Properties

Label 483.2.y.a.340.9
Level $483$
Weight $2$
Character 483.340
Analytic conductor $3.857$
Analytic rank $0$
Dimension $320$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(320\)
Relative dimension: \(16\) over \(\Q(\zeta_{33})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 340.9
Character \(\chi\) \(=\) 483.340
Dual form 483.2.y.a.331.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0498540 + 0.205501i) q^{2} +(0.327068 + 0.945001i) q^{3} +(1.73793 - 0.895963i) q^{4} +(-0.0996159 + 0.0398802i) q^{5} +(-0.177893 + 0.114325i) q^{6} +(2.55463 - 0.688391i) q^{7} +(0.547720 + 0.632102i) q^{8} +(-0.786053 + 0.618159i) q^{9} +O(q^{10})\) \(q+(0.0498540 + 0.205501i) q^{2} +(0.327068 + 0.945001i) q^{3} +(1.73793 - 0.895963i) q^{4} +(-0.0996159 + 0.0398802i) q^{5} +(-0.177893 + 0.114325i) q^{6} +(2.55463 - 0.688391i) q^{7} +(0.547720 + 0.632102i) q^{8} +(-0.786053 + 0.618159i) q^{9} +(-0.0131617 - 0.0184830i) q^{10} +(-1.15232 + 4.74994i) q^{11} +(1.41511 + 1.34930i) q^{12} +(-0.0477462 + 0.104550i) q^{13} +(0.268823 + 0.490659i) q^{14} +(-0.0702680 - 0.0810936i) q^{15} +(2.16576 - 3.04138i) q^{16} +(-0.0660529 - 1.38662i) q^{17} +(-0.166220 - 0.130717i) q^{18} +(0.228270 - 4.79198i) q^{19} +(-0.137394 + 0.158561i) q^{20} +(1.48607 + 2.18897i) q^{21} -1.03357 q^{22} +(4.57776 - 1.42972i) q^{23} +(-0.418196 + 0.724336i) q^{24} +(-3.61034 + 3.44245i) q^{25} +(-0.0238654 - 0.00459967i) q^{26} +(-0.841254 - 0.540641i) q^{27} +(3.82298 - 3.48522i) q^{28} +(0.414636 - 0.266470i) q^{29} +(0.0131617 - 0.0184830i) q^{30} +(3.44285 - 0.663554i) q^{31} +(2.28594 + 0.915151i) q^{32} +(-4.86559 + 0.464607i) q^{33} +(0.281659 - 0.0827026i) q^{34} +(-0.227028 + 0.170454i) q^{35} +(-0.812254 + 1.77859i) q^{36} +(-0.180260 + 0.141758i) q^{37} +(0.996137 - 0.191990i) q^{38} +(-0.114416 - 0.0109254i) q^{39} +(-0.0797700 - 0.0411243i) q^{40} +(-1.28289 + 8.92267i) q^{41} +(-0.375750 + 0.414517i) q^{42} +(-7.93892 + 9.16200i) q^{43} +(2.25312 + 9.28749i) q^{44} +(0.0536511 - 0.0929264i) q^{45} +(0.522029 + 0.869457i) q^{46} +(-2.99650 - 5.19008i) q^{47} +(3.58246 + 1.05191i) q^{48} +(6.05223 - 3.51717i) q^{49} +(-0.887417 - 0.570308i) q^{50} +(1.28875 - 0.515940i) q^{51} +(0.0106932 + 0.224478i) q^{52} +(-3.73190 - 0.356353i) q^{53} +(0.0691624 - 0.199832i) q^{54} +(-0.0746389 - 0.519125i) q^{55} +(1.83435 + 1.23774i) q^{56} +(4.60308 - 1.35159i) q^{57} +(0.0754311 + 0.0719234i) q^{58} +(-7.56521 - 10.6238i) q^{59} +(-0.194777 - 0.0779771i) q^{60} +(2.82943 - 8.17509i) q^{61} +(0.308001 + 0.674427i) q^{62} +(-1.58254 + 2.12028i) q^{63} +(0.988621 - 6.87601i) q^{64} +(0.000586823 - 0.0123189i) q^{65} +(-0.338046 - 0.976721i) q^{66} +(-5.02258 + 4.78902i) q^{67} +(-1.35716 - 2.35066i) q^{68} +(2.84833 + 3.85837i) q^{69} +(-0.0463467 - 0.0381567i) q^{70} +(4.61381 + 1.35474i) q^{71} +(-0.821277 - 0.158288i) q^{72} +(4.39779 - 2.26722i) q^{73} +(-0.0381180 - 0.0299763i) q^{74} +(-4.43394 - 2.28586i) q^{75} +(-3.89672 - 8.53263i) q^{76} +(0.326063 + 12.9276i) q^{77} +(-0.00345890 - 0.0240572i) q^{78} +(-7.40820 + 0.707397i) q^{79} +(-0.0944532 + 0.389341i) q^{80} +(0.235759 - 0.971812i) q^{81} +(-1.89757 + 0.181196i) q^{82} +(-0.803474 - 5.58828i) q^{83} +(4.54391 + 2.47281i) q^{84} +(0.0618787 + 0.135495i) q^{85} +(-2.27859 - 1.17469i) q^{86} +(0.387428 + 0.304677i) q^{87} +(-3.63360 + 1.87325i) q^{88} +(-10.6170 - 2.04625i) q^{89} +(0.0217712 + 0.00639260i) q^{90} +(-0.0500026 + 0.299953i) q^{91} +(6.67483 - 6.58625i) q^{92} +(1.75310 + 3.03647i) q^{93} +(0.917180 - 0.874529i) q^{94} +(0.168366 + 0.486461i) q^{95} +(-0.117162 + 2.45953i) q^{96} +(0.454566 - 3.16158i) q^{97} +(1.02451 + 1.06840i) q^{98} +(-2.03043 - 4.44603i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 320q + 2q^{2} - 16q^{3} + 18q^{4} - 2q^{5} - 18q^{6} + 2q^{7} - 12q^{8} + 16q^{9} + O(q^{10}) \) \( 320q + 2q^{2} - 16q^{3} + 18q^{4} - 2q^{5} - 18q^{6} + 2q^{7} - 12q^{8} + 16q^{9} + 8q^{10} - 6q^{11} - 18q^{12} - 10q^{14} + 18q^{15} + 8q^{16} + 4q^{17} + 2q^{18} + 18q^{20} + 4q^{21} - 176q^{22} - 18q^{23} - 6q^{24} + 8q^{25} - 14q^{26} + 32q^{27} + 46q^{28} + 34q^{29} - 8q^{30} + 52q^{31} - 8q^{32} - 5q^{33} - 24q^{34} - 12q^{35} - 14q^{36} - 30q^{37} - 157q^{38} + 88q^{40} - 28q^{41} - 45q^{42} + 64q^{43} - 71q^{44} - 2q^{45} + 4q^{46} + 36q^{47} + 60q^{48} + 28q^{49} + 210q^{50} - 26q^{51} - 198q^{52} - 10q^{53} - 2q^{54} - 4q^{55} + 44q^{57} + 31q^{58} + 10q^{59} - 2q^{60} - 34q^{61} - 8q^{62} + 2q^{63} + 84q^{64} + 38q^{65} - 12q^{67} - 22q^{68} + 8q^{69} - 336q^{70} - 144q^{71} + 6q^{72} - 16q^{73} - 68q^{74} - 30q^{75} + 8q^{76} + 98q^{77} + 16q^{78} + 26q^{79} + 225q^{80} + 16q^{81} - 122q^{82} + 44q^{84} - 240q^{85} - 26q^{86} - 16q^{87} + 43q^{88} + 68q^{89} - 16q^{90} + 40q^{91} - 222q^{92} - 8q^{93} + 137q^{94} - 49q^{95} + 30q^{96} - 8q^{97} + 137q^{98} - 10q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0498540 + 0.205501i 0.0352521 + 0.145311i 0.986718 0.162444i \(-0.0519375\pi\)
−0.951466 + 0.307755i \(0.900422\pi\)
\(3\) 0.327068 + 0.945001i 0.188833 + 0.545596i
\(4\) 1.73793 0.895963i 0.868963 0.447981i
\(5\) −0.0996159 + 0.0398802i −0.0445496 + 0.0178350i −0.393830 0.919183i \(-0.628850\pi\)
0.349281 + 0.937018i \(0.386426\pi\)
\(6\) −0.177893 + 0.114325i −0.0726245 + 0.0466729i
\(7\) 2.55463 0.688391i 0.965558 0.260187i
\(8\) 0.547720 + 0.632102i 0.193648 + 0.223482i
\(9\) −0.786053 + 0.618159i −0.262018 + 0.206053i
\(10\) −0.0131617 0.0184830i −0.00416209 0.00584483i
\(11\) −1.15232 + 4.74994i −0.347439 + 1.43216i 0.483278 + 0.875467i \(0.339446\pi\)
−0.830717 + 0.556695i \(0.812069\pi\)
\(12\) 1.41511 + 1.34930i 0.408506 + 0.389509i
\(13\) −0.0477462 + 0.104550i −0.0132424 + 0.0289968i −0.916138 0.400864i \(-0.868710\pi\)
0.902895 + 0.429861i \(0.141437\pi\)
\(14\) 0.268823 + 0.490659i 0.0718461 + 0.131134i
\(15\) −0.0702680 0.0810936i −0.0181431 0.0209383i
\(16\) 2.16576 3.04138i 0.541440 0.760346i
\(17\) −0.0660529 1.38662i −0.0160202 0.336305i −0.992622 0.121250i \(-0.961310\pi\)
0.976602 0.215055i \(-0.0689932\pi\)
\(18\) −0.166220 0.130717i −0.0391785 0.0308103i
\(19\) 0.228270 4.79198i 0.0523688 1.09936i −0.807836 0.589407i \(-0.799361\pi\)
0.860205 0.509948i \(-0.170336\pi\)
\(20\) −0.137394 + 0.158561i −0.0307222 + 0.0354553i
\(21\) 1.48607 + 2.18897i 0.324286 + 0.477673i
\(22\) −1.03357 −0.220357
\(23\) 4.57776 1.42972i 0.954529 0.298117i
\(24\) −0.418196 + 0.724336i −0.0853638 + 0.147854i
\(25\) −3.61034 + 3.44245i −0.722067 + 0.688490i
\(26\) −0.0238654 0.00459967i −0.00468038 0.000902070i
\(27\) −0.841254 0.540641i −0.161899 0.104046i
\(28\) 3.82298 3.48522i 0.722475 0.658645i
\(29\) 0.414636 0.266470i 0.0769959 0.0494823i −0.501576 0.865113i \(-0.667246\pi\)
0.578572 + 0.815631i \(0.303610\pi\)
\(30\) 0.0131617 0.0184830i 0.00240298 0.00337452i
\(31\) 3.44285 0.663554i 0.618353 0.119178i 0.129552 0.991573i \(-0.458646\pi\)
0.488802 + 0.872395i \(0.337434\pi\)
\(32\) 2.28594 + 0.915151i 0.404100 + 0.161777i
\(33\) −4.86559 + 0.464607i −0.846990 + 0.0808778i
\(34\) 0.281659 0.0827026i 0.0483041 0.0141834i
\(35\) −0.227028 + 0.170454i −0.0383748 + 0.0288119i
\(36\) −0.812254 + 1.77859i −0.135376 + 0.296431i
\(37\) −0.180260 + 0.141758i −0.0296345 + 0.0233048i −0.632866 0.774261i \(-0.718122\pi\)
0.603232 + 0.797566i \(0.293879\pi\)
\(38\) 0.996137 0.191990i 0.161595 0.0311448i
\(39\) −0.114416 0.0109254i −0.0183212 0.00174946i
\(40\) −0.0797700 0.0411243i −0.0126127 0.00650232i
\(41\) −1.28289 + 8.92267i −0.200353 + 1.39349i 0.602884 + 0.797829i \(0.294018\pi\)
−0.803238 + 0.595659i \(0.796891\pi\)
\(42\) −0.375750 + 0.414517i −0.0579795 + 0.0639614i
\(43\) −7.93892 + 9.16200i −1.21067 + 1.39719i −0.317030 + 0.948415i \(0.602686\pi\)
−0.893644 + 0.448777i \(0.851860\pi\)
\(44\) 2.25312 + 9.28749i 0.339671 + 1.40014i
\(45\) 0.0536511 0.0929264i 0.00799783 0.0138527i
\(46\) 0.522029 + 0.869457i 0.0769689 + 0.128194i
\(47\) −2.99650 5.19008i −0.437084 0.757051i 0.560379 0.828236i \(-0.310655\pi\)
−0.997463 + 0.0711847i \(0.977322\pi\)
\(48\) 3.58246 + 1.05191i 0.517084 + 0.151830i
\(49\) 6.05223 3.51717i 0.864605 0.502452i
\(50\) −0.887417 0.570308i −0.125500 0.0806537i
\(51\) 1.28875 0.515940i 0.180462 0.0722460i
\(52\) 0.0106932 + 0.224478i 0.00148288 + 0.0311295i
\(53\) −3.73190 0.356353i −0.512616 0.0489489i −0.164457 0.986384i \(-0.552587\pi\)
−0.348159 + 0.937435i \(0.613193\pi\)
\(54\) 0.0691624 0.199832i 0.00941181 0.0271936i
\(55\) −0.0746389 0.519125i −0.0100643 0.0699988i
\(56\) 1.83435 + 1.23774i 0.245126 + 0.165400i
\(57\) 4.60308 1.35159i 0.609693 0.179022i
\(58\) 0.0754311 + 0.0719234i 0.00990459 + 0.00944401i
\(59\) −7.56521 10.6238i −0.984906 1.38311i −0.922904 0.385031i \(-0.874191\pi\)
−0.0620027 0.998076i \(-0.519749\pi\)
\(60\) −0.194777 0.0779771i −0.0251457 0.0100668i
\(61\) 2.82943 8.17509i 0.362271 1.04671i −0.605709 0.795686i \(-0.707111\pi\)
0.967980 0.251027i \(-0.0807682\pi\)
\(62\) 0.308001 + 0.674427i 0.0391161 + 0.0856524i
\(63\) −1.58254 + 2.12028i −0.199381 + 0.267130i
\(64\) 0.988621 6.87601i 0.123578 0.859502i
\(65\) 0.000586823 0.0123189i 7.27864e−5 0.00152797i
\(66\) −0.338046 0.976721i −0.0416106 0.120226i
\(67\) −5.02258 + 4.78902i −0.613606 + 0.585072i −0.931808 0.362951i \(-0.881769\pi\)
0.318203 + 0.948023i \(0.396921\pi\)
\(68\) −1.35716 2.35066i −0.164579 0.285060i
\(69\) 2.84833 + 3.85837i 0.342898 + 0.464493i
\(70\) −0.0463467 0.0381567i −0.00553949 0.00456060i
\(71\) 4.61381 + 1.35474i 0.547558 + 0.160778i 0.543799 0.839215i \(-0.316985\pi\)
0.00375882 + 0.999993i \(0.498804\pi\)
\(72\) −0.821277 0.158288i −0.0967884 0.0186544i
\(73\) 4.39779 2.26722i 0.514723 0.265358i −0.181236 0.983440i \(-0.558010\pi\)
0.695959 + 0.718082i \(0.254980\pi\)
\(74\) −0.0381180 0.0299763i −0.00443113 0.00348468i
\(75\) −4.43394 2.28586i −0.511988 0.263948i
\(76\) −3.89672 8.53263i −0.446984 0.978759i
\(77\) 0.326063 + 12.9276i 0.0371583 + 1.47323i
\(78\) −0.00345890 0.0240572i −0.000391644 0.00272394i
\(79\) −7.40820 + 0.707397i −0.833488 + 0.0795884i −0.503069 0.864246i \(-0.667796\pi\)
−0.330418 + 0.943835i \(0.607190\pi\)
\(80\) −0.0944532 + 0.389341i −0.0105602 + 0.0435297i
\(81\) 0.235759 0.971812i 0.0261954 0.107979i
\(82\) −1.89757 + 0.181196i −0.209552 + 0.0200098i
\(83\) −0.803474 5.58828i −0.0881927 0.613394i −0.985204 0.171386i \(-0.945175\pi\)
0.897011 0.442008i \(-0.145734\pi\)
\(84\) 4.54391 + 2.47281i 0.495782 + 0.269806i
\(85\) 0.0618787 + 0.135495i 0.00671168 + 0.0146965i
\(86\) −2.27859 1.17469i −0.245706 0.126670i
\(87\) 0.387428 + 0.304677i 0.0415367 + 0.0326648i
\(88\) −3.63360 + 1.87325i −0.387343 + 0.199689i
\(89\) −10.6170 2.04625i −1.12540 0.216902i −0.407603 0.913159i \(-0.633635\pi\)
−0.717792 + 0.696257i \(0.754847\pi\)
\(90\) 0.0217712 + 0.00639260i 0.00229489 + 0.000673839i
\(91\) −0.0500026 + 0.299953i −0.00524170 + 0.0314436i
\(92\) 6.67483 6.58625i 0.695899 0.686664i
\(93\) 1.75310 + 3.03647i 0.181788 + 0.314867i
\(94\) 0.917180 0.874529i 0.0945999 0.0902008i
\(95\) 0.168366 + 0.486461i 0.0172740 + 0.0499098i
\(96\) −0.117162 + 2.45953i −0.0119578 + 0.251025i
\(97\) 0.454566 3.16158i 0.0461542 0.321009i −0.953644 0.300936i \(-0.902701\pi\)
0.999799 0.0200734i \(-0.00638999\pi\)
\(98\) 1.02451 + 1.06840i 0.103491 + 0.107924i
\(99\) −2.03043 4.44603i −0.204066 0.446843i
\(100\) −3.19019 + 9.21745i −0.319019 + 0.921745i
\(101\) −3.17049 1.26927i −0.315476 0.126297i 0.208521 0.978018i \(-0.433135\pi\)
−0.523996 + 0.851721i \(0.675559\pi\)
\(102\) 0.170276 + 0.239119i 0.0168598 + 0.0236763i
\(103\) −2.58943 2.46902i −0.255145 0.243280i 0.551701 0.834042i \(-0.313979\pi\)
−0.806846 + 0.590762i \(0.798827\pi\)
\(104\) −0.0922375 + 0.0270834i −0.00904463 + 0.00265574i
\(105\) −0.235333 0.158792i −0.0229661 0.0154965i
\(106\) −0.112819 0.784674i −0.0109580 0.0762143i
\(107\) 1.45951 4.21697i 0.141096 0.407670i −0.852208 0.523204i \(-0.824737\pi\)
0.993304 + 0.115534i \(0.0368578\pi\)
\(108\) −1.94643 0.185862i −0.187295 0.0178845i
\(109\) −0.232652 4.88396i −0.0222840 0.467798i −0.982238 0.187640i \(-0.939916\pi\)
0.959954 0.280158i \(-0.0903869\pi\)
\(110\) 0.102960 0.0412188i 0.00981682 0.00393006i
\(111\) −0.192918 0.123981i −0.0183110 0.0117678i
\(112\) 3.43905 9.26049i 0.324959 0.875034i
\(113\) −0.452822 0.132961i −0.0425979 0.0125079i 0.260364 0.965510i \(-0.416157\pi\)
−0.302962 + 0.953003i \(0.597976\pi\)
\(114\) 0.507235 + 0.878556i 0.0475069 + 0.0822843i
\(115\) −0.399000 + 0.324985i −0.0372070 + 0.0303050i
\(116\) 0.481858 0.834603i 0.0447394 0.0774910i
\(117\) −0.0270972 0.111696i −0.00250514 0.0103263i
\(118\) 1.80606 2.08430i 0.166261 0.191875i
\(119\) −1.12328 3.49683i −0.102971 0.320554i
\(120\) 0.0127723 0.0888331i 0.00116594 0.00810932i
\(121\) −11.4569 5.90646i −1.04154 0.536950i
\(122\) 1.82105 + 0.173889i 0.164870 + 0.0157432i
\(123\) −8.85152 + 1.70599i −0.798115 + 0.153824i
\(124\) 5.38889 4.23787i 0.483937 0.380572i
\(125\) 0.445236 0.974931i 0.0398231 0.0872005i
\(126\) −0.514615 0.219509i −0.0458455 0.0195554i
\(127\) 11.9704 3.51482i 1.06220 0.311890i 0.296462 0.955045i \(-0.404193\pi\)
0.765736 + 0.643155i \(0.222375\pi\)
\(128\) 6.36465 0.607750i 0.562561 0.0537181i
\(129\) −11.2547 4.50569i −0.990918 0.396704i
\(130\) 0.00256081 0.000493555i 0.000224598 4.32876e-5i
\(131\) −6.79027 + 9.53559i −0.593268 + 0.833129i −0.996640 0.0819075i \(-0.973899\pi\)
0.403372 + 0.915036i \(0.367838\pi\)
\(132\) −8.03976 + 5.16684i −0.699771 + 0.449716i
\(133\) −2.71561 12.3989i −0.235473 1.07512i
\(134\) −1.23454 0.793393i −0.106648 0.0685387i
\(135\) 0.105363 + 0.0203071i 0.00906821 + 0.00174775i
\(136\) 0.840308 0.801232i 0.0720558 0.0687051i
\(137\) −7.96553 + 13.7967i −0.680541 + 1.17873i 0.294274 + 0.955721i \(0.404922\pi\)
−0.974816 + 0.223011i \(0.928411\pi\)
\(138\) −0.650899 + 0.777689i −0.0554082 + 0.0662013i
\(139\) −14.9801 −1.27060 −0.635298 0.772267i \(-0.719123\pi\)
−0.635298 + 0.772267i \(0.719123\pi\)
\(140\) −0.241838 + 0.499645i −0.0204390 + 0.0422277i
\(141\) 3.92457 4.52920i 0.330509 0.381428i
\(142\) −0.0483828 + 1.01568i −0.00406020 + 0.0852340i
\(143\) −0.441585 0.347266i −0.0369272 0.0290399i
\(144\) 0.177657 + 3.72947i 0.0148047 + 0.310790i
\(145\) −0.0306774 + 0.0430804i −0.00254762 + 0.00357763i
\(146\) 0.685163 + 0.790721i 0.0567045 + 0.0654405i
\(147\) 5.30322 + 4.56901i 0.437402 + 0.376846i
\(148\) −0.186268 + 0.407870i −0.0153111 + 0.0335267i
\(149\) −14.8774 14.1856i −1.21881 1.16213i −0.981657 0.190657i \(-0.938938\pi\)
−0.237150 0.971473i \(-0.576213\pi\)
\(150\) 0.248696 1.02514i 0.0203059 0.0837022i
\(151\) 1.74602 + 2.45194i 0.142089 + 0.199536i 0.879488 0.475922i \(-0.157885\pi\)
−0.737399 + 0.675458i \(0.763946\pi\)
\(152\) 3.15405 2.48037i 0.255827 0.201185i
\(153\) 0.909074 + 1.04913i 0.0734942 + 0.0848169i
\(154\) −2.64038 + 0.711498i −0.212768 + 0.0573341i
\(155\) −0.316500 + 0.203402i −0.0254219 + 0.0163376i
\(156\) −0.208635 + 0.0835247i −0.0167041 + 0.00668733i
\(157\) 4.82507 2.48750i 0.385083 0.198524i −0.254805 0.966992i \(-0.582011\pi\)
0.639887 + 0.768469i \(0.278981\pi\)
\(158\) −0.514699 1.48713i −0.0409473 0.118309i
\(159\) −0.883831 3.64320i −0.0700923 0.288924i
\(160\) −0.264212 −0.0208878
\(161\) 10.7103 6.80369i 0.844087 0.536206i
\(162\) 0.211462 0.0166140
\(163\) −3.25082 13.4001i −0.254624 1.04957i −0.945246 0.326359i \(-0.894178\pi\)
0.690622 0.723216i \(-0.257337\pi\)
\(164\) 5.76482 + 16.6564i 0.450157 + 1.30064i
\(165\) 0.466162 0.240323i 0.0362906 0.0187091i
\(166\) 1.10834 0.443713i 0.0860239 0.0344388i
\(167\) −5.51563 + 3.54468i −0.426812 + 0.274295i −0.736362 0.676588i \(-0.763458\pi\)
0.309550 + 0.950883i \(0.399822\pi\)
\(168\) −0.569707 + 2.13829i −0.0439538 + 0.164973i
\(169\) 8.50454 + 9.81476i 0.654195 + 0.754982i
\(170\) −0.0247595 + 0.0194711i −0.00189897 + 0.00149337i
\(171\) 2.78277 + 3.90786i 0.212804 + 0.298841i
\(172\) −5.58844 + 23.0359i −0.426114 + 1.75647i
\(173\) 1.02340 + 0.975807i 0.0778074 + 0.0741892i 0.727985 0.685593i \(-0.240457\pi\)
−0.650178 + 0.759782i \(0.725306\pi\)
\(174\) −0.0432966 + 0.0948063i −0.00328231 + 0.00718725i
\(175\) −6.85331 + 11.2795i −0.518062 + 0.852650i
\(176\) 11.9507 + 13.7919i 0.900822 + 1.03960i
\(177\) 7.56521 10.6238i 0.568636 0.798537i
\(178\) −0.108791 2.28381i −0.00815425 0.171179i
\(179\) −0.634936 0.499319i −0.0474573 0.0373209i 0.594149 0.804355i \(-0.297489\pi\)
−0.641606 + 0.767034i \(0.721732\pi\)
\(180\) 0.00998298 0.209569i 0.000744088 0.0156203i
\(181\) −15.4978 + 17.8855i −1.15194 + 1.32942i −0.216360 + 0.976314i \(0.569418\pi\)
−0.935585 + 0.353102i \(0.885127\pi\)
\(182\) −0.0641335 + 0.00467827i −0.00475389 + 0.000346776i
\(183\) 8.65088 0.639491
\(184\) 3.41106 + 2.11053i 0.251467 + 0.155590i
\(185\) 0.0123034 0.0213101i 0.000904564 0.00156675i
\(186\) −0.536597 + 0.511645i −0.0393452 + 0.0375156i
\(187\) 6.66249 + 1.28409i 0.487209 + 0.0939019i
\(188\) −9.85781 6.33523i −0.718955 0.462044i
\(189\) −2.52126 0.802024i −0.183395 0.0583386i
\(190\) −0.0915745 + 0.0588514i −0.00664351 + 0.00426953i
\(191\) −4.14353 + 5.81877i −0.299815 + 0.421031i −0.936811 0.349836i \(-0.886237\pi\)
0.636996 + 0.770867i \(0.280177\pi\)
\(192\) 6.82118 1.31468i 0.492277 0.0948785i
\(193\) 24.1500 + 9.66821i 1.73836 + 0.695933i 0.999763 + 0.0217814i \(0.00693379\pi\)
0.738593 + 0.674151i \(0.235490\pi\)
\(194\) 0.672369 0.0642035i 0.0482733 0.00460954i
\(195\) 0.0118333 0.00347458i 0.000847402 0.000248820i
\(196\) 7.36708 11.5352i 0.526220 0.823939i
\(197\) 9.35548 20.4856i 0.666550 1.45954i −0.209740 0.977757i \(-0.567262\pi\)
0.876290 0.481784i \(-0.160011\pi\)
\(198\) 0.812438 0.638908i 0.0577374 0.0454052i
\(199\) −4.07912 + 0.786186i −0.289161 + 0.0557313i −0.331769 0.943361i \(-0.607646\pi\)
0.0426079 + 0.999092i \(0.486433\pi\)
\(200\) −4.15343 0.396605i −0.293692 0.0280442i
\(201\) −6.16835 3.18001i −0.435082 0.224300i
\(202\) 0.102775 0.714817i 0.00723124 0.0502944i
\(203\) 0.875803 0.966163i 0.0614693 0.0678114i
\(204\) 1.77750 2.05134i 0.124450 0.143623i
\(205\) −0.228042 0.940002i −0.0159271 0.0656526i
\(206\) 0.378293 0.655222i 0.0263569 0.0456515i
\(207\) −2.71457 + 3.95362i −0.188676 + 0.274796i
\(208\) 0.214569 + 0.371644i 0.0148777 + 0.0257688i
\(209\) 22.4986 + 6.60618i 1.55626 + 0.456959i
\(210\) 0.0208996 0.0562775i 0.00144221 0.00388352i
\(211\) 2.22853 + 1.43219i 0.153418 + 0.0985960i 0.615098 0.788451i \(-0.289117\pi\)
−0.461679 + 0.887047i \(0.652753\pi\)
\(212\) −6.80504 + 2.72433i −0.467372 + 0.187108i
\(213\) 0.228802 + 4.80314i 0.0156772 + 0.329106i
\(214\) 0.939355 + 0.0896975i 0.0642130 + 0.00613159i
\(215\) 0.425460 1.22929i 0.0290162 0.0838367i
\(216\) −0.119031 0.827878i −0.00809903 0.0563300i
\(217\) 8.33840 4.06516i 0.566048 0.275961i
\(218\) 0.992060 0.291295i 0.0671908 0.0197290i
\(219\) 3.58090 + 3.41438i 0.241975 + 0.230723i
\(220\) −0.594834 0.835327i −0.0401037 0.0563177i
\(221\) 0.148124 + 0.0593000i 0.00996392 + 0.00398895i
\(222\) 0.0158605 0.0458258i 0.00106449 0.00307563i
\(223\) 6.47246 + 14.1727i 0.433428 + 0.949075i 0.992758 + 0.120130i \(0.0383311\pi\)
−0.559330 + 0.828945i \(0.688942\pi\)
\(224\) 6.46970 + 0.764250i 0.432275 + 0.0510636i
\(225\) 0.709936 4.93771i 0.0473290 0.329181i
\(226\) 0.00474854 0.0996841i 0.000315868 0.00663089i
\(227\) 9.55812 + 27.6164i 0.634395 + 1.83296i 0.547606 + 0.836736i \(0.315539\pi\)
0.0867882 + 0.996227i \(0.472340\pi\)
\(228\) 6.78885 6.47315i 0.449602 0.428695i
\(229\) 12.4293 + 21.5282i 0.821350 + 1.42262i 0.904677 + 0.426098i \(0.140112\pi\)
−0.0833268 + 0.996522i \(0.526555\pi\)
\(230\) −0.0866765 0.0657932i −0.00571528 0.00433827i
\(231\) −12.1099 + 4.53633i −0.796775 + 0.298468i
\(232\) 0.395540 + 0.116141i 0.0259685 + 0.00762504i
\(233\) 17.8320 + 3.43683i 1.16821 + 0.225154i 0.736232 0.676729i \(-0.236603\pi\)
0.431980 + 0.901883i \(0.357815\pi\)
\(234\) 0.0216028 0.0111370i 0.00141222 0.000728049i
\(235\) 0.505480 + 0.397514i 0.0329739 + 0.0259310i
\(236\) −22.6663 11.6853i −1.47545 0.760649i
\(237\) −3.09148 6.76939i −0.200813 0.439719i
\(238\) 0.662602 0.405166i 0.0429501 0.0262630i
\(239\) −2.38643 16.5980i −0.154365 1.07363i −0.908792 0.417250i \(-0.862994\pi\)
0.754426 0.656385i \(-0.227915\pi\)
\(240\) −0.398820 + 0.0380827i −0.0257438 + 0.00245823i
\(241\) 4.65664 19.1949i 0.299961 1.23646i −0.599828 0.800129i \(-0.704764\pi\)
0.899789 0.436326i \(-0.143721\pi\)
\(242\) 0.642609 2.64887i 0.0413085 0.170276i
\(243\) 0.995472 0.0950560i 0.0638596 0.00609785i
\(244\) −2.40724 16.7428i −0.154108 1.07184i
\(245\) −0.462634 + 0.591730i −0.0295566 + 0.0378042i
\(246\) −0.791867 1.73395i −0.0504876 0.110552i
\(247\) 0.490100 + 0.252664i 0.0311843 + 0.0160766i
\(248\) 2.30515 + 1.81279i 0.146377 + 0.115112i
\(249\) 5.01814 2.58703i 0.318012 0.163946i
\(250\) 0.222546 + 0.0428923i 0.0140751 + 0.00271274i
\(251\) −29.3134 8.60718i −1.85024 0.543280i −0.999853 0.0171265i \(-0.994548\pi\)
−0.850389 0.526154i \(-0.823634\pi\)
\(252\) −0.850641 + 5.10278i −0.0535854 + 0.321445i
\(253\) 1.51603 + 23.3916i 0.0953118 + 1.47062i
\(254\) 1.31907 + 2.28469i 0.0827657 + 0.143354i
\(255\) −0.107805 + 0.102792i −0.00675099 + 0.00643706i
\(256\) −4.10190 11.8517i −0.256369 0.740729i
\(257\) 0.910473 19.1132i 0.0567938 1.19225i −0.773085 0.634303i \(-0.781287\pi\)
0.829878 0.557945i \(-0.188410\pi\)
\(258\) 0.364833 2.53747i 0.0227135 0.157976i
\(259\) −0.362911 + 0.486227i −0.0225502 + 0.0302127i
\(260\) −0.0100174 0.0219351i −0.000621256 0.00136036i
\(261\) −0.161205 + 0.465770i −0.00997832 + 0.0288305i
\(262\) −2.29810 0.920019i −0.141977 0.0568390i
\(263\) 12.5710 + 17.6535i 0.775162 + 1.08856i 0.993627 + 0.112717i \(0.0359555\pi\)
−0.218466 + 0.975845i \(0.570105\pi\)
\(264\) −2.95866 2.82108i −0.182093 0.173625i
\(265\) 0.385968 0.113330i 0.0237098 0.00696183i
\(266\) 2.41259 1.17619i 0.147926 0.0721171i
\(267\) −1.53876 10.7023i −0.0941704 0.654970i
\(268\) −4.43809 + 12.8230i −0.271099 + 0.783290i
\(269\) 17.0869 + 1.63161i 1.04181 + 0.0994808i 0.601908 0.798565i \(-0.294407\pi\)
0.439901 + 0.898046i \(0.355013\pi\)
\(270\) 0.00107965 + 0.0226646i 6.57053e−5 + 0.00137932i
\(271\) −4.29979 + 1.72138i −0.261194 + 0.104566i −0.498564 0.866853i \(-0.666139\pi\)
0.237370 + 0.971419i \(0.423715\pi\)
\(272\) −4.36030 2.80220i −0.264382 0.169908i
\(273\) −0.299810 + 0.0508525i −0.0181453 + 0.00307773i
\(274\) −3.23235 0.949104i −0.195273 0.0573375i
\(275\) −12.1912 21.1157i −0.735155 1.27333i
\(276\) 8.40714 + 4.15357i 0.506050 + 0.250016i
\(277\) −11.6227 + 20.1311i −0.698339 + 1.20956i 0.270703 + 0.962663i \(0.412744\pi\)
−0.969042 + 0.246896i \(0.920589\pi\)
\(278\) −0.746818 3.07842i −0.0447911 0.184632i
\(279\) −2.29608 + 2.64982i −0.137463 + 0.158640i
\(280\) −0.232092 0.0501442i −0.0138702 0.00299669i
\(281\) −0.143023 + 0.994747i −0.00853204 + 0.0593416i −0.993643 0.112580i \(-0.964089\pi\)
0.985111 + 0.171922i \(0.0549976\pi\)
\(282\) 1.12641 + 0.580705i 0.0670768 + 0.0345805i
\(283\) −6.34984 0.606336i −0.377459 0.0360430i −0.0953974 0.995439i \(-0.530412\pi\)
−0.282062 + 0.959396i \(0.591018\pi\)
\(284\) 9.23224 1.77937i 0.547833 0.105586i
\(285\) −0.404639 + 0.318212i −0.0239687 + 0.0188492i
\(286\) 0.0493488 0.108059i 0.00291806 0.00638965i
\(287\) 2.86499 + 23.6772i 0.169115 + 1.39762i
\(288\) −2.36258 + 0.693715i −0.139216 + 0.0408776i
\(289\) 15.0047 1.43277i 0.882627 0.0842807i
\(290\) −0.0103825 0.00415651i −0.000609679 0.000244079i
\(291\) 3.13637 0.604485i 0.183857 0.0354355i
\(292\) 5.61169 7.88052i 0.328399 0.461172i
\(293\) 25.8193 16.5931i 1.50838 0.969377i 0.514671 0.857388i \(-0.327914\pi\)
0.993709 0.111990i \(-0.0357224\pi\)
\(294\) −0.674550 + 1.31760i −0.0393406 + 0.0768440i
\(295\) 1.17730 + 0.756602i 0.0685448 + 0.0440511i
\(296\) −0.188337 0.0362990i −0.0109469 0.00210984i
\(297\) 3.53741 3.37291i 0.205261 0.195716i
\(298\) 2.17346 3.76454i 0.125905 0.218074i
\(299\) −0.0690940 + 0.546866i −0.00399581 + 0.0316261i
\(300\) −9.75391 −0.563142
\(301\) −13.9739 + 28.8706i −0.805444 + 1.66407i
\(302\) −0.416830 + 0.481047i −0.0239858 + 0.0276811i
\(303\) 0.162498 3.41126i 0.00933527 0.195971i
\(304\) −14.0799 11.0725i −0.807536 0.635054i
\(305\) 0.0441683 + 0.927207i 0.00252907 + 0.0530917i
\(306\) −0.170276 + 0.239119i −0.00973401 + 0.0136695i
\(307\) 10.8161 + 12.4825i 0.617308 + 0.712411i 0.975193 0.221354i \(-0.0710477\pi\)
−0.357886 + 0.933765i \(0.616502\pi\)
\(308\) 12.1493 + 22.1750i 0.692271 + 1.26354i
\(309\) 1.48631 3.25456i 0.0845530 0.185145i
\(310\) −0.0575781 0.0549006i −0.00327022 0.00311814i
\(311\) 5.03100 20.7381i 0.285282 1.17595i −0.631119 0.775686i \(-0.717404\pi\)
0.916401 0.400262i \(-0.131081\pi\)
\(312\) −0.0557617 0.0783064i −0.00315689 0.00443323i
\(313\) 9.26794 7.28839i 0.523855 0.411964i −0.320903 0.947112i \(-0.603986\pi\)
0.844758 + 0.535148i \(0.179744\pi\)
\(314\) 0.751732 + 0.867545i 0.0424227 + 0.0489584i
\(315\) 0.0730888 0.274325i 0.00411809 0.0154565i
\(316\) −12.2411 + 7.86688i −0.688616 + 0.442546i
\(317\) 25.1173 10.0554i 1.41073 0.564770i 0.463720 0.885982i \(-0.346514\pi\)
0.947008 + 0.321211i \(0.104090\pi\)
\(318\) 0.704619 0.363256i 0.0395130 0.0203704i
\(319\) 0.787923 + 2.27656i 0.0441152 + 0.127463i
\(320\) 0.175734 + 0.724387i 0.00982385 + 0.0404945i
\(321\) 4.46240 0.249067
\(322\) 1.93212 + 1.86178i 0.107673 + 0.103753i
\(323\) −6.65974 −0.370558
\(324\) −0.460976 1.90017i −0.0256098 0.105565i
\(325\) −0.187527 0.541823i −0.0104021 0.0300549i
\(326\) 2.59166 1.33609i 0.143539 0.0739994i
\(327\) 4.53925 1.81724i 0.251021 0.100494i
\(328\) −6.34270 + 4.07621i −0.350217 + 0.225071i
\(329\) −11.2277 11.1960i −0.619005 0.617253i
\(330\) 0.0726266 + 0.0838156i 0.00399796 + 0.00461390i
\(331\) −23.7648 + 18.6889i −1.30623 + 1.02723i −0.309141 + 0.951016i \(0.600042\pi\)
−0.997091 + 0.0762165i \(0.975716\pi\)
\(332\) −6.40327 8.99214i −0.351425 0.493508i
\(333\) 0.0540648 0.222858i 0.00296273 0.0122125i
\(334\) −1.00341 0.956750i −0.0549042 0.0523511i
\(335\) 0.309342 0.677364i 0.0169012 0.0370084i
\(336\) 9.87598 + 0.221091i 0.538779 + 0.0120615i
\(337\) 17.4341 + 20.1200i 0.949694 + 1.09600i 0.995280 + 0.0970445i \(0.0309389\pi\)
−0.0455864 + 0.998960i \(0.514516\pi\)
\(338\) −1.59296 + 2.23700i −0.0866455 + 0.121677i
\(339\) −0.0224558 0.471405i −0.00121963 0.0256032i
\(340\) 0.228939 + 0.180040i 0.0124160 + 0.00976403i
\(341\) −0.815429 + 17.1180i −0.0441579 + 0.926989i
\(342\) −0.664336 + 0.766685i −0.0359232 + 0.0414576i
\(343\) 13.0400 13.1514i 0.704095 0.710106i
\(344\) −10.1396 −0.546692
\(345\) −0.437611 0.270764i −0.0235602 0.0145774i
\(346\) −0.149509 + 0.258957i −0.00803765 + 0.0139216i
\(347\) −1.32374 + 1.26218i −0.0710620 + 0.0677575i −0.724778 0.688983i \(-0.758058\pi\)
0.653716 + 0.756740i \(0.273209\pi\)
\(348\) 0.946301 + 0.182385i 0.0507271 + 0.00977684i
\(349\) 18.4260 + 11.8417i 0.986320 + 0.633870i 0.931161 0.364608i \(-0.118797\pi\)
0.0551592 + 0.998478i \(0.482433\pi\)
\(350\) −2.65961 0.846034i −0.142162 0.0452224i
\(351\) 0.0966904 0.0621391i 0.00516095 0.00331674i
\(352\) −6.98106 + 9.80352i −0.372092 + 0.522529i
\(353\) −0.747698 + 0.144107i −0.0397959 + 0.00767004i −0.209110 0.977892i \(-0.567057\pi\)
0.169314 + 0.985562i \(0.445845\pi\)
\(354\) 2.56037 + 1.02502i 0.136082 + 0.0544790i
\(355\) −0.513636 + 0.0490463i −0.0272609 + 0.00260310i
\(356\) −20.2848 + 5.95617i −1.07509 + 0.315676i
\(357\) 2.93712 2.20520i 0.155449 0.116712i
\(358\) 0.0709565 0.155373i 0.00375017 0.00821172i
\(359\) 2.83973 2.23319i 0.149875 0.117863i −0.540406 0.841405i \(-0.681729\pi\)
0.690281 + 0.723541i \(0.257487\pi\)
\(360\) 0.0881248 0.0169847i 0.00464458 0.000895170i
\(361\) −3.99699 0.381667i −0.210368 0.0200877i
\(362\) −4.44811 2.29316i −0.233787 0.120526i
\(363\) 1.83441 12.7586i 0.0962817 0.669654i
\(364\) 0.181846 + 0.566097i 0.00953132 + 0.0296715i
\(365\) −0.347673 + 0.401236i −0.0181980 + 0.0210017i
\(366\) 0.431281 + 1.77776i 0.0225434 + 0.0929252i
\(367\) −7.02069 + 12.1602i −0.366477 + 0.634757i −0.989012 0.147835i \(-0.952770\pi\)
0.622535 + 0.782592i \(0.286103\pi\)
\(368\) 5.56600 17.0192i 0.290148 0.887185i
\(369\) −4.50721 7.80672i −0.234636 0.406402i
\(370\) 0.00499262 + 0.00146597i 0.000259554 + 7.62119e-5i
\(371\) −9.77892 + 1.65866i −0.507696 + 0.0861132i
\(372\) 5.76733 + 3.70643i 0.299022 + 0.192170i
\(373\) −10.1064 + 4.04597i −0.523287 + 0.209493i −0.618240 0.785989i \(-0.712154\pi\)
0.0949531 + 0.995482i \(0.469730\pi\)
\(374\) 0.0682701 + 1.43316i 0.00353016 + 0.0741072i
\(375\) 1.06693 + 0.101880i 0.0550962 + 0.00526105i
\(376\) 1.63942 4.73680i 0.0845468 0.244282i
\(377\) 0.00806206 + 0.0560729i 0.000415217 + 0.00288790i
\(378\) 0.0391217 0.558106i 0.00201220 0.0287059i
\(379\) −22.5080 + 6.60895i −1.15616 + 0.339479i −0.802939 0.596061i \(-0.796732\pi\)
−0.353220 + 0.935540i \(0.614913\pi\)
\(380\) 0.728458 + 0.694583i 0.0373691 + 0.0356314i
\(381\) 7.23663 + 10.1624i 0.370744 + 0.520637i
\(382\) −1.40233 0.561410i −0.0717496 0.0287242i
\(383\) −6.86669 + 19.8400i −0.350871 + 1.01378i 0.622117 + 0.782924i \(0.286273\pi\)
−0.972989 + 0.230852i \(0.925849\pi\)
\(384\) 2.65600 + 5.81582i 0.135538 + 0.296788i
\(385\) −0.548036 1.27479i −0.0279305 0.0649693i
\(386\) −0.782851 + 5.44485i −0.0398461 + 0.277136i
\(387\) 0.576839 12.1093i 0.0293224 0.615552i
\(388\) −2.04265 5.90186i −0.103700 0.299622i
\(389\) −8.60563 + 8.20546i −0.436323 + 0.416033i −0.876142 0.482053i \(-0.839891\pi\)
0.439819 + 0.898086i \(0.355043\pi\)
\(390\) 0.00130397 + 0.00225854i 6.60290e−5 + 0.000114366i
\(391\) −2.28486 6.25319i −0.115550 0.316237i
\(392\) 5.53814 + 1.89921i 0.279718 + 0.0959246i
\(393\) −11.2320 3.29802i −0.566581 0.166363i
\(394\) 4.67623 + 0.901269i 0.235585 + 0.0454053i
\(395\) 0.709764 0.365909i 0.0357121 0.0184109i
\(396\) −7.51222 5.90767i −0.377503 0.296872i
\(397\) 26.9360 + 13.8865i 1.35188 + 0.696942i 0.973495 0.228708i \(-0.0734500\pi\)
0.378383 + 0.925649i \(0.376480\pi\)
\(398\) −0.364923 0.799069i −0.0182919 0.0400537i
\(399\) 10.8287 6.62153i 0.542115 0.331491i
\(400\) 2.65069 + 18.4359i 0.132534 + 0.921797i
\(401\) −9.87644 + 0.943086i −0.493206 + 0.0470954i −0.338696 0.940896i \(-0.609986\pi\)
−0.154510 + 0.987991i \(0.549380\pi\)
\(402\) 0.345977 1.42614i 0.0172558 0.0711293i
\(403\) −0.0950084 + 0.391630i −0.00473271 + 0.0195085i
\(404\) −6.64730 + 0.634740i −0.330716 + 0.0315795i
\(405\) 0.0152707 + 0.106210i 0.000758807 + 0.00527762i
\(406\) 0.242210 + 0.131811i 0.0120207 + 0.00654169i
\(407\) −0.465624 1.01957i −0.0230801 0.0505384i
\(408\) 1.03200 + 0.532035i 0.0510918 + 0.0263396i
\(409\) −6.83894 5.37820i −0.338164 0.265935i 0.434607 0.900620i \(-0.356887\pi\)
−0.772771 + 0.634685i \(0.781130\pi\)
\(410\) 0.181803 0.0937257i 0.00897859 0.00462878i
\(411\) −15.6432 3.01497i −0.771621 0.148718i
\(412\) −6.71240 1.97094i −0.330696 0.0971011i
\(413\) −26.6396 21.9321i −1.31085 1.07921i
\(414\) −0.947805 0.360743i −0.0465821 0.0177295i
\(415\) 0.302901 + 0.524639i 0.0148688 + 0.0257535i
\(416\) −0.204823 + 0.195299i −0.0100423 + 0.00957530i
\(417\) −4.89951 14.1562i −0.239930 0.693232i
\(418\) −0.235932 + 4.95283i −0.0115398 + 0.242251i
\(419\) 4.76818 33.1634i 0.232941 1.62014i −0.452329 0.891851i \(-0.649407\pi\)
0.685270 0.728289i \(-0.259684\pi\)
\(420\) −0.551262 0.0651193i −0.0268988 0.00317750i
\(421\) −12.4771 27.3209i −0.608094 1.33154i −0.923870 0.382707i \(-0.874992\pi\)
0.315775 0.948834i \(-0.397735\pi\)
\(422\) −0.183215 + 0.529365i −0.00891878 + 0.0257691i
\(423\) 5.56370 + 2.22737i 0.270516 + 0.108298i
\(424\) −1.81878 2.55412i −0.0883279 0.124039i
\(425\) 5.01185 + 4.77879i 0.243110 + 0.231805i
\(426\) −0.975643 + 0.286475i −0.0472701 + 0.0138797i
\(427\) 1.60047 22.8320i 0.0774520 1.10492i
\(428\) −1.24173 8.63645i −0.0600215 0.417459i
\(429\) 0.183739 0.530878i 0.00887099 0.0256310i
\(430\) 0.273831 + 0.0261477i 0.0132053 + 0.00126095i
\(431\) 0.0128867 + 0.270524i 0.000620728 + 0.0130307i 0.999156 0.0410656i \(-0.0130753\pi\)
−0.998536 + 0.0540962i \(0.982772\pi\)
\(432\) −3.46625 + 1.38768i −0.166770 + 0.0667647i
\(433\) 4.63187 + 2.97672i 0.222593 + 0.143052i 0.647185 0.762333i \(-0.275946\pi\)
−0.424592 + 0.905385i \(0.639582\pi\)
\(434\) 1.25110 + 1.51089i 0.0600546 + 0.0725248i
\(435\) −0.0507446 0.0149000i −0.00243302 0.000714399i
\(436\) −4.78018 8.27951i −0.228929 0.396517i
\(437\) −5.80622 22.2629i −0.277749 1.06498i
\(438\) −0.523137 + 0.906099i −0.0249964 + 0.0432951i
\(439\) 3.56781 + 14.7067i 0.170282 + 0.701914i 0.991368 + 0.131109i \(0.0418537\pi\)
−0.821086 + 0.570805i \(0.806631\pi\)
\(440\) 0.287259 0.331514i 0.0136945 0.0158043i
\(441\) −2.58321 + 6.50592i −0.123010 + 0.309806i
\(442\) −0.00480163 + 0.0333960i −0.000228390 + 0.00158849i
\(443\) 14.9224 + 7.69301i 0.708983 + 0.365506i 0.774697 0.632333i \(-0.217902\pi\)
−0.0657145 + 0.997838i \(0.520933\pi\)
\(444\) −0.446360 0.0426222i −0.0211833 0.00202276i
\(445\) 1.13922 0.219567i 0.0540043 0.0104085i
\(446\) −2.58983 + 2.03666i −0.122632 + 0.0964388i
\(447\) 8.53947 18.6988i 0.403903 0.884425i
\(448\) −2.20783 18.2462i −0.104310 0.862052i
\(449\) 17.9233 5.26277i 0.845855 0.248365i 0.170040 0.985437i \(-0.445610\pi\)
0.675814 + 0.737072i \(0.263792\pi\)
\(450\) 1.05010 0.100272i 0.0495021 0.00472687i
\(451\) −40.9039 16.3754i −1.92609 0.771090i
\(452\) −0.906099 + 0.174636i −0.0426193 + 0.00821420i
\(453\) −1.74602 + 2.45194i −0.0820350 + 0.115202i
\(454\) −5.19868 + 3.34099i −0.243986 + 0.156800i
\(455\) −0.00698113 0.0318742i −0.000327280 0.00149429i
\(456\) 3.37554 + 2.16933i 0.158074 + 0.101588i
\(457\) −7.02141 1.35327i −0.328448 0.0633031i 0.0223618 0.999750i \(-0.492881\pi\)
−0.350810 + 0.936447i \(0.614094\pi\)
\(458\) −3.80441 + 3.62749i −0.177768 + 0.169502i
\(459\) −0.694097 + 1.20221i −0.0323977 + 0.0561144i
\(460\) −0.402259 + 0.922289i −0.0187554 + 0.0430020i
\(461\) 8.60568 0.400807 0.200403 0.979713i \(-0.435775\pi\)
0.200403 + 0.979713i \(0.435775\pi\)
\(462\) −1.53595 2.26245i −0.0714588 0.105259i
\(463\) −7.59072 + 8.76016i −0.352771 + 0.407119i −0.904205 0.427099i \(-0.859535\pi\)
0.551434 + 0.834219i \(0.314081\pi\)
\(464\) 0.0875631 1.83818i 0.00406502 0.0853352i
\(465\) −0.295732 0.232566i −0.0137142 0.0107850i
\(466\) 0.182723 + 3.83583i 0.00846448 + 0.177691i
\(467\) 8.62271 12.1089i 0.399012 0.560333i −0.565374 0.824835i \(-0.691268\pi\)
0.964385 + 0.264501i \(0.0852074\pi\)
\(468\) −0.147169 0.169842i −0.00680287 0.00785093i
\(469\) −9.53410 + 15.6917i −0.440244 + 0.724573i
\(470\) −0.0564893 + 0.123694i −0.00260566 + 0.00570559i
\(471\) 3.92881 + 3.74611i 0.181030 + 0.172612i
\(472\) 2.57175 10.6009i 0.118374 0.487945i
\(473\) −34.3708 48.2670i −1.58037 2.21932i
\(474\) 1.23699 0.972782i 0.0568170 0.0446814i
\(475\) 15.6720 + 18.0865i 0.719081 + 0.829864i
\(476\) −5.08521 5.07081i −0.233080 0.232420i
\(477\) 3.15375 2.02679i 0.144400 0.0928005i
\(478\) 3.29193 1.31789i 0.150569 0.0602789i
\(479\) −12.4379 + 6.41221i −0.568304 + 0.292981i −0.718332 0.695701i \(-0.755094\pi\)
0.150028 + 0.988682i \(0.452064\pi\)
\(480\) −0.0864153 0.249681i −0.00394430 0.0113963i
\(481\) −0.00621399 0.0256144i −0.000283334 0.00116792i
\(482\) 4.17673 0.190245
\(483\) 9.93248 + 7.89594i 0.451943 + 0.359278i
\(484\) −25.2032 −1.14560
\(485\) 0.0808023 + 0.333072i 0.00366904 + 0.0151240i
\(486\) 0.0691624 + 0.199832i 0.00313727 + 0.00906454i
\(487\) −20.2779 + 10.4540i −0.918879 + 0.473715i −0.851702 0.524026i \(-0.824429\pi\)
−0.0671765 + 0.997741i \(0.521399\pi\)
\(488\) 6.71722 2.68917i 0.304074 0.121733i
\(489\) 11.5998 7.45476i 0.524563 0.337116i
\(490\) −0.144665 0.0655716i −0.00653531 0.00296222i
\(491\) 9.24132 + 10.6650i 0.417055 + 0.481307i 0.924937 0.380119i \(-0.124117\pi\)
−0.507883 + 0.861426i \(0.669572\pi\)
\(492\) −13.8548 + 10.8955i −0.624622 + 0.491208i
\(493\) −0.396881 0.557341i −0.0178746 0.0251014i
\(494\) −0.0274893 + 0.113312i −0.00123680 + 0.00509816i
\(495\) 0.379572 + 0.361921i 0.0170605 + 0.0162671i
\(496\) 5.43826 11.9081i 0.244185 0.534690i
\(497\) 12.7191 + 0.284740i 0.570531 + 0.0127723i
\(498\) 0.781812 + 0.902259i 0.0350338 + 0.0404312i
\(499\) 14.4515 20.2942i 0.646936 0.908495i −0.352693 0.935739i \(-0.614734\pi\)
0.999629 + 0.0272444i \(0.00867325\pi\)
\(500\) −0.0997149 2.09327i −0.00445939 0.0936140i
\(501\) −5.15371 4.05292i −0.230251 0.181071i
\(502\) 0.307396 6.45303i 0.0137197 0.288013i
\(503\) −19.4590 + 22.4569i −0.867634 + 1.00130i 0.132315 + 0.991208i \(0.457759\pi\)
−0.999949 + 0.0100949i \(0.996787\pi\)
\(504\) −2.20702 + 0.160993i −0.0983084 + 0.00717119i
\(505\) 0.366450 0.0163068
\(506\) −4.73142 + 1.47771i −0.210337 + 0.0656922i
\(507\) −6.49339 + 11.2469i −0.288382 + 0.499492i
\(508\) 17.6545 16.8335i 0.783290 0.746866i
\(509\) −17.5457 3.38165i −0.777698 0.149889i −0.215069 0.976599i \(-0.568998\pi\)
−0.562628 + 0.826710i \(0.690210\pi\)
\(510\) −0.0264983 0.0170294i −0.00117336 0.000754075i
\(511\) 9.67398 8.81930i 0.427952 0.390143i
\(512\) 12.9883 8.34708i 0.574008 0.368892i
\(513\) −2.78277 + 3.90786i −0.122862 + 0.172536i
\(514\) 3.97317 0.765765i 0.175249 0.0337765i
\(515\) 0.356414 + 0.142687i 0.0157055 + 0.00628752i
\(516\) −23.5967 + 2.25321i −1.03879 + 0.0991921i
\(517\) 28.1055 8.25253i 1.23608 0.362946i
\(518\) −0.118013 0.0503382i −0.00518518 0.00221173i
\(519\) −0.587418 + 1.28627i −0.0257848 + 0.0564608i
\(520\) 0.00810823 0.00637639i 0.000355570 0.000279623i
\(521\) 3.61741 0.697199i 0.158482 0.0305449i −0.109393 0.993999i \(-0.534891\pi\)
0.267875 + 0.963454i \(0.413679\pi\)
\(522\) −0.103753 0.00990721i −0.00454114 0.000433627i
\(523\) 13.9587 + 7.19622i 0.610372 + 0.314669i 0.735555 0.677465i \(-0.236921\pi\)
−0.125183 + 0.992134i \(0.539952\pi\)
\(524\) −3.25744 + 22.6560i −0.142302 + 0.989731i
\(525\) −12.9006 2.78722i −0.563030 0.121644i
\(526\) −3.00110 + 3.46345i −0.130854 + 0.151014i
\(527\) −1.14751 4.73010i −0.0499863 0.206046i
\(528\) −9.12465 + 15.8044i −0.397099 + 0.687796i
\(529\) 18.9118 13.0898i 0.822252 0.569123i
\(530\) 0.0425316 + 0.0736668i 0.00184745 + 0.00319988i
\(531\) 12.5139 + 3.67441i 0.543056 + 0.159456i
\(532\) −15.8285 19.1152i −0.686250 0.828749i
\(533\) −0.871608 0.560148i −0.0377535 0.0242627i
\(534\) 2.12262 0.849768i 0.0918547 0.0367731i
\(535\) 0.0227834 + 0.478283i 0.000985014 + 0.0206780i
\(536\) −5.77812 0.551743i −0.249577 0.0238317i
\(537\) 0.264190 0.763326i 0.0114006 0.0329400i
\(538\) 0.516556 + 3.59273i 0.0222703 + 0.154893i
\(539\) 9.73221 + 32.8007i 0.419196 + 1.41283i
\(540\) 0.201308 0.0591093i 0.00866290 0.00254366i
\(541\) −2.37124 2.26097i −0.101947 0.0972067i 0.637392 0.770540i \(-0.280013\pi\)
−0.739339 + 0.673333i \(0.764862\pi\)
\(542\) −0.568106 0.797794i −0.0244023 0.0342682i
\(543\) −21.9706 8.79571i −0.942849 0.377460i
\(544\) 1.11798 3.23018i 0.0479328 0.138493i
\(545\) 0.217949 + 0.477242i 0.00933591 + 0.0204428i
\(546\) −0.0253970 0.0590761i −0.00108689 0.00252822i
\(547\) −1.91585 + 13.3250i −0.0819157 + 0.569736i 0.906985 + 0.421162i \(0.138378\pi\)
−0.988901 + 0.148575i \(0.952532\pi\)
\(548\) −1.48217 + 31.1145i −0.0633150 + 1.32914i
\(549\) 2.82943 + 8.17509i 0.120757 + 0.348904i
\(550\) 3.73152 3.55800i 0.159113 0.151714i
\(551\) −1.18227 2.04775i −0.0503664 0.0872372i
\(552\) −0.878802 + 3.91374i −0.0374043 + 0.166580i
\(553\) −18.4382 + 6.90688i −0.784073 + 0.293710i
\(554\) −4.71639 1.38486i −0.200380 0.0588370i
\(555\) 0.0241621 + 0.00465687i 0.00102562 + 0.000197673i
\(556\) −26.0343 + 13.4216i −1.10410 + 0.569203i
\(557\) 1.44690 + 1.13786i 0.0613072 + 0.0482126i 0.648342 0.761349i \(-0.275463\pi\)
−0.587035 + 0.809561i \(0.699705\pi\)
\(558\) −0.659008 0.339742i −0.0278980 0.0143824i
\(559\) −0.578830 1.26746i −0.0244819 0.0536079i
\(560\) 0.0267266 + 1.05964i 0.00112940 + 0.0447781i
\(561\) 0.965621 + 6.71604i 0.0407685 + 0.283551i
\(562\) −0.211552 + 0.0202007i −0.00892377 + 0.000852117i
\(563\) −3.47342 + 14.3176i −0.146387 + 0.603417i 0.850597 + 0.525818i \(0.176241\pi\)
−0.996985 + 0.0775990i \(0.975275\pi\)
\(564\) 2.76262 11.3877i 0.116327 0.479508i
\(565\) 0.0504108 0.00481365i 0.00212080 0.000202512i
\(566\) −0.191962 1.33513i −0.00806878 0.0561196i
\(567\) −0.0667106 2.64491i −0.00280158 0.111076i
\(568\) 1.67074 + 3.65841i 0.0701027 + 0.153504i
\(569\) 35.9743 + 18.5461i 1.50812 + 0.777491i 0.996648 0.0818069i \(-0.0260691\pi\)
0.511475 + 0.859298i \(0.329099\pi\)
\(570\) −0.0855657 0.0672896i −0.00358395 0.00281845i
\(571\) 9.38637 4.83901i 0.392807 0.202506i −0.250496 0.968118i \(-0.580594\pi\)
0.643303 + 0.765611i \(0.277563\pi\)
\(572\) −1.07858 0.207879i −0.0450977 0.00869187i
\(573\) −6.85395 2.01250i −0.286328 0.0840735i
\(574\) −4.72286 + 1.76916i −0.197128 + 0.0738434i
\(575\) −11.6055 + 20.9205i −0.483984 + 0.872445i
\(576\) 3.47336 + 6.01604i 0.144723 + 0.250668i
\(577\) 30.9125 29.4750i 1.28690 1.22706i 0.327557 0.944831i \(-0.393775\pi\)
0.959347 0.282229i \(-0.0910738\pi\)
\(578\) 1.04248 + 3.01204i 0.0433614 + 0.125285i
\(579\) −1.23777 + 25.9839i −0.0514399 + 1.07986i
\(580\) −0.0147166 + 0.102356i −0.000611075 + 0.00425012i
\(581\) −5.89950 13.7229i −0.244752 0.569321i
\(582\) 0.280583 + 0.614390i 0.0116305 + 0.0254673i
\(583\) 5.99301 17.3157i 0.248205 0.717142i
\(584\) 3.84187 + 1.53805i 0.158978 + 0.0636451i
\(585\) 0.00715378 + 0.0100461i 0.000295772 + 0.000415354i
\(586\) 4.69709 + 4.47866i 0.194035 + 0.185012i
\(587\) 35.5343 10.4338i 1.46666 0.430650i 0.551648 0.834077i \(-0.313999\pi\)
0.915012 + 0.403427i \(0.132181\pi\)
\(588\) 13.3103 + 3.18912i 0.548906 + 0.131517i
\(589\) −2.39384 16.6495i −0.0986364 0.686032i
\(590\) −0.0967896 + 0.279655i −0.00398477 + 0.0115132i
\(591\) 22.4188 + 2.14074i 0.922187 + 0.0880582i
\(592\) 0.0407407 + 0.855252i 0.00167443 + 0.0351506i
\(593\) −16.4547 + 6.58746i −0.675712 + 0.270514i −0.684033 0.729451i \(-0.739776\pi\)
0.00832072 + 0.999965i \(0.497351\pi\)
\(594\) 0.869491 + 0.558788i 0.0356757 + 0.0229273i
\(595\) 0.251351 + 0.303543i 0.0103044 + 0.0124441i
\(596\) −38.5656 11.3239i −1.57971 0.463845i
\(597\) −2.07710 3.59764i −0.0850099 0.147241i
\(598\) −0.115826 + 0.0130646i −0.00473648 + 0.000534251i
\(599\) 12.6137 21.8475i 0.515380 0.892664i −0.484461 0.874813i \(-0.660984\pi\)
0.999841 0.0178510i \(-0.00568246\pi\)
\(600\) −0.983663 4.05471i −0.0401579 0.165533i
\(601\) −29.1969 + 33.6950i −1.19097 + 1.37445i −0.281029 + 0.959699i \(0.590676\pi\)
−0.909936 + 0.414748i \(0.863870\pi\)
\(602\) −6.62959 1.43234i −0.270202 0.0583780i
\(603\) 0.987639 6.86918i 0.0402198 0.279735i
\(604\) 5.23129 + 2.69692i 0.212858 + 0.109736i
\(605\) 1.37684 + 0.131473i 0.0559766 + 0.00534512i
\(606\) 0.709117 0.136671i 0.0288059 0.00555189i
\(607\) 3.83611 3.01675i 0.155703 0.122446i −0.537268 0.843411i \(-0.680544\pi\)
0.692971 + 0.720965i \(0.256301\pi\)
\(608\) 4.90720 10.7453i 0.199013 0.435778i
\(609\) 1.19947 + 0.511634i 0.0486051 + 0.0207324i
\(610\) −0.188340 + 0.0553016i −0.00762566 + 0.00223910i
\(611\) 0.685692 0.0654756i 0.0277401 0.00264886i
\(612\) 2.51988 + 1.00881i 0.101860 + 0.0407787i
\(613\) 22.6188 4.35942i 0.913566 0.176075i 0.289256 0.957252i \(-0.406592\pi\)
0.624310 + 0.781176i \(0.285380\pi\)
\(614\) −2.02593 + 2.84502i −0.0817599 + 0.114816i
\(615\) 0.813717 0.522944i 0.0328123 0.0210872i
\(616\) −7.99296 + 7.28680i −0.322046 + 0.293593i
\(617\) −14.2357 9.14871i −0.573106 0.368313i 0.221757 0.975102i \(-0.428821\pi\)
−0.794863 + 0.606789i \(0.792457\pi\)
\(618\) 0.742913 + 0.143185i 0.0298843 + 0.00575973i
\(619\) 8.96279 8.54600i 0.360245 0.343493i −0.488243 0.872708i \(-0.662362\pi\)
0.848488 + 0.529215i \(0.177514\pi\)
\(620\) −0.367812 + 0.637070i −0.0147717 + 0.0255853i
\(621\) −4.62402 1.27217i −0.185556 0.0510503i
\(622\) 4.51251 0.180935
\(623\) −28.5310 + 2.08121i −1.14307 + 0.0833821i
\(624\) −0.281025 + 0.324320i −0.0112500 + 0.0129832i
\(625\) 1.18134 24.7993i 0.0472535 0.991972i
\(626\) 1.95982 + 1.54122i 0.0783300 + 0.0615994i
\(627\) 1.11572 + 23.4219i 0.0445576 + 0.935379i
\(628\) 6.15691 8.64617i 0.245687 0.345020i
\(629\) 0.208471 + 0.240588i 0.00831228 + 0.00959288i
\(630\) 0.0600179 + 0.00134360i 0.00239117 + 5.35304e-5i
\(631\) 4.76368 10.4310i 0.189639 0.415251i −0.790800 0.612075i \(-0.790335\pi\)
0.980439 + 0.196823i \(0.0630625\pi\)
\(632\) −4.50477 4.29529i −0.179190 0.170857i
\(633\) −0.624539 + 2.57439i −0.0248232 + 0.102323i
\(634\) 3.31860 + 4.66032i 0.131799 + 0.185085i
\(635\) −1.05227 + 0.827512i −0.0417580 + 0.0328388i
\(636\) −4.80020 5.53973i −0.190340 0.219665i
\(637\) 0.0787470 + 0.800689i 0.00312007 + 0.0317245i
\(638\) −0.428553 + 0.275414i −0.0169666 + 0.0109038i
\(639\) −4.46414 + 1.78717i −0.176599 + 0.0706994i
\(640\) −0.609783 + 0.314365i −0.0241038 + 0.0124264i
\(641\) 5.88978 + 17.0174i 0.232632 + 0.672147i 0.999538 + 0.0303873i \(0.00967408\pi\)
−0.766906 + 0.641760i \(0.778205\pi\)
\(642\) 0.222469 + 0.917028i 0.00878013 + 0.0361922i
\(643\) −12.4406 −0.490611 −0.245306 0.969446i \(-0.578888\pi\)
−0.245306 + 0.969446i \(0.578888\pi\)
\(644\) 12.5178 21.4203i 0.493270 0.844079i
\(645\) 1.30083 0.0512202
\(646\) −0.332015 1.36858i −0.0130629 0.0538462i
\(647\) 10.3184 + 29.8130i 0.405657 + 1.17207i 0.944172 + 0.329453i \(0.106864\pi\)
−0.538515 + 0.842616i \(0.681014\pi\)
\(648\) 0.743414 0.383257i 0.0292041 0.0150557i
\(649\) 59.1803 23.6922i 2.32303 0.930000i
\(650\) 0.101996 0.0655489i 0.00400062 0.00257104i
\(651\) 6.56880 + 6.55021i 0.257452 + 0.256723i
\(652\) −17.6557 20.3757i −0.691449 0.797975i
\(653\) −28.7457 + 22.6059i −1.12491 + 0.884636i −0.994281 0.106795i \(-0.965941\pi\)
−0.130626 + 0.991432i \(0.541699\pi\)
\(654\) 0.599745 + 0.842224i 0.0234519 + 0.0329336i
\(655\) 0.296137 1.22069i 0.0115710 0.0476965i
\(656\) 24.3589 + 23.2261i 0.951053 + 0.906828i
\(657\) −2.05540 + 4.50069i −0.0801886 + 0.175589i
\(658\) 1.74103 2.86547i 0.0678726 0.111708i
\(659\) 22.3466 + 25.7893i 0.870499 + 1.00461i 0.999915 + 0.0130189i \(0.00414417\pi\)
−0.129416 + 0.991590i \(0.541310\pi\)
\(660\) 0.594834 0.835327i 0.0231539 0.0325151i
\(661\) −0.0669879 1.40625i −0.00260553 0.0546968i 0.997190 0.0749125i \(-0.0238677\pi\)
−0.999796 + 0.0202157i \(0.993565\pi\)
\(662\) −5.02535 3.95198i −0.195316 0.153598i
\(663\) −0.00759186 + 0.159373i −0.000294843 + 0.00618953i
\(664\) 3.09229 3.56869i 0.120004 0.138492i
\(665\) 0.764987 + 1.12682i 0.0296649 + 0.0436964i
\(666\) 0.0484929 0.00187906
\(667\) 1.51712 1.81265i 0.0587433 0.0701861i
\(668\) −6.40985 + 11.1022i −0.248005 + 0.429556i
\(669\) −11.2763 + 10.7519i −0.435966 + 0.415693i
\(670\) 0.154621 + 0.0298007i 0.00597353 + 0.00115130i
\(671\) 35.5708 + 22.8600i 1.37320 + 0.882499i
\(672\) 1.39381 + 6.36383i 0.0537675 + 0.245490i
\(673\) −15.9386 + 10.2431i −0.614387 + 0.394843i −0.810500 0.585739i \(-0.800805\pi\)
0.196113 + 0.980581i \(0.437168\pi\)
\(674\) −3.26552 + 4.58578i −0.125783 + 0.176638i
\(675\) 4.89834 0.944077i 0.188537 0.0363375i
\(676\) 23.5739 + 9.43757i 0.906689 + 0.362984i
\(677\) 10.2571 0.979437i 0.394213 0.0376428i 0.103933 0.994584i \(-0.466857\pi\)
0.290281 + 0.956942i \(0.406251\pi\)
\(678\) 0.0957546 0.0281161i 0.00367743 0.00107979i
\(679\) −1.01516 8.38957i −0.0389581 0.321962i
\(680\) −0.0517548 + 0.113327i −0.00198471 + 0.00434590i
\(681\) −22.9713 + 18.0649i −0.880264 + 0.692247i
\(682\) −3.55841 + 0.685827i −0.136259 + 0.0262617i
\(683\) −24.2534 2.31592i −0.928031 0.0886163i −0.379918 0.925020i \(-0.624048\pi\)
−0.548114 + 0.836404i \(0.684654\pi\)
\(684\) 8.33755 + 4.29830i 0.318794 + 0.164350i
\(685\) 0.243278 1.69204i 0.00929519 0.0646495i
\(686\) 3.35271 + 2.02409i 0.128007 + 0.0772800i
\(687\) −16.2789 + 18.7869i −0.621079 + 0.716763i
\(688\) 10.6714 + 43.9880i 0.406842 + 1.67703i
\(689\) 0.215440 0.373154i 0.00820762 0.0142160i
\(690\) 0.0338255 0.103428i 0.00128771 0.00393744i
\(691\) −12.1913 21.1160i −0.463781 0.803291i 0.535365 0.844621i \(-0.320174\pi\)
−0.999146 + 0.0413294i \(0.986841\pi\)
\(692\) 2.65287 + 0.778954i 0.100847 + 0.0296114i
\(693\) −8.24760 9.96021i −0.313301 0.378357i
\(694\) −0.325373 0.209105i −0.0123510 0.00793751i
\(695\) 1.49226 0.597409i 0.0566045 0.0226610i
\(696\) 0.0196151 + 0.411772i 0.000743509 + 0.0156082i
\(697\) 12.4571 + 1.18951i 0.471847 + 0.0450559i
\(698\) −1.51486 + 4.37691i −0.0573384 + 0.165669i
\(699\) 2.58446 + 17.9753i 0.0977532 + 0.679889i
\(700\) −1.80453 + 25.7432i −0.0682049 + 0.973003i
\(701\) −9.48051 + 2.78373i −0.358074 + 0.105140i −0.455821 0.890071i \(-0.650654\pi\)
0.0977476 + 0.995211i \(0.468836\pi\)
\(702\) 0.0175901 + 0.0167721i 0.000663894 + 0.000633021i
\(703\) 0.638152 + 0.896159i 0.0240684 + 0.0337993i
\(704\) 31.5215 + 12.6193i 1.18801 + 0.475607i
\(705\) −0.210325 + 0.607693i −0.00792129 + 0.0228871i
\(706\) −0.0668898 0.146468i −0.00251743 0.00551241i
\(707\) −8.97318 1.05998i −0.337471 0.0398647i
\(708\) 3.62919 25.2416i 0.136393 0.948638i
\(709\) 0.394548 8.28259i 0.0148176 0.311059i −0.979276 0.202531i \(-0.935083\pi\)
0.994093 0.108528i \(-0.0346137\pi\)
\(710\) −0.0356858 0.103107i −0.00133927 0.00386955i
\(711\) 5.38595 5.13550i 0.201989 0.192596i
\(712\) −4.52168 7.83178i −0.169457 0.293508i
\(713\) 14.8118 7.95990i 0.554707 0.298101i
\(714\) 0.599598 + 0.493643i 0.0224394 + 0.0184741i
\(715\) 0.0578380 + 0.0169828i 0.00216302 + 0.000635119i
\(716\) −1.55084 0.298900i −0.0579577 0.0111704i
\(717\) 14.9046 7.68385i 0.556622 0.286959i
\(718\) 0.600495 + 0.472235i 0.0224103 + 0.0176236i
\(719\) 29.5240 + 15.2207i 1.10106 + 0.567636i 0.910278 0.413997i \(-0.135867\pi\)
0.190782 + 0.981633i \(0.438898\pi\)
\(720\) −0.166430 0.364430i −0.00620247 0.0135815i
\(721\) −8.31469 4.52488i −0.309655 0.168515i
\(722\) −0.120833 0.840414i −0.00449695 0.0312770i
\(723\) 19.6623 1.87752i 0.731248 0.0698257i
\(724\) −10.9094 + 44.9691i −0.405444 + 1.67126i
\(725\) −0.579664 + 2.38941i −0.0215282 + 0.0887404i
\(726\) 2.71336 0.259095i 0.100702 0.00961590i
\(727\) −6.09323 42.3794i −0.225986 1.57176i −0.714770 0.699359i \(-0.753469\pi\)
0.488785 0.872405i \(-0.337440\pi\)
\(728\) −0.216988 + 0.132683i −0.00804213 + 0.00491757i
\(729\) 0.415415 + 0.909632i 0.0153857 + 0.0336901i
\(730\) −0.0997873 0.0514439i −0.00369329 0.00190402i
\(731\) 13.2286 + 10.4031i 0.489278 + 0.384773i
\(732\) 15.0346 7.75087i 0.555694 0.286480i
\(733\) 41.5102 + 8.00043i 1.53321 + 0.295503i 0.884867 0.465843i \(-0.154249\pi\)
0.648346 + 0.761346i \(0.275461\pi\)
\(734\) −2.84894 0.836525i −0.105156 0.0308767i
\(735\) −0.710498 0.243653i −0.0262071 0.00898729i
\(736\) 11.7729 + 0.921093i 0.433954 + 0.0339519i
\(737\) −16.9599 29.3755i −0.624727 1.08206i
\(738\) 1.37959 1.31543i 0.0507833 0.0484218i
\(739\) −5.96787 17.2430i −0.219531 0.634295i −0.999959 0.00904839i \(-0.997120\pi\)
0.780428 0.625246i \(-0.215001\pi\)
\(740\) 0.00228932 0.0480588i 8.41571e−5 0.00176668i
\(741\) −0.0784718 + 0.545783i −0.00288273 + 0.0200499i
\(742\) −0.828374 1.92689i −0.0304106 0.0707382i
\(743\) −12.0456 26.3762i −0.441910 0.967647i −0.991244 0.132044i \(-0.957846\pi\)
0.549334 0.835603i \(-0.314881\pi\)
\(744\) −0.959147 + 2.77127i −0.0351640 + 0.101600i
\(745\) 2.04775 + 0.819797i 0.0750239 + 0.0300350i
\(746\) −1.33529 1.87516i −0.0488886 0.0686544i
\(747\) 4.08602 + 3.89601i 0.149500 + 0.142548i
\(748\) 12.7294 3.73769i 0.465433 0.136664i
\(749\) 0.825572 11.7775i 0.0301657 0.430341i
\(750\) 0.0322545 + 0.224335i 0.00117777 + 0.00819156i
\(751\) 7.91773 22.8768i 0.288922 0.834785i −0.703366 0.710828i \(-0.748320\pi\)
0.992288 0.123957i \(-0.0395585\pi\)
\(752\) −22.2747 2.12698i −0.812276 0.0775629i
\(753\) −1.45367 30.5163i −0.0529747 1.11208i
\(754\) −0.0111211 + 0.00445222i −0.000405007 + 0.000162140i
\(755\) −0.271715 0.174621i −0.00988871 0.00635509i
\(756\) −5.10035 + 0.865099i −0.185498 + 0.0314633i
\(757\) −27.7369 8.14427i −1.00811 0.296009i −0.264332 0.964432i \(-0.585151\pi\)
−0.743781 + 0.668423i \(0.766970\pi\)
\(758\) −2.48026 4.29594i −0.0900871 0.156035i
\(759\) −21.6092 + 9.08329i −0.784366 + 0.329703i
\(760\) −0.215276 + 0.372869i −0.00780888 + 0.0135254i
\(761\) −8.48325 34.9684i −0.307517 1.26760i −0.890449 0.455083i \(-0.849610\pi\)
0.582932 0.812521i \(-0.301906\pi\)
\(762\) −1.72761 + 1.99377i −0.0625848 + 0.0722267i
\(763\) −3.95641 12.3165i −0.143232 0.445889i
\(764\) −1.98774 + 13.8250i −0.0719139 + 0.500172i
\(765\) −0.132398 0.0682557i −0.00478685 0.00246779i
\(766\) −4.41947 0.422008i −0.159682 0.0152478i
\(767\) 1.47193 0.283691i 0.0531482 0.0102435i
\(768\) 9.85824 7.75260i 0.355728 0.279748i
\(769\) −2.96523 + 6.49295i −0.106929 + 0.234142i −0.955531 0.294889i \(-0.904717\pi\)
0.848603 + 0.529031i \(0.177444\pi\)
\(770\) 0.234649 0.176175i 0.00845615 0.00634891i
\(771\) 18.3598 5.39091i 0.661211 0.194149i