Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,3,Mod(22,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.22");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(13.1607967686\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 | −3.89548 | −1.73205 | 11.1748 | 5.58204i | 6.74717 | 2.64575i | −27.9492 | 3.00000 | − | 21.7447i | |||||||||||||||||
22.2 | −3.89548 | −1.73205 | 11.1748 | − | 5.58204i | 6.74717 | − | 2.64575i | −27.9492 | 3.00000 | 21.7447i | ||||||||||||||||
22.3 | −3.83573 | 1.73205 | 10.7128 | − | 8.86189i | −6.64368 | 2.64575i | −25.7486 | 3.00000 | 33.9918i | |||||||||||||||||
22.4 | −3.83573 | 1.73205 | 10.7128 | 8.86189i | −6.64368 | − | 2.64575i | −25.7486 | 3.00000 | − | 33.9918i | ||||||||||||||||
22.5 | −3.28216 | 1.73205 | 6.77257 | 2.78765i | −5.68487 | 2.64575i | −9.10001 | 3.00000 | − | 9.14952i | |||||||||||||||||
22.6 | −3.28216 | 1.73205 | 6.77257 | − | 2.78765i | −5.68487 | − | 2.64575i | −9.10001 | 3.00000 | 9.14952i | ||||||||||||||||
22.7 | −3.23657 | −1.73205 | 6.47539 | 4.61855i | 5.60591 | − | 2.64575i | −8.01179 | 3.00000 | − | 14.9483i | ||||||||||||||||
22.8 | −3.23657 | −1.73205 | 6.47539 | − | 4.61855i | 5.60591 | 2.64575i | −8.01179 | 3.00000 | 14.9483i | |||||||||||||||||
22.9 | −2.89983 | 1.73205 | 4.40899 | − | 7.66563i | −5.02265 | − | 2.64575i | −1.18601 | 3.00000 | 22.2290i | ||||||||||||||||
22.10 | −2.89983 | 1.73205 | 4.40899 | 7.66563i | −5.02265 | 2.64575i | −1.18601 | 3.00000 | − | 22.2290i | |||||||||||||||||
22.11 | −2.49369 | 1.73205 | 2.21850 | 2.66866i | −4.31920 | − | 2.64575i | 4.44250 | 3.00000 | − | 6.65481i | ||||||||||||||||
22.12 | −2.49369 | 1.73205 | 2.21850 | − | 2.66866i | −4.31920 | 2.64575i | 4.44250 | 3.00000 | 6.65481i | |||||||||||||||||
22.13 | −1.75802 | −1.73205 | −0.909354 | 0.711109i | 3.04499 | − | 2.64575i | 8.63076 | 3.00000 | − | 1.25015i | ||||||||||||||||
22.14 | −1.75802 | −1.73205 | −0.909354 | − | 0.711109i | 3.04499 | 2.64575i | 8.63076 | 3.00000 | 1.25015i | |||||||||||||||||
22.15 | −1.65091 | −1.73205 | −1.27448 | 4.21491i | 2.85947 | 2.64575i | 8.70772 | 3.00000 | − | 6.95846i | |||||||||||||||||
22.16 | −1.65091 | −1.73205 | −1.27448 | − | 4.21491i | 2.85947 | − | 2.64575i | 8.70772 | 3.00000 | 6.95846i | ||||||||||||||||
22.17 | −0.984102 | 1.73205 | −3.03154 | − | 2.95865i | −1.70451 | 2.64575i | 6.91976 | 3.00000 | 2.91162i | |||||||||||||||||
22.18 | −0.984102 | 1.73205 | −3.03154 | 2.95865i | −1.70451 | − | 2.64575i | 6.91976 | 3.00000 | − | 2.91162i | ||||||||||||||||
22.19 | −0.876983 | 1.73205 | −3.23090 | 8.50705i | −1.51898 | 2.64575i | 6.34138 | 3.00000 | − | 7.46053i | |||||||||||||||||
22.20 | −0.876983 | 1.73205 | −3.23090 | − | 8.50705i | −1.51898 | − | 2.64575i | 6.34138 | 3.00000 | 7.46053i | ||||||||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.3.f.a | ✓ | 48 |
23.b | odd | 2 | 1 | inner | 483.3.f.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.3.f.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
483.3.f.a | ✓ | 48 | 23.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(483, [\chi])\).