Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,3,Mod(323,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.323");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(13.1607967686\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
323.1 | − | 3.91522i | 2.99444 | + | 0.182631i | −11.3290 | 3.69463i | 0.715040 | − | 11.7239i | 2.64575 | 28.6946i | 8.93329 | + | 1.09375i | 14.4653 | |||||||||||
323.2 | − | 3.81832i | −0.852935 | − | 2.87620i | −10.5796 | − | 8.03455i | −10.9822 | + | 3.25678i | 2.64575 | 25.1228i | −7.54500 | + | 4.90642i | −30.6785 | ||||||||||
323.3 | − | 3.81350i | 1.34927 | + | 2.67946i | −10.5428 | − | 8.89089i | 10.2181 | − | 5.14542i | −2.64575 | 24.9509i | −5.35897 | + | 7.23059i | −33.9054 | ||||||||||
323.4 | − | 3.80760i | 0.823489 | − | 2.88476i | −10.4978 | 3.06240i | −10.9840 | − | 3.13552i | −2.64575 | 24.7411i | −7.64373 | − | 4.75114i | 11.6604 | |||||||||||
323.5 | − | 3.55131i | −2.80484 | − | 1.06437i | −8.61182 | 3.99734i | −3.77990 | + | 9.96086i | −2.64575 | 16.3780i | 6.73424 | + | 5.97076i | 14.1958 | |||||||||||
323.6 | − | 3.53262i | −2.99242 | + | 0.213088i | −8.47941 | − | 4.02890i | 0.752759 | + | 10.5711i | 2.64575 | 15.8240i | 8.90919 | − | 1.27530i | −14.2326 | ||||||||||
323.7 | − | 3.45153i | −2.03109 | − | 2.20786i | −7.91305 | 7.97564i | −7.62051 | + | 7.01037i | 2.64575 | 13.5060i | −0.749336 | + | 8.96875i | 27.5281 | |||||||||||
323.8 | − | 3.39347i | 2.67682 | − | 1.35449i | −7.51566 | − | 5.14487i | −4.59641 | − | 9.08372i | −2.64575 | 11.9303i | 5.33074 | − | 7.25143i | −17.4590 | ||||||||||
323.9 | − | 3.36083i | −2.11593 | + | 2.12669i | −7.29519 | 8.80778i | 7.14745 | + | 7.11130i | 2.64575 | 11.0746i | −0.0456396 | − | 8.99988i | 29.6015 | |||||||||||
323.10 | − | 3.27803i | 2.67440 | + | 1.35925i | −6.74548 | 7.86031i | 4.45568 | − | 8.76677i | −2.64575 | 8.99976i | 5.30485 | + | 7.27039i | 25.7663 | |||||||||||
323.11 | − | 3.21551i | 2.51763 | − | 1.63142i | −6.33948 | − | 5.48903i | −5.24584 | − | 8.09546i | 2.64575 | 7.52260i | 3.67694 | − | 8.21463i | −17.6500 | ||||||||||
323.12 | − | 3.14953i | 2.25271 | + | 1.98124i | −5.91951 | 0.146549i | 6.23996 | − | 7.09496i | −2.64575 | 6.04554i | 1.14940 | + | 8.92630i | 0.461560 | |||||||||||
323.13 | − | 3.08330i | 1.93849 | − | 2.28960i | −5.50675 | 5.82279i | −7.05953 | − | 5.97694i | 2.64575 | 4.64575i | −1.48454 | − | 8.87672i | 17.9534 | |||||||||||
323.14 | − | 3.02799i | −1.28052 | + | 2.71298i | −5.16871 | 0.457760i | 8.21488 | + | 3.87740i | −2.64575 | 3.53885i | −5.72053 | − | 6.94806i | 1.38609 | |||||||||||
323.15 | − | 2.85750i | −1.75729 | − | 2.43145i | −4.16533 | − | 5.17933i | −6.94788 | + | 5.02145i | −2.64575 | 0.472440i | −2.82389 | + | 8.54551i | −14.8000 | ||||||||||
323.16 | − | 2.84584i | −0.677666 | + | 2.92246i | −4.09879 | − | 7.26917i | 8.31684 | + | 1.92853i | 2.64575 | 0.281139i | −8.08154 | − | 3.96090i | −20.6869 | ||||||||||
323.17 | − | 2.71288i | −2.93253 | − | 0.632651i | −3.35974 | − | 2.46348i | −1.71631 | + | 7.95562i | 2.64575 | − | 1.73695i | 8.19950 | + | 3.71054i | −6.68313 | |||||||||
323.18 | − | 2.61938i | −2.82217 | + | 1.01753i | −2.86116 | − | 9.67682i | 2.66530 | + | 7.39233i | −2.64575 | − | 2.98305i | 6.92926 | − | 5.74329i | −25.3473 | |||||||||
323.19 | − | 2.61925i | 2.60097 | − | 1.49497i | −2.86049 | 8.70818i | −3.91570 | − | 6.81261i | −2.64575 | − | 2.98467i | 4.53014 | − | 7.77675i | 22.8089 | ||||||||||
323.20 | − | 2.47284i | −2.89906 | + | 0.771673i | −2.11494 | 6.48523i | 1.90823 | + | 7.16890i | −2.64575 | − | 4.66144i | 7.80904 | − | 4.47425i | 16.0370 | ||||||||||
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.3.b.a | ✓ | 88 |
3.b | odd | 2 | 1 | inner | 483.3.b.a | ✓ | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.3.b.a | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
483.3.b.a | ✓ | 88 | 3.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(483, [\chi])\).