Properties

Label 483.3.f.a.22.8
Level $483$
Weight $3$
Character 483.22
Analytic conductor $13.161$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 483.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.1607967686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 22.8
Character \(\chi\) \(=\) 483.22
Dual form 483.3.f.a.22.7

$q$-expansion

\(f(q)\) \(=\) \(q-3.23657 q^{2} -1.73205 q^{3} +6.47539 q^{4} -4.61855i q^{5} +5.60591 q^{6} +2.64575i q^{7} -8.01179 q^{8} +3.00000 q^{9} +O(q^{10})\) \(q-3.23657 q^{2} -1.73205 q^{3} +6.47539 q^{4} -4.61855i q^{5} +5.60591 q^{6} +2.64575i q^{7} -8.01179 q^{8} +3.00000 q^{9} +14.9483i q^{10} +2.93058i q^{11} -11.2157 q^{12} -15.4536 q^{13} -8.56316i q^{14} +7.99957i q^{15} +0.0291511 q^{16} -24.9051i q^{17} -9.70971 q^{18} +15.1966i q^{19} -29.9070i q^{20} -4.58258i q^{21} -9.48503i q^{22} +(19.6279 - 11.9895i) q^{23} +13.8768 q^{24} +3.66895 q^{25} +50.0166 q^{26} -5.19615 q^{27} +17.1323i q^{28} -2.82436 q^{29} -25.8912i q^{30} -9.30833 q^{31} +31.9528 q^{32} -5.07591i q^{33} +80.6071i q^{34} +12.2195 q^{35} +19.4262 q^{36} -30.8753i q^{37} -49.1850i q^{38} +26.7664 q^{39} +37.0029i q^{40} -74.7145 q^{41} +14.8318i q^{42} -2.66427i q^{43} +18.9766i q^{44} -13.8557i q^{45} +(-63.5270 + 38.8047i) q^{46} +53.7831 q^{47} -0.0504912 q^{48} -7.00000 q^{49} -11.8748 q^{50} +43.1369i q^{51} -100.068 q^{52} +1.59067i q^{53} +16.8177 q^{54} +13.5350 q^{55} -21.1972i q^{56} -26.3214i q^{57} +9.14123 q^{58} -94.3907 q^{59} +51.8004i q^{60} +115.051i q^{61} +30.1271 q^{62} +7.93725i q^{63} -103.534 q^{64} +71.3732i q^{65} +16.4285i q^{66} +112.901i q^{67} -161.270i q^{68} +(-33.9965 + 20.7663i) q^{69} -39.5494 q^{70} -15.5639 q^{71} -24.0354 q^{72} -65.7091 q^{73} +99.9301i q^{74} -6.35481 q^{75} +98.4043i q^{76} -7.75358 q^{77} -86.6313 q^{78} -5.83968i q^{79} -0.134636i q^{80} +9.00000 q^{81} +241.819 q^{82} +54.9299i q^{83} -29.6740i q^{84} -115.025 q^{85} +8.62308i q^{86} +4.89193 q^{87} -23.4792i q^{88} +172.575i q^{89} +44.8448i q^{90} -40.8863i q^{91} +(127.098 - 77.6364i) q^{92} +16.1225 q^{93} -174.073 q^{94} +70.1866 q^{95} -55.3439 q^{96} +1.81335i q^{97} +22.6560 q^{98} +8.79173i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 4q^{2} + 116q^{4} - 24q^{6} - 4q^{8} + 144q^{9} + O(q^{10}) \) \( 48q + 4q^{2} + 116q^{4} - 24q^{6} - 4q^{8} + 144q^{9} + 16q^{13} + 324q^{16} + 12q^{18} - 4q^{23} - 24q^{24} - 176q^{25} + 136q^{26} - 128q^{29} - 8q^{31} - 252q^{32} - 56q^{35} + 348q^{36} + 96q^{39} - 24q^{41} - 148q^{46} - 408q^{47} - 96q^{48} - 336q^{49} + 236q^{50} - 32q^{52} - 72q^{54} - 24q^{55} - 56q^{58} + 136q^{59} + 184q^{62} + 716q^{64} - 48q^{69} - 112q^{70} + 48q^{71} - 12q^{72} - 224q^{73} - 48q^{75} + 224q^{77} - 96q^{78} + 432q^{81} + 640q^{82} - 424q^{85} + 312q^{87} + 1060q^{92} + 192q^{93} + 216q^{94} + 624q^{95} + 48q^{96} - 28q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.23657 −1.61829 −0.809143 0.587612i \(-0.800068\pi\)
−0.809143 + 0.587612i \(0.800068\pi\)
\(3\) −1.73205 −0.577350
\(4\) 6.47539 1.61885
\(5\) 4.61855i 0.923711i −0.886955 0.461855i \(-0.847184\pi\)
0.886955 0.461855i \(-0.152816\pi\)
\(6\) 5.60591 0.934318
\(7\) 2.64575i 0.377964i
\(8\) −8.01179 −1.00147
\(9\) 3.00000 0.333333
\(10\) 14.9483i 1.49483i
\(11\) 2.93058i 0.266416i 0.991088 + 0.133208i \(0.0425279\pi\)
−0.991088 + 0.133208i \(0.957472\pi\)
\(12\) −11.2157 −0.934643
\(13\) −15.4536 −1.18874 −0.594368 0.804193i \(-0.702598\pi\)
−0.594368 + 0.804193i \(0.702598\pi\)
\(14\) 8.56316i 0.611654i
\(15\) 7.99957i 0.533305i
\(16\) 0.0291511 0.00182195
\(17\) 24.9051i 1.46500i −0.680764 0.732502i \(-0.738352\pi\)
0.680764 0.732502i \(-0.261648\pi\)
\(18\) −9.70971 −0.539429
\(19\) 15.1966i 0.799824i 0.916554 + 0.399912i \(0.130959\pi\)
−0.916554 + 0.399912i \(0.869041\pi\)
\(20\) 29.9070i 1.49535i
\(21\) 4.58258i 0.218218i
\(22\) 9.48503i 0.431138i
\(23\) 19.6279 11.9895i 0.853385 0.521281i
\(24\) 13.8768 0.578201
\(25\) 3.66895 0.146758
\(26\) 50.0166 1.92372
\(27\) −5.19615 −0.192450
\(28\) 17.1323i 0.611867i
\(29\) −2.82436 −0.0973916 −0.0486958 0.998814i \(-0.515506\pi\)
−0.0486958 + 0.998814i \(0.515506\pi\)
\(30\) 25.8912i 0.863039i
\(31\) −9.30833 −0.300269 −0.150134 0.988666i \(-0.547971\pi\)
−0.150134 + 0.988666i \(0.547971\pi\)
\(32\) 31.9528 0.998525
\(33\) 5.07591i 0.153815i
\(34\) 80.6071i 2.37080i
\(35\) 12.2195 0.349130
\(36\) 19.4262 0.539616
\(37\) 30.8753i 0.834468i −0.908799 0.417234i \(-0.863000\pi\)
0.908799 0.417234i \(-0.137000\pi\)
\(38\) 49.1850i 1.29434i
\(39\) 26.7664 0.686317
\(40\) 37.0029i 0.925072i
\(41\) −74.7145 −1.82231 −0.911153 0.412068i \(-0.864807\pi\)
−0.911153 + 0.412068i \(0.864807\pi\)
\(42\) 14.8318i 0.353139i
\(43\) 2.66427i 0.0619597i −0.999520 0.0309798i \(-0.990137\pi\)
0.999520 0.0309798i \(-0.00986276\pi\)
\(44\) 18.9766i 0.431287i
\(45\) 13.8557i 0.307904i
\(46\) −63.5270 + 38.8047i −1.38102 + 0.843581i
\(47\) 53.7831 1.14432 0.572161 0.820141i \(-0.306105\pi\)
0.572161 + 0.820141i \(0.306105\pi\)
\(48\) −0.0504912 −0.00105190
\(49\) −7.00000 −0.142857
\(50\) −11.8748 −0.237496
\(51\) 43.1369i 0.845821i
\(52\) −100.068 −1.92438
\(53\) 1.59067i 0.0300127i 0.999887 + 0.0150063i \(0.00477684\pi\)
−0.999887 + 0.0150063i \(0.995223\pi\)
\(54\) 16.8177 0.311439
\(55\) 13.5350 0.246092
\(56\) 21.1972i 0.378521i
\(57\) 26.3214i 0.461778i
\(58\) 9.14123 0.157607
\(59\) −94.3907 −1.59984 −0.799921 0.600105i \(-0.795125\pi\)
−0.799921 + 0.600105i \(0.795125\pi\)
\(60\) 51.8004i 0.863340i
\(61\) 115.051i 1.88609i 0.332668 + 0.943044i \(0.392051\pi\)
−0.332668 + 0.943044i \(0.607949\pi\)
\(62\) 30.1271 0.485920
\(63\) 7.93725i 0.125988i
\(64\) −103.534 −1.61772
\(65\) 71.3732i 1.09805i
\(66\) 16.4285i 0.248917i
\(67\) 112.901i 1.68509i 0.538629 + 0.842543i \(0.318942\pi\)
−0.538629 + 0.842543i \(0.681058\pi\)
\(68\) 161.270i 2.37162i
\(69\) −33.9965 + 20.7663i −0.492702 + 0.300962i
\(70\) −39.5494 −0.564992
\(71\) −15.5639 −0.219210 −0.109605 0.993975i \(-0.534959\pi\)
−0.109605 + 0.993975i \(0.534959\pi\)
\(72\) −24.0354 −0.333825
\(73\) −65.7091 −0.900125 −0.450062 0.892997i \(-0.648598\pi\)
−0.450062 + 0.892997i \(0.648598\pi\)
\(74\) 99.9301i 1.35041i
\(75\) −6.35481 −0.0847308
\(76\) 98.4043i 1.29479i
\(77\) −7.75358 −0.100696
\(78\) −86.6313 −1.11066
\(79\) 5.83968i 0.0739200i −0.999317 0.0369600i \(-0.988233\pi\)
0.999317 0.0369600i \(-0.0117674\pi\)
\(80\) 0.134636i 0.00168295i
\(81\) 9.00000 0.111111
\(82\) 241.819 2.94901
\(83\) 54.9299i 0.661805i 0.943665 + 0.330903i \(0.107353\pi\)
−0.943665 + 0.330903i \(0.892647\pi\)
\(84\) 29.6740i 0.353262i
\(85\) −115.025 −1.35324
\(86\) 8.62308i 0.100268i
\(87\) 4.89193 0.0562291
\(88\) 23.4792i 0.266809i
\(89\) 172.575i 1.93904i 0.245013 + 0.969520i \(0.421208\pi\)
−0.245013 + 0.969520i \(0.578792\pi\)
\(90\) 44.8448i 0.498276i
\(91\) 40.8863i 0.449300i
\(92\) 127.098 77.6364i 1.38150 0.843874i
\(93\) 16.1225 0.173360
\(94\) −174.073 −1.85184
\(95\) 70.1866 0.738806
\(96\) −55.3439 −0.576499
\(97\) 1.81335i 0.0186943i 0.999956 + 0.00934717i \(0.00297534\pi\)
−0.999956 + 0.00934717i \(0.997025\pi\)
\(98\) 22.6560 0.231184
\(99\) 8.79173i 0.0888054i
\(100\) 23.7579 0.237579
\(101\) −33.3132 −0.329834 −0.164917 0.986307i \(-0.552736\pi\)
−0.164917 + 0.986307i \(0.552736\pi\)
\(102\) 139.616i 1.36878i
\(103\) 112.394i 1.09120i 0.838045 + 0.545601i \(0.183699\pi\)
−0.838045 + 0.545601i \(0.816301\pi\)
\(104\) 123.811 1.19049
\(105\) −21.1649 −0.201570
\(106\) 5.14832i 0.0485691i
\(107\) 33.4623i 0.312731i −0.987699 0.156366i \(-0.950022\pi\)
0.987699 0.156366i \(-0.0499778\pi\)
\(108\) −33.6471 −0.311548
\(109\) 37.1568i 0.340888i −0.985367 0.170444i \(-0.945480\pi\)
0.985367 0.170444i \(-0.0545202\pi\)
\(110\) −43.8071 −0.398246
\(111\) 53.4776i 0.481780i
\(112\) 0.0771266i 0.000688631i
\(113\) 88.0058i 0.778812i 0.921066 + 0.389406i \(0.127320\pi\)
−0.921066 + 0.389406i \(0.872680\pi\)
\(114\) 85.1910i 0.747289i
\(115\) −55.3740 90.6524i −0.481513 0.788281i
\(116\) −18.2888 −0.157662
\(117\) −46.3607 −0.396246
\(118\) 305.502 2.58900
\(119\) 65.8927 0.553720
\(120\) 64.0909i 0.534091i
\(121\) 112.412 0.929022
\(122\) 372.372i 3.05223i
\(123\) 129.409 1.05211
\(124\) −60.2751 −0.486089
\(125\) 132.409i 1.05927i
\(126\) 25.6895i 0.203885i
\(127\) −55.0491 −0.433457 −0.216729 0.976232i \(-0.569539\pi\)
−0.216729 + 0.976232i \(0.569539\pi\)
\(128\) 207.284 1.61941
\(129\) 4.61464i 0.0357724i
\(130\) 231.004i 1.77696i
\(131\) −153.904 −1.17484 −0.587418 0.809284i \(-0.699856\pi\)
−0.587418 + 0.809284i \(0.699856\pi\)
\(132\) 32.8685i 0.249004i
\(133\) −40.2066 −0.302305
\(134\) 365.411i 2.72695i
\(135\) 23.9987i 0.177768i
\(136\) 199.534i 1.46716i
\(137\) 159.358i 1.16319i −0.813477 0.581597i \(-0.802428\pi\)
0.813477 0.581597i \(-0.197572\pi\)
\(138\) 110.032 67.2118i 0.797333 0.487042i
\(139\) 70.0443 0.503916 0.251958 0.967738i \(-0.418926\pi\)
0.251958 + 0.967738i \(0.418926\pi\)
\(140\) 79.1264 0.565188
\(141\) −93.1551 −0.660674
\(142\) 50.3737 0.354744
\(143\) 45.2879i 0.316699i
\(144\) 0.0874534 0.000607315
\(145\) 13.0444i 0.0899617i
\(146\) 212.672 1.45666
\(147\) 12.1244 0.0824786
\(148\) 199.930i 1.35088i
\(149\) 267.897i 1.79796i 0.437985 + 0.898982i \(0.355692\pi\)
−0.437985 + 0.898982i \(0.644308\pi\)
\(150\) 20.5678 0.137119
\(151\) −3.63835 −0.0240950 −0.0120475 0.999927i \(-0.503835\pi\)
−0.0120475 + 0.999927i \(0.503835\pi\)
\(152\) 121.752i 0.801002i
\(153\) 74.7153i 0.488335i
\(154\) 25.0950 0.162955
\(155\) 42.9910i 0.277361i
\(156\) 173.323 1.11104
\(157\) 278.943i 1.77671i 0.459158 + 0.888354i \(0.348151\pi\)
−0.459158 + 0.888354i \(0.651849\pi\)
\(158\) 18.9005i 0.119624i
\(159\) 2.75512i 0.0173278i
\(160\) 147.576i 0.922349i
\(161\) 31.7211 + 51.9304i 0.197026 + 0.322549i
\(162\) −29.1291 −0.179810
\(163\) 174.779 1.07226 0.536132 0.844134i \(-0.319885\pi\)
0.536132 + 0.844134i \(0.319885\pi\)
\(164\) −483.806 −2.95004
\(165\) −23.4434 −0.142081
\(166\) 177.784i 1.07099i
\(167\) −283.198 −1.69580 −0.847898 0.530159i \(-0.822132\pi\)
−0.847898 + 0.530159i \(0.822132\pi\)
\(168\) 36.7146i 0.218539i
\(169\) 69.8130 0.413095
\(170\) 372.288 2.18993
\(171\) 45.5899i 0.266608i
\(172\) 17.2522i 0.100303i
\(173\) 31.0358 0.179398 0.0896990 0.995969i \(-0.471410\pi\)
0.0896990 + 0.995969i \(0.471410\pi\)
\(174\) −15.8331 −0.0909947
\(175\) 9.70713i 0.0554693i
\(176\) 0.0854297i 0.000485396i
\(177\) 163.489 0.923669
\(178\) 558.550i 3.13792i
\(179\) −33.6434 −0.187952 −0.0939759 0.995574i \(-0.529958\pi\)
−0.0939759 + 0.995574i \(0.529958\pi\)
\(180\) 89.7209i 0.498449i
\(181\) 45.3731i 0.250680i 0.992114 + 0.125340i \(0.0400022\pi\)
−0.992114 + 0.125340i \(0.959998\pi\)
\(182\) 132.331i 0.727096i
\(183\) 199.275i 1.08893i
\(184\) −157.254 + 96.0570i −0.854643 + 0.522049i
\(185\) −142.599 −0.770807
\(186\) −52.1816 −0.280546
\(187\) 72.9863 0.390301
\(188\) 348.267 1.85248
\(189\) 13.7477i 0.0727393i
\(190\) −227.164 −1.19560
\(191\) 48.8754i 0.255892i −0.991781 0.127946i \(-0.959162\pi\)
0.991781 0.127946i \(-0.0408385\pi\)
\(192\) 179.326 0.933992
\(193\) −234.618 −1.21564 −0.607818 0.794076i \(-0.707955\pi\)
−0.607818 + 0.794076i \(0.707955\pi\)
\(194\) 5.86904i 0.0302528i
\(195\) 123.622i 0.633959i
\(196\) −45.3278 −0.231264
\(197\) −141.358 −0.717554 −0.358777 0.933423i \(-0.616806\pi\)
−0.358777 + 0.933423i \(0.616806\pi\)
\(198\) 28.4551i 0.143713i
\(199\) 145.768i 0.732504i −0.930516 0.366252i \(-0.880641\pi\)
0.930516 0.366252i \(-0.119359\pi\)
\(200\) −29.3949 −0.146974
\(201\) 195.550i 0.972885i
\(202\) 107.821 0.533765
\(203\) 7.47254i 0.0368106i
\(204\) 279.328i 1.36926i
\(205\) 345.073i 1.68328i
\(206\) 363.771i 1.76588i
\(207\) 58.8836 35.9684i 0.284462 0.173760i
\(208\) −0.450489 −0.00216581
\(209\) −44.5350 −0.213086
\(210\) 68.5016 0.326198
\(211\) 80.5589 0.381796 0.190898 0.981610i \(-0.438860\pi\)
0.190898 + 0.981610i \(0.438860\pi\)
\(212\) 10.3002i 0.0485860i
\(213\) 26.9575 0.126561
\(214\) 108.303i 0.506089i
\(215\) −12.3051 −0.0572328
\(216\) 41.6305 0.192734
\(217\) 24.6275i 0.113491i
\(218\) 120.261i 0.551654i
\(219\) 113.812 0.519687
\(220\) 87.6447 0.398385
\(221\) 384.873i 1.74150i
\(222\) 173.084i 0.779658i
\(223\) 150.489 0.674837 0.337419 0.941355i \(-0.390446\pi\)
0.337419 + 0.941355i \(0.390446\pi\)
\(224\) 84.5392i 0.377407i
\(225\) 11.0069 0.0489193
\(226\) 284.837i 1.26034i
\(227\) 132.755i 0.584825i 0.956292 + 0.292412i \(0.0944580\pi\)
−0.956292 + 0.292412i \(0.905542\pi\)
\(228\) 170.441i 0.747549i
\(229\) 12.1580i 0.0530918i −0.999648 0.0265459i \(-0.991549\pi\)
0.999648 0.0265459i \(-0.00845082\pi\)
\(230\) 179.222 + 293.403i 0.779225 + 1.27566i
\(231\) 13.4296 0.0581368
\(232\) 22.6281 0.0975351
\(233\) −134.094 −0.575509 −0.287755 0.957704i \(-0.592909\pi\)
−0.287755 + 0.957704i \(0.592909\pi\)
\(234\) 150.050 0.641238
\(235\) 248.400i 1.05702i
\(236\) −611.217 −2.58990
\(237\) 10.1146i 0.0426777i
\(238\) −213.266 −0.896077
\(239\) −92.0888 −0.385309 −0.192654 0.981267i \(-0.561710\pi\)
−0.192654 + 0.981267i \(0.561710\pi\)
\(240\) 0.233197i 0.000971652i
\(241\) 223.750i 0.928422i 0.885725 + 0.464211i \(0.153662\pi\)
−0.885725 + 0.464211i \(0.846338\pi\)
\(242\) −363.829 −1.50342
\(243\) −15.5885 −0.0641500
\(244\) 745.003i 3.05329i
\(245\) 32.3299i 0.131959i
\(246\) −418.843 −1.70261
\(247\) 234.843i 0.950780i
\(248\) 74.5763 0.300711
\(249\) 95.1413i 0.382094i
\(250\) 428.552i 1.71421i
\(251\) 129.429i 0.515653i 0.966191 + 0.257827i \(0.0830063\pi\)
−0.966191 + 0.257827i \(0.916994\pi\)
\(252\) 51.3968i 0.203956i
\(253\) 35.1360 + 57.5210i 0.138878 + 0.227356i
\(254\) 178.170 0.701458
\(255\) 199.230 0.781294
\(256\) −256.754 −1.00295
\(257\) 233.113 0.907053 0.453527 0.891243i \(-0.350166\pi\)
0.453527 + 0.891243i \(0.350166\pi\)
\(258\) 14.9356i 0.0578900i
\(259\) 81.6884 0.315399
\(260\) 462.170i 1.77758i
\(261\) −8.47307 −0.0324639
\(262\) 498.120 1.90122
\(263\) 146.687i 0.557747i 0.960328 + 0.278873i \(0.0899610\pi\)
−0.960328 + 0.278873i \(0.910039\pi\)
\(264\) 40.6671i 0.154042i
\(265\) 7.34660 0.0277230
\(266\) 130.131 0.489216
\(267\) 298.908i 1.11951i
\(268\) 731.077i 2.72790i
\(269\) 104.745 0.389386 0.194693 0.980864i \(-0.437629\pi\)
0.194693 + 0.980864i \(0.437629\pi\)
\(270\) 77.6736i 0.287680i
\(271\) 263.606 0.972717 0.486358 0.873759i \(-0.338325\pi\)
0.486358 + 0.873759i \(0.338325\pi\)
\(272\) 0.726011i 0.00266916i
\(273\) 70.8172i 0.259404i
\(274\) 515.772i 1.88238i
\(275\) 10.7521i 0.0390987i
\(276\) −220.140 + 134.470i −0.797610 + 0.487211i
\(277\) −380.816 −1.37479 −0.687394 0.726284i \(-0.741246\pi\)
−0.687394 + 0.726284i \(0.741246\pi\)
\(278\) −226.703 −0.815480
\(279\) −27.9250 −0.100090
\(280\) −97.9004 −0.349644
\(281\) 47.2087i 0.168003i −0.996466 0.0840013i \(-0.973230\pi\)
0.996466 0.0840013i \(-0.0267700\pi\)
\(282\) 301.503 1.06916
\(283\) 59.5032i 0.210259i −0.994459 0.105129i \(-0.966474\pi\)
0.994459 0.105129i \(-0.0335257\pi\)
\(284\) −100.782 −0.354868
\(285\) −121.567 −0.426550
\(286\) 146.578i 0.512509i
\(287\) 197.676i 0.688767i
\(288\) 95.8584 0.332842
\(289\) −331.263 −1.14624
\(290\) 42.2193i 0.145584i
\(291\) 3.14082i 0.0107932i
\(292\) −425.492 −1.45717
\(293\) 205.325i 0.700768i −0.936606 0.350384i \(-0.886051\pi\)
0.936606 0.350384i \(-0.113949\pi\)
\(294\) −39.2413 −0.133474
\(295\) 435.949i 1.47779i
\(296\) 247.366i 0.835697i
\(297\) 15.2277i 0.0512718i
\(298\) 867.067i 2.90962i
\(299\) −303.321 + 185.280i −1.01445 + 0.619665i
\(300\) −41.1499 −0.137166
\(301\) 7.04898 0.0234185
\(302\) 11.7758 0.0389926
\(303\) 57.7001 0.190430
\(304\) 0.442999i 0.00145724i
\(305\) 531.371 1.74220
\(306\) 241.821i 0.790265i
\(307\) −188.680 −0.614591 −0.307296 0.951614i \(-0.599424\pi\)
−0.307296 + 0.951614i \(0.599424\pi\)
\(308\) −50.2075 −0.163011
\(309\) 194.672i 0.630006i
\(310\) 139.143i 0.448850i
\(311\) −451.261 −1.45100 −0.725500 0.688222i \(-0.758391\pi\)
−0.725500 + 0.688222i \(0.758391\pi\)
\(312\) −214.447 −0.687329
\(313\) 620.664i 1.98295i −0.130287 0.991476i \(-0.541590\pi\)
0.130287 0.991476i \(-0.458410\pi\)
\(314\) 902.820i 2.87522i
\(315\) 36.6586 0.116377
\(316\) 37.8142i 0.119665i
\(317\) −240.848 −0.759771 −0.379886 0.925033i \(-0.624037\pi\)
−0.379886 + 0.925033i \(0.624037\pi\)
\(318\) 8.91715i 0.0280414i
\(319\) 8.27700i 0.0259467i
\(320\) 478.178i 1.49431i
\(321\) 57.9583i 0.180556i
\(322\) −102.668 168.077i −0.318844 0.521977i
\(323\) 378.474 1.17175
\(324\) 58.2785 0.179872
\(325\) −56.6984 −0.174457
\(326\) −565.685 −1.73523
\(327\) 64.3575i 0.196812i
\(328\) 598.597 1.82499
\(329\) 142.297i 0.432513i
\(330\) 75.8761 0.229928
\(331\) −399.744 −1.20769 −0.603843 0.797103i \(-0.706365\pi\)
−0.603843 + 0.797103i \(0.706365\pi\)
\(332\) 355.692i 1.07136i
\(333\) 92.6259i 0.278156i
\(334\) 916.591 2.74428
\(335\) 521.438 1.55653
\(336\) 0.133587i 0.000397581i
\(337\) 380.934i 1.13037i −0.824965 0.565184i \(-0.808805\pi\)
0.824965 0.565184i \(-0.191195\pi\)
\(338\) −225.955 −0.668505
\(339\) 152.430i 0.449647i
\(340\) −744.835 −2.19069
\(341\) 27.2788i 0.0799964i
\(342\) 147.555i 0.431448i
\(343\) 18.5203i 0.0539949i
\(344\) 21.3455i 0.0620510i
\(345\) 95.9105 + 157.014i 0.278001 + 0.455114i
\(346\) −100.450 −0.290317
\(347\) 475.546 1.37045 0.685225 0.728331i \(-0.259704\pi\)
0.685225 + 0.728331i \(0.259704\pi\)
\(348\) 31.6772 0.0910263
\(349\) −167.751 −0.480663 −0.240331 0.970691i \(-0.577256\pi\)
−0.240331 + 0.970691i \(0.577256\pi\)
\(350\) 31.4178i 0.0897652i
\(351\) 80.2991 0.228772
\(352\) 93.6402i 0.266023i
\(353\) −398.591 −1.12915 −0.564576 0.825381i \(-0.690960\pi\)
−0.564576 + 0.825381i \(0.690960\pi\)
\(354\) −529.145 −1.49476
\(355\) 71.8828i 0.202487i
\(356\) 1117.49i 3.13901i
\(357\) −114.129 −0.319690
\(358\) 108.889 0.304160
\(359\) 371.041i 1.03354i −0.856124 0.516770i \(-0.827134\pi\)
0.856124 0.516770i \(-0.172866\pi\)
\(360\) 111.009i 0.308357i
\(361\) 130.062 0.360282
\(362\) 146.853i 0.405672i
\(363\) −194.703 −0.536371
\(364\) 264.755i 0.727349i
\(365\) 303.481i 0.831455i
\(366\) 644.967i 1.76221i
\(367\) 513.182i 1.39832i 0.714967 + 0.699158i \(0.246442\pi\)
−0.714967 + 0.699158i \(0.753558\pi\)
\(368\) 0.572174 0.349506i 0.00155482 0.000949745i
\(369\) −224.144 −0.607435
\(370\) 461.533 1.24739
\(371\) −4.20852 −0.0113437
\(372\) 104.399 0.280644
\(373\) 463.384i 1.24232i −0.783685 0.621158i \(-0.786662\pi\)
0.783685 0.621158i \(-0.213338\pi\)
\(374\) −236.225 −0.631619
\(375\) 229.339i 0.611572i
\(376\) −430.899 −1.14601
\(377\) 43.6464 0.115773
\(378\) 44.4955i 0.117713i
\(379\) 404.771i 1.06800i −0.845485 0.533998i \(-0.820689\pi\)
0.845485 0.533998i \(-0.179311\pi\)
\(380\) 454.486 1.19601
\(381\) 95.3478 0.250257
\(382\) 158.189i 0.414107i
\(383\) 550.465i 1.43725i −0.695400 0.718623i \(-0.744773\pi\)
0.695400 0.718623i \(-0.255227\pi\)
\(384\) −359.027 −0.934966
\(385\) 35.8103i 0.0930139i
\(386\) 759.357 1.96725
\(387\) 7.99280i 0.0206532i
\(388\) 11.7422i 0.0302633i
\(389\) 642.282i 1.65111i 0.564322 + 0.825555i \(0.309138\pi\)
−0.564322 + 0.825555i \(0.690862\pi\)
\(390\) 400.111i 1.02593i
\(391\) −298.598 488.834i −0.763679 1.25021i
\(392\) 56.0825 0.143068
\(393\) 266.569 0.678292
\(394\) 457.516 1.16121
\(395\) −26.9709 −0.0682807
\(396\) 56.9299i 0.143762i
\(397\) 29.4833 0.0742652 0.0371326 0.999310i \(-0.488178\pi\)
0.0371326 + 0.999310i \(0.488178\pi\)
\(398\) 471.789i 1.18540i
\(399\) 69.6398 0.174536
\(400\) 0.106954 0.000267385
\(401\) 463.906i 1.15687i 0.815727 + 0.578437i \(0.196337\pi\)
−0.815727 + 0.578437i \(0.803663\pi\)
\(402\) 632.911i 1.57441i
\(403\) 143.847 0.356940
\(404\) −215.716 −0.533951
\(405\) 41.5670i 0.102635i
\(406\) 24.1854i 0.0595700i
\(407\) 90.4825 0.222316
\(408\) 345.604i 0.847067i
\(409\) 372.076 0.909721 0.454860 0.890563i \(-0.349689\pi\)
0.454860 + 0.890563i \(0.349689\pi\)
\(410\) 1116.85i 2.72403i
\(411\) 276.016i 0.671571i
\(412\) 727.795i 1.76649i
\(413\) 249.734i 0.604684i
\(414\) −190.581 + 116.414i −0.460340 + 0.281194i
\(415\) 253.697 0.611317
\(416\) −493.785 −1.18698
\(417\) −121.320 −0.290936
\(418\) 144.141 0.344834
\(419\) 398.036i 0.949966i 0.879995 + 0.474983i \(0.157546\pi\)
−0.879995 + 0.474983i \(0.842454\pi\)
\(420\) −137.051 −0.326312
\(421\) 419.454i 0.996328i 0.867083 + 0.498164i \(0.165992\pi\)
−0.867083 + 0.498164i \(0.834008\pi\)
\(422\) −260.735 −0.617854
\(423\) 161.349 0.381441
\(424\) 12.7441i 0.0300569i
\(425\) 91.3755i 0.215001i
\(426\) −87.2498 −0.204812
\(427\) −304.397 −0.712874
\(428\) 216.681i 0.506265i
\(429\) 78.4410i 0.182846i
\(430\) 39.8262 0.0926190
\(431\) 269.366i 0.624979i −0.949921 0.312490i \(-0.898837\pi\)
0.949921 0.312490i \(-0.101163\pi\)
\(432\) −0.151474 −0.000350634
\(433\) 358.912i 0.828896i −0.910073 0.414448i \(-0.863975\pi\)
0.910073 0.414448i \(-0.136025\pi\)
\(434\) 79.7087i 0.183661i
\(435\) 22.5936i 0.0519394i
\(436\) 240.605i 0.551846i
\(437\) 182.200 + 298.278i 0.416933 + 0.682558i
\(438\) −368.359 −0.841003
\(439\) −222.724 −0.507345 −0.253672 0.967290i \(-0.581638\pi\)
−0.253672 + 0.967290i \(0.581638\pi\)
\(440\) −108.440 −0.246454
\(441\) −21.0000 −0.0476190
\(442\) 1245.67i 2.81825i
\(443\) 123.225 0.278160 0.139080 0.990281i \(-0.455586\pi\)
0.139080 + 0.990281i \(0.455586\pi\)
\(444\) 346.288i 0.779929i
\(445\) 797.045 1.79111
\(446\) −487.068 −1.09208
\(447\) 464.011i 1.03806i
\(448\) 273.926i 0.611441i
\(449\) −462.304 −1.02963 −0.514815 0.857301i \(-0.672139\pi\)
−0.514815 + 0.857301i \(0.672139\pi\)
\(450\) −35.6245 −0.0791655
\(451\) 218.957i 0.485492i
\(452\) 569.872i 1.26078i
\(453\) 6.30180 0.0139113
\(454\) 429.672i 0.946413i
\(455\) −188.836 −0.415024
\(456\) 210.881i 0.462459i
\(457\) 710.676i 1.55509i 0.628828 + 0.777545i \(0.283535\pi\)
−0.628828 + 0.777545i \(0.716465\pi\)
\(458\) 39.3503i 0.0859178i
\(459\) 129.411i 0.281940i
\(460\) −358.568 587.010i −0.779496 1.27611i
\(461\) 326.628 0.708521 0.354261 0.935147i \(-0.384733\pi\)
0.354261 + 0.935147i \(0.384733\pi\)
\(462\) −43.4658 −0.0940819
\(463\) 16.6115 0.0358779 0.0179390 0.999839i \(-0.494290\pi\)
0.0179390 + 0.999839i \(0.494290\pi\)
\(464\) −0.0823332 −0.000177442
\(465\) 74.4626i 0.160135i
\(466\) 434.004 0.931338
\(467\) 523.319i 1.12060i −0.828291 0.560299i \(-0.810686\pi\)
0.828291 0.560299i \(-0.189314\pi\)
\(468\) −300.204 −0.641461
\(469\) −298.707 −0.636902
\(470\) 803.965i 1.71056i
\(471\) 483.144i 1.02578i
\(472\) 756.238 1.60220
\(473\) 7.80784 0.0165071
\(474\) 32.7367i 0.0690647i
\(475\) 55.7557i 0.117381i
\(476\) 426.681 0.896388
\(477\) 4.77201i 0.0100042i
\(478\) 298.052 0.623540
\(479\) 861.906i 1.79939i −0.436523 0.899693i \(-0.643790\pi\)
0.436523 0.899693i \(-0.356210\pi\)
\(480\) 255.609i 0.532518i
\(481\) 477.134i 0.991962i
\(482\) 724.182i 1.50245i
\(483\) −54.9426 89.9462i −0.113753 0.186224i
\(484\) 727.910 1.50395
\(485\) 8.37506 0.0172682
\(486\) 50.4532 0.103813
\(487\) −25.7518 −0.0528785 −0.0264393 0.999650i \(-0.508417\pi\)
−0.0264393 + 0.999650i \(0.508417\pi\)
\(488\) 921.767i 1.88887i
\(489\) −302.726 −0.619072
\(490\) 104.638i 0.213547i
\(491\) 694.469 1.41440 0.707199 0.707015i \(-0.249959\pi\)
0.707199 + 0.707015i \(0.249959\pi\)
\(492\) 837.977 1.70320
\(493\) 70.3408i 0.142679i
\(494\) 760.085i 1.53863i
\(495\) 40.6051 0.0820305
\(496\) −0.271348 −0.000547073
\(497\) 41.1782i 0.0828536i
\(498\) 307.932i 0.618337i
\(499\) 807.321 1.61788 0.808939 0.587893i \(-0.200042\pi\)
0.808939 + 0.587893i \(0.200042\pi\)
\(500\) 857.401i 1.71480i
\(501\) 490.513 0.979069
\(502\) 418.906i 0.834474i
\(503\) 375.920i 0.747355i −0.927559 0.373678i \(-0.878097\pi\)
0.927559 0.373678i \(-0.121903\pi\)
\(504\) 63.5916i 0.126174i
\(505\) 153.859i 0.304671i
\(506\) −113.720 186.171i −0.224744 0.367926i
\(507\) −120.920 −0.238500
\(508\) −356.464 −0.701702
\(509\) 402.707 0.791173 0.395587 0.918429i \(-0.370541\pi\)
0.395587 + 0.918429i \(0.370541\pi\)
\(510\) −644.822 −1.26436
\(511\) 173.850i 0.340215i
\(512\) 1.86567 0.00364389
\(513\) 78.9641i 0.153926i
\(514\) −754.486 −1.46787
\(515\) 519.097 1.00796
\(516\) 29.8816i 0.0579101i
\(517\) 157.616i 0.304866i
\(518\) −264.390 −0.510406
\(519\) −53.7557 −0.103575
\(520\) 571.827i 1.09967i
\(521\) 690.363i 1.32507i −0.749030 0.662537i \(-0.769480\pi\)
0.749030 0.662537i \(-0.230520\pi\)
\(522\) 27.4237 0.0525358
\(523\) 274.655i 0.525152i −0.964911 0.262576i \(-0.915428\pi\)
0.964911 0.262576i \(-0.0845721\pi\)
\(524\) −996.586 −1.90188
\(525\) 16.8132i 0.0320252i
\(526\) 474.764i 0.902594i
\(527\) 231.825i 0.439895i
\(528\) 0.147969i 0.000280243i
\(529\) 241.506 470.655i 0.456533 0.889706i
\(530\) −23.7778 −0.0448638
\(531\) −283.172 −0.533281
\(532\) −260.353 −0.489386
\(533\) 1154.61 2.16624
\(534\) 967.437i 1.81168i
\(535\) −154.547 −0.288873
\(536\) 904.537i 1.68757i
\(537\) 58.2720 0.108514
\(538\) −339.014 −0.630138
\(539\) 20.5140i 0.0380595i
\(540\) 155.401i 0.287780i
\(541\) 582.111 1.07599 0.537995 0.842948i \(-0.319182\pi\)
0.537995 + 0.842948i \(0.319182\pi\)
\(542\) −853.181 −1.57413
\(543\) 78.5885i 0.144730i
\(544\) 795.787i 1.46284i
\(545\) −171.611 −0.314882
\(546\) 229.205i 0.419789i
\(547\) −523.370 −0.956800 −0.478400 0.878142i \(-0.658783\pi\)
−0.478400 + 0.878142i \(0.658783\pi\)
\(548\) 1031.90i 1.88304i
\(549\) 345.154i 0.628696i
\(550\) 34.8001i 0.0632729i
\(551\) 42.9208i 0.0778961i
\(552\) 272.372 166.376i 0.493428 0.301405i
\(553\) 15.4503 0.0279391
\(554\) 1232.54 2.22480
\(555\) 246.989 0.445026
\(556\) 453.565 0.815764
\(557\) 424.538i 0.762187i 0.924537 + 0.381093i \(0.124452\pi\)
−0.924537 + 0.381093i \(0.875548\pi\)
\(558\) 90.3812 0.161973
\(559\) 41.1724i 0.0736537i
\(560\) 0.356214 0.000636096
\(561\) −126.416 −0.225340
\(562\) 152.794i 0.271876i
\(563\) 746.148i 1.32531i −0.748926 0.662654i \(-0.769430\pi\)
0.748926 0.662654i \(-0.230570\pi\)
\(564\) −603.216 −1.06953
\(565\) 406.460 0.719397
\(566\) 192.586i 0.340259i
\(567\) 23.8118i 0.0419961i
\(568\) 124.695 0.219533
\(569\) 292.834i 0.514647i 0.966325 + 0.257324i \(0.0828407\pi\)
−0.966325 + 0.257324i \(0.917159\pi\)
\(570\) 393.459 0.690279
\(571\) 959.451i 1.68030i 0.542355 + 0.840150i \(0.317533\pi\)
−0.542355 + 0.840150i \(0.682467\pi\)
\(572\) 293.257i 0.512687i
\(573\) 84.6548i 0.147740i
\(574\) 639.793i 1.11462i
\(575\) 72.0136 43.9887i 0.125241 0.0765021i
\(576\) −310.602 −0.539240
\(577\) 93.9124 0.162760 0.0813799 0.996683i \(-0.474067\pi\)
0.0813799 + 0.996683i \(0.474067\pi\)
\(578\) 1072.16 1.85494
\(579\) 406.370 0.701848
\(580\) 84.4679i 0.145634i
\(581\) −145.331 −0.250139
\(582\) 10.1655i 0.0174665i
\(583\) −4.66159 −0.00799586
\(584\) 526.448 0.901451
\(585\) 214.120i 0.366016i
\(586\) 664.549i 1.13404i
\(587\) −530.842 −0.904330 −0.452165 0.891934i \(-0.649348\pi\)
−0.452165 + 0.891934i \(0.649348\pi\)
\(588\) 78.5100 0.133520
\(589\) 141.455i 0.240162i
\(590\) 1410.98i 2.39149i
\(591\) 244.840 0.414280
\(592\) 0.900050i 0.00152035i
\(593\) −836.235 −1.41018 −0.705089 0.709119i \(-0.749093\pi\)
−0.705089 + 0.709119i \(0.749093\pi\)
\(594\) 49.2856i 0.0829725i
\(595\) 304.329i 0.511477i
\(596\) 1734.74i 2.91063i
\(597\) 252.478i 0.422911i
\(598\) 981.719 599.672i 1.64167 1.00280i
\(599\) 133.373 0.222659 0.111329 0.993784i \(-0.464489\pi\)
0.111329 + 0.993784i \(0.464489\pi\)
\(600\) 50.9134 0.0848556
\(601\) −873.614 −1.45360 −0.726800 0.686849i \(-0.758993\pi\)
−0.726800 + 0.686849i \(0.758993\pi\)
\(602\) −22.8145 −0.0378979
\(603\) 338.702i 0.561695i
\(604\) −23.5597 −0.0390062
\(605\) 519.180i 0.858148i
\(606\) −186.751 −0.308169
\(607\) −1197.84 −1.97337 −0.986687 0.162630i \(-0.948002\pi\)
−0.986687 + 0.162630i \(0.948002\pi\)
\(608\) 485.576i 0.798644i
\(609\) 12.9428i 0.0212526i
\(610\) −1719.82 −2.81938
\(611\) −831.142 −1.36030
\(612\) 483.811i 0.790540i
\(613\) 439.201i 0.716478i 0.933630 + 0.358239i \(0.116623\pi\)
−0.933630 + 0.358239i \(0.883377\pi\)
\(614\) 610.675 0.994584
\(615\) 597.684i 0.971845i
\(616\) 62.1201 0.100844
\(617\) 126.704i 0.205355i −0.994715 0.102677i \(-0.967259\pi\)
0.994715 0.102677i \(-0.0327410\pi\)
\(618\) 630.070i 1.01953i
\(619\) 610.765i 0.986697i 0.869832 + 0.493348i \(0.164227\pi\)
−0.869832 + 0.493348i \(0.835773\pi\)
\(620\) 278.384i 0.449006i
\(621\) −101.989 + 62.2990i −0.164234 + 0.100321i
\(622\) 1460.54 2.34813
\(623\) −456.589 −0.732888
\(624\) 0.780270 0.00125043
\(625\) −519.815 −0.831704
\(626\) 2008.82i 3.20898i
\(627\) 77.1368 0.123025
\(628\) 1806.27i 2.87622i
\(629\) −768.952 −1.22250
\(630\) −118.648 −0.188331
\(631\) 943.021i 1.49449i 0.664551 + 0.747243i \(0.268623\pi\)
−0.664551 + 0.747243i \(0.731377\pi\)
\(632\) 46.7863i 0.0740289i
\(633\) −139.532 −0.220430
\(634\) 779.520 1.22953
\(635\) 254.247i 0.400389i
\(636\) 17.8405i 0.0280511i
\(637\) 108.175 0.169820
\(638\) 26.7891i 0.0419892i
\(639\) −46.6917 −0.0730700
\(640\) 957.354i 1.49587i
\(641\) 977.288i 1.52463i −0.647206 0.762315i \(-0.724063\pi\)
0.647206 0.762315i \(-0.275937\pi\)
\(642\) 187.586i 0.292190i
\(643\) 855.465i 1.33043i −0.746653 0.665214i \(-0.768340\pi\)
0.746653 0.665214i \(-0.231660\pi\)
\(644\) 205.407 + 336.270i 0.318955 + 0.522158i
\(645\) 21.3130 0.0330434
\(646\) −1224.96 −1.89622
\(647\) −357.779 −0.552982 −0.276491 0.961017i \(-0.589172\pi\)
−0.276491 + 0.961017i \(0.589172\pi\)
\(648\) −72.1061 −0.111275
\(649\) 276.619i 0.426224i
\(650\) 183.508 0.282321
\(651\) 42.6561i 0.0655240i
\(652\) 1131.76 1.73583
\(653\) 520.581 0.797215 0.398607 0.917122i \(-0.369494\pi\)
0.398607 + 0.917122i \(0.369494\pi\)
\(654\) 208.298i 0.318498i
\(655\) 710.812i 1.08521i
\(656\) −2.17801 −0.00332014
\(657\) −197.127 −0.300042
\(658\) 460.554i 0.699929i
\(659\) 636.441i 0.965768i −0.875684 0.482884i \(-0.839589\pi\)
0.875684 0.482884i \(-0.160411\pi\)
\(660\) −151.805 −0.230008
\(661\) 1033.29i 1.56322i 0.623766 + 0.781611i \(0.285602\pi\)
−0.623766 + 0.781611i \(0.714398\pi\)
\(662\) 1293.80 1.95438
\(663\) 666.619i 1.00546i
\(664\) 440.086i 0.662781i
\(665\) 185.696i 0.279242i
\(666\) 299.790i 0.450136i
\(667\) −55.4361 + 33.8625i −0.0831126 + 0.0507684i
\(668\) −1833.82 −2.74524
\(669\) −260.654 −0.389618
\(670\) −1687.67 −2.51891
\(671\) −337.167 −0.502484
\(672\) 146.426i 0.217896i
\(673\) −468.106 −0.695552 −0.347776 0.937578i \(-0.613063\pi\)
−0.347776 + 0.937578i \(0.613063\pi\)
\(674\) 1232.92i 1.82926i
\(675\) −19.0644 −0.0282436
\(676\) 452.067 0.668738
\(677\) 722.201i 1.06677i 0.845874 + 0.533383i \(0.179080\pi\)
−0.845874 + 0.533383i \(0.820920\pi\)
\(678\) 493.352i 0.727658i
\(679\) −4.79768 −0.00706580
\(680\) 921.560 1.35524
\(681\) 229.939i 0.337649i
\(682\) 88.2897i 0.129457i
\(683\) 551.975 0.808163 0.404081 0.914723i \(-0.367591\pi\)
0.404081 + 0.914723i \(0.367591\pi\)
\(684\) 295.213i 0.431598i
\(685\) −736.002 −1.07446
\(686\) 59.9421i 0.0873792i
\(687\) 21.0583i 0.0306526i
\(688\) 0.0776663i 0.000112887i
\(689\) 24.5816i 0.0356772i
\(690\) −310.421 508.189i −0.449886 0.736505i
\(691\) −736.563 −1.06594 −0.532969 0.846135i \(-0.678924\pi\)
−0.532969 + 0.846135i \(0.678924\pi\)
\(692\) 200.969 0.290418
\(693\) −23.2607 −0.0335653
\(694\) −1539.14 −2.21778
\(695\) 323.504i 0.465473i
\(696\) −39.1931 −0.0563119
\(697\) 1860.77i 2.66969i
\(698\) 542.939 0.777849
\(699\) 232.257 0.332270
\(700\) 62.8575i 0.0897964i
\(701\) 327.666i 0.467427i 0.972306 + 0.233713i \(0.0750877\pi\)
−0.972306 + 0.233713i \(0.924912\pi\)
\(702\) −259.894 −0.370219
\(703\) 469.201 0.667427
\(704\) 303.415i 0.430987i
\(705\) 430.242i 0.610272i
\(706\) 1290.07 1.82729
\(707\) 88.1384i 0.124665i
\(708\) 1058.66 1.49528
\(709\) 434.190i 0.612398i −0.951967 0.306199i \(-0.900943\pi\)
0.951967 0.306199i \(-0.0990574\pi\)
\(710\) 232.654i 0.327681i
\(711\) 17.5190i 0.0246400i
\(712\) 1382.63i 1.94190i
\(713\) −182.703 + 111.602i −0.256245 + 0.156524i
\(714\) 369.388 0.517350
\(715\) −209.165 −0.292538
\(716\) −217.854 −0.304265
\(717\) 159.503 0.222458
\(718\) 1200.90i 1.67256i
\(719\) 936.978 1.30317 0.651584 0.758577i \(-0.274105\pi\)
0.651584 + 0.758577i \(0.274105\pi\)
\(720\) 0.403908i 0.000560984i
\(721\) −297.366 −0.412436
\(722\) −420.954 −0.583039
\(723\) 387.546i 0.536025i
\(724\) 293.809i 0.405813i
\(725\) −10.3624 −0.0142930
\(726\) 630.169 0.868002
\(727\) 815.192i 1.12131i 0.828050 + 0.560655i \(0.189451\pi\)
−0.828050 + 0.560655i \(0.810549\pi\)
\(728\) 327.573i 0.449962i
\(729\) 27.0000 0.0370370
\(730\) 982.238i 1.34553i
\(731\) −66.3538 −0.0907712
\(732\) 1290.38i 1.76282i
\(733\) 476.591i 0.650192i −0.945681 0.325096i \(-0.894603\pi\)
0.945681 0.325096i \(-0.105397\pi\)
\(734\) 1660.95i 2.26287i
\(735\) 55.9970i 0.0761864i
\(736\) 627.165 383.097i 0.852127 0.520512i
\(737\) −330.864 −0.448934
\(738\) 725.457 0.983004
\(739\) 858.892 1.16224 0.581118 0.813820i \(-0.302616\pi\)
0.581118 + 0.813820i \(0.302616\pi\)
\(740\) −923.386 −1.24782
\(741\) 406.759i 0.548933i
\(742\) 13.6212 0.0183574
\(743\) 94.2457i 0.126845i 0.997987 + 0.0634224i \(0.0202015\pi\)
−0.997987 + 0.0634224i \(0.979798\pi\)
\(744\) −129.170 −0.173616
\(745\) 1237.30 1.66080
\(746\) 1499.78i 2.01042i
\(747\) 164.790i 0.220602i
\(748\) 472.615 0.631838
\(749\) 88.5328 0.118201
\(750\) 742.273i 0.989697i
\(751\) 383.210i 0.510266i 0.966906 + 0.255133i \(0.0821193\pi\)
−0.966906 + 0.255133i \(0.917881\pi\)
\(752\) 1.56784 0.00208489
\(753\) 224.178i 0.297713i
\(754\) −141.265 −0.187354
\(755\) 16.8039i 0.0222568i
\(756\) 89.0219i 0.117754i
\(757\) 184.528i 0.243763i 0.992545 + 0.121881i \(0.0388927\pi\)
−0.992545 + 0.121881i \(0.961107\pi\)
\(758\) 1310.07i 1.72832i
\(759\) −60.8574 99.6293i −0.0801810 0.131264i
\(760\) −562.320 −0.739895
\(761\) −244.980 −0.321919 −0.160960 0.986961i \(-0.551459\pi\)
−0.160960 + 0.986961i \(0.551459\pi\)
\(762\) −308.600 −0.404987
\(763\) 98.3077 0.128844
\(764\) 316.488i 0.414251i
\(765\) −345.076 −0.451080
\(766\) 1781.62i 2.32588i
\(767\) 1458.67 1.90179
\(768\) 444.711 0.579051
\(769\) 51.1696i 0.0665405i −0.999446 0.0332702i \(-0.989408\pi\)
0.999446 0.0332702i \(-0.0105922\pi\)
\(770\) 115.903i 0.150523i
\(771\) −403.763 −0.523688
\(772\) −1519.24 −1.96793
\(773\) 1041.81i 1.34775i 0.738843 + 0.673877i \(0.235372\pi\)
−0.738843 + 0.673877i \(0.764628\pi\)
\(774\) 25.8693i 0.0334228i
\(775\) −34.1518 −0.0440668
\(776\) 14.5282i 0.0187219i
\(777\) −141.488 −0.182096
\(778\) 2078.79i 2.67197i
\(779\) 1135.41i 1.45752i
\(780\) 800.501i 1.02628i
\(781\) 45.6112i 0.0584011i
\(782\) 966.435 + 1582.14i 1.23585 + 2.02320i
\(783\) 14.6758 0.0187430
\(784\) −0.204058 −0.000260278
\(785\) 1288.31 1.64117
\(786\) −862.769 −1.09767
\(787\) 437.311i 0.555668i 0.960629 + 0.277834i \(0.0896166\pi\)
−0.960629 + 0.277834i \(0.910383\pi\)
\(788\) −915.350 −1.16161
\(789\) 254.070i 0.322015i
\(790\) 87.2932 0.110498
\(791\) −232.841