T + 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 4 T^{2} + \cdots + 16888 \) Copy content Toggle raw display
$13$ \( T^{3} - 32 T^{2} + \cdots + 7121 \) Copy content Toggle raw display
$17$ \( T^{3} + 86 T^{2} + \cdots - 32140 \) Copy content Toggle raw display
$19$ \( T^{3} - 32 T^{2} + \cdots - 4436 \) Copy content Toggle raw display
$23$ \( (T + 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 341 T^{2} + \cdots + 1279711 \) Copy content Toggle raw display
$31$ \( T^{3} + 452 T^{2} + \cdots + 2969438 \) Copy content Toggle raw display
$37$ \( T^{3} + 183 T^{2} + \cdots - 3177991 \) Copy content Toggle raw display
$41$ \( T^{3} - 175 T^{2} + \cdots + 11602699 \) Copy content Toggle raw display
$43$ \( T^{3} + 320 T^{2} + \cdots - 3480943 \) Copy content Toggle raw display
$47$ \( T^{3} + 71 T^{2} + \cdots - 30926812 \) Copy content Toggle raw display
$53$ \( T^{3} - 27 T^{2} + \cdots + 9069176 \) Copy content Toggle raw display
$59$ \( T^{3} + 1585 T^{2} + \cdots + 57554534 \) Copy content Toggle raw display
$61$ \( T^{3} + 449 T^{2} + \cdots - 11531794 \) Copy content Toggle raw display
$67$ \( T^{3} + 239 T^{2} + \cdots - 90556772 \) Copy content Toggle raw display
$71$ \( T^{3} - 1255 T^{2} + \cdots + 7078618 \) Copy content Toggle raw display
$73$ \( T^{3} + 342 T^{2} + \cdots + 20669796 \) Copy content Toggle raw display
$79$ \( T^{3} - 994 T^{2} + \cdots + 161629604 \) Copy content Toggle raw display
$83$ \( T^{3} + 1846 T^{2} + \cdots - 147725860 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 1448227670 \) Copy content Toggle raw display
$97$ \( T^{3} + 1797 T^{2} + \cdots + 26418199 \) Copy content Toggle raw display
show more
show less