Defining parameters
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(483))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 196 | 64 | 132 |
Cusp forms | 188 | 64 | 124 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(23\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(9\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(7\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(9\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(9\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(7\) |
Plus space | \(+\) | \(36\) | ||
Minus space | \(-\) | \(28\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(483))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(483))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(483)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 2}\)