Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(113,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 0, 13]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.113");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.u (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(480\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
113.1 | −1.50106 | + | 2.33570i | 0.521192 | − | 1.65177i | −2.37146 | − | 5.19277i | −1.06257 | − | 0.311999i | 3.07570 | + | 3.69676i | 0.755750 | + | 0.654861i | 10.1921 | + | 1.46540i | −2.45672 | − | 1.72178i | 2.32371 | − | 2.01351i |
113.2 | −1.48162 | + | 2.30545i | −0.121691 | + | 1.72777i | −2.28907 | − | 5.01236i | −4.08876 | − | 1.20057i | −3.80299 | − | 2.84046i | −0.755750 | − | 0.654861i | 9.52207 | + | 1.36907i | −2.97038 | − | 0.420508i | 8.82585 | − | 7.64764i |
113.3 | −1.39817 | + | 2.17560i | 1.72494 | + | 0.156831i | −1.94751 | − | 4.26445i | 1.23964 | + | 0.363993i | −2.75296 | + | 3.53349i | −0.755750 | − | 0.654861i | 6.88105 | + | 0.989346i | 2.95081 | + | 0.541047i | −2.52514 | + | 2.18804i |
113.4 | −1.39646 | + | 2.17293i | −1.51591 | + | 0.837856i | −1.94070 | − | 4.24954i | 3.72219 | + | 1.09293i | 0.296307 | − | 4.46400i | −0.755750 | − | 0.654861i | 6.83069 | + | 0.982105i | 1.59599 | − | 2.54024i | −7.57275 | + | 6.56182i |
113.5 | −1.33937 | + | 2.08410i | −1.69763 | − | 0.343591i | −1.71873 | − | 3.76350i | −1.11280 | − | 0.326747i | 2.98983 | − | 3.07784i | 0.755750 | + | 0.654861i | 5.24122 | + | 0.753574i | 2.76389 | + | 1.16658i | 2.17142 | − | 1.88155i |
113.6 | −1.30013 | + | 2.02305i | −0.657657 | − | 1.60234i | −1.57155 | − | 3.44121i | 1.14892 | + | 0.337353i | 4.09665 | + | 0.752782i | −0.755750 | − | 0.654861i | 4.24430 | + | 0.610238i | −2.13497 | + | 2.10758i | −2.17623 | + | 1.88572i |
113.7 | −1.20683 | + | 1.87786i | 1.44817 | + | 0.950153i | −1.23910 | − | 2.71324i | −0.604163 | − | 0.177398i | −3.53195 | + | 1.57280i | 0.755750 | + | 0.654861i | 2.17147 | + | 0.312210i | 1.19442 | + | 2.75197i | 1.06225 | − | 0.920445i |
113.8 | −1.18675 | + | 1.84662i | −1.11165 | + | 1.32824i | −1.17080 | − | 2.56370i | −0.291860 | − | 0.0856978i | −1.13351 | − | 3.62910i | 0.755750 | + | 0.654861i | 1.77815 | + | 0.255660i | −0.528462 | − | 2.95309i | 0.504617 | − | 0.437253i |
113.9 | −1.07812 | + | 1.67759i | 1.58707 | − | 0.693695i | −0.821124 | − | 1.79801i | −1.95772 | − | 0.574839i | −0.547316 | + | 3.41033i | −0.755750 | − | 0.654861i | −0.0461173 | − | 0.00663067i | 2.03757 | − | 2.20188i | 3.07500 | − | 2.66450i |
113.10 | −1.07128 | + | 1.66695i | −1.25731 | − | 1.19129i | −0.800245 | − | 1.75229i | 3.65018 | + | 1.07179i | 3.33276 | − | 0.819664i | 0.755750 | + | 0.654861i | −0.144404 | − | 0.0207621i | 0.161658 | + | 2.99564i | −5.69700 | + | 4.93648i |
113.11 | −1.06610 | + | 1.65888i | −0.893651 | − | 1.48371i | −0.784489 | − | 1.71779i | −3.45226 | − | 1.01367i | 3.41401 | + | 0.0993161i | −0.755750 | − | 0.654861i | −0.217736 | − | 0.0313058i | −1.40277 | + | 2.65183i | 5.36201 | − | 4.64621i |
113.12 | −0.908799 | + | 1.41412i | 1.31791 | − | 1.12388i | −0.342987 | − | 0.751037i | −2.80823 | − | 0.824571i | 0.391583 | + | 2.88507i | 0.755750 | + | 0.654861i | −1.95395 | − | 0.280936i | 0.473786 | − | 2.96235i | 3.71816 | − | 3.22180i |
113.13 | −0.853002 | + | 1.32730i | −1.46051 | + | 0.931084i | −0.203275 | − | 0.445110i | −1.12254 | − | 0.329608i | 0.00999087 | − | 2.73274i | −0.755750 | − | 0.654861i | −2.35922 | − | 0.339204i | 1.26617 | − | 2.71971i | 1.39502 | − | 1.20879i |
113.14 | −0.732726 | + | 1.14014i | 1.28310 | + | 1.16347i | 0.0677890 | + | 0.148437i | 3.54035 | + | 1.03954i | −2.26668 | + | 0.610418i | −0.755750 | − | 0.654861i | −2.90190 | − | 0.417231i | 0.292696 | + | 2.98569i | −3.77934 | + | 3.27481i |
113.15 | −0.645581 | + | 1.00454i | −0.549837 | + | 1.64246i | 0.238496 | + | 0.522234i | 3.49538 | + | 1.02634i | −1.29496 | − | 1.61268i | 0.755750 | + | 0.654861i | −3.04248 | − | 0.437442i | −2.39536 | − | 1.80617i | −3.28755 | + | 2.84868i |
113.16 | −0.621877 | + | 0.967660i | −1.59011 | − | 0.686701i | 0.281195 | + | 0.615732i | 0.670051 | + | 0.196745i | 1.65334 | − | 1.11164i | −0.755750 | − | 0.654861i | −3.04779 | − | 0.438206i | 2.05688 | + | 2.18386i | −0.607071 | + | 0.526030i |
113.17 | −0.552629 | + | 0.859908i | 1.69926 | + | 0.335441i | 0.396788 | + | 0.868844i | 1.96993 | + | 0.578425i | −1.22751 | + | 1.27583i | 0.755750 | + | 0.654861i | −2.98994 | − | 0.429889i | 2.77496 | + | 1.14000i | −1.58604 | + | 1.37431i |
113.18 | −0.542374 | + | 0.843951i | 0.351081 | + | 1.69610i | 0.412747 | + | 0.903790i | −2.37324 | − | 0.696847i | −1.62184 | − | 0.623624i | 0.755750 | + | 0.654861i | −2.97261 | − | 0.427396i | −2.75348 | + | 1.19093i | 1.87529 | − | 1.62495i |
113.19 | −0.497545 | + | 0.774196i | −0.368438 | − | 1.69241i | 0.479003 | + | 1.04887i | −0.349963 | − | 0.102758i | 1.49357 | + | 0.556808i | 0.755750 | + | 0.654861i | −2.87220 | − | 0.412960i | −2.72851 | + | 1.24710i | 0.253678 | − | 0.219813i |
113.20 | −0.437059 | + | 0.680077i | 1.47311 | − | 0.911006i | 0.559346 | + | 1.22480i | 2.18862 | + | 0.642637i | −0.0242835 | + | 1.39999i | −0.755750 | − | 0.654861i | −2.67778 | − | 0.385007i | 1.34013 | − | 2.68403i | −1.39360 | + | 1.20756i |
See next 80 embeddings (of 480 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
23.d | odd | 22 | 1 | inner |
69.g | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.u.a | ✓ | 480 |
3.b | odd | 2 | 1 | inner | 483.2.u.a | ✓ | 480 |
23.d | odd | 22 | 1 | inner | 483.2.u.a | ✓ | 480 |
69.g | even | 22 | 1 | inner | 483.2.u.a | ✓ | 480 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.u.a | ✓ | 480 | 1.a | even | 1 | 1 | trivial |
483.2.u.a | ✓ | 480 | 3.b | odd | 2 | 1 | inner |
483.2.u.a | ✓ | 480 | 23.d | odd | 22 | 1 | inner |
483.2.u.a | ✓ | 480 | 69.g | even | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).