Newspace parameters
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.q (of order \(11\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 | −2.58285 | − | 0.758394i | −0.654861 | + | 0.755750i | 4.41347 | + | 2.83636i | 0.585697 | − | 4.07361i | 2.26457 | − | 1.45535i | −0.415415 | − | 0.909632i | −5.72263 | − | 6.60426i | −0.142315 | − | 0.989821i | −4.60218 | + | 10.0774i |
64.2 | −2.29822 | − | 0.674819i | −0.654861 | + | 0.755750i | 3.14394 | + | 2.02049i | −0.337260 | + | 2.34570i | 2.01501 | − | 1.29497i | −0.415415 | − | 0.909632i | −2.72491 | − | 3.14472i | −0.142315 | − | 0.989821i | 2.35802 | − | 5.16334i |
64.3 | −1.60503 | − | 0.471280i | −0.654861 | + | 0.755750i | 0.671521 | + | 0.431561i | 0.344040 | − | 2.39285i | 1.40724 | − | 0.904381i | −0.415415 | − | 0.909632i | 1.31647 | + | 1.51928i | −0.142315 | − | 0.989821i | −1.67990 | + | 3.67846i |
64.4 | −0.545660 | − | 0.160220i | −0.654861 | + | 0.755750i | −1.41043 | − | 0.906430i | −0.339288 | + | 2.35980i | 0.478418 | − | 0.307461i | −0.415415 | − | 0.909632i | 1.36922 | + | 1.58017i | −0.142315 | − | 0.989821i | 0.563223 | − | 1.23329i |
64.5 | −0.326470 | − | 0.0958603i | −0.654861 | + | 0.755750i | −1.58511 | − | 1.01869i | −0.00655525 | + | 0.0455927i | 0.286239 | − | 0.183955i | −0.415415 | − | 0.909632i | 0.865477 | + | 0.998813i | −0.142315 | − | 0.989821i | 0.00651063 | − | 0.0142563i |
64.6 | 1.23378 | + | 0.362270i | −0.654861 | + | 0.755750i | −0.291534 | − | 0.187358i | 0.256312 | − | 1.78269i | −1.08174 | + | 0.695192i | −0.415415 | − | 0.909632i | −1.97594 | − | 2.28036i | −0.142315 | − | 0.989821i | 0.962047 | − | 2.10659i |
64.7 | 1.23794 | + | 0.363493i | −0.654861 | + | 0.755750i | −0.282132 | − | 0.181316i | −0.594222 | + | 4.13291i | −1.08539 | + | 0.697537i | −0.415415 | − | 0.909632i | −1.97317 | − | 2.27715i | −0.142315 | − | 0.989821i | −2.23789 | + | 4.90030i |
64.8 | 2.67036 | + | 0.784088i | −0.654861 | + | 0.755750i | 4.83351 | + | 3.10631i | 0.534653 | − | 3.71859i | −2.34129 | + | 1.50465i | −0.415415 | − | 0.909632i | 6.82652 | + | 7.87822i | −0.142315 | − | 0.989821i | 4.34342 | − | 9.51076i |
85.1 | −1.83093 | + | 2.11301i | 0.841254 | − | 0.540641i | −0.827862 | − | 5.75791i | 0.00406880 | + | 0.00890943i | −0.397900 | + | 2.76745i | 0.959493 | − | 0.281733i | 8.97813 | + | 5.76989i | 0.415415 | − | 0.909632i | −0.0262754 | − | 0.00771515i |
85.2 | −1.24645 | + | 1.43848i | 0.841254 | − | 0.540641i | −0.230954 | − | 1.60632i | 0.274912 | + | 0.601974i | −0.270879 | + | 1.88400i | 0.959493 | − | 0.281733i | −0.603914 | − | 0.388112i | 0.415415 | − | 0.909632i | −1.20859 | − | 0.354874i |
85.3 | −0.723306 | + | 0.834739i | 0.841254 | − | 0.540641i | 0.111011 | + | 0.772099i | −1.01603 | − | 2.22480i | −0.157189 | + | 1.09328i | 0.959493 | − | 0.281733i | −2.58316 | − | 1.66009i | 0.415415 | − | 0.909632i | 2.59204 | + | 0.761090i |
85.4 | 0.0321112 | − | 0.0370583i | 0.841254 | − | 0.540641i | 0.284287 | + | 1.97726i | 1.63623 | + | 3.58284i | 0.00697843 | − | 0.0485360i | 0.959493 | − | 0.281733i | 0.164905 | + | 0.105978i | 0.415415 | − | 0.909632i | 0.185315 | + | 0.0544134i |
85.5 | 0.150977 | − | 0.174237i | 0.841254 | − | 0.540641i | 0.277065 | + | 1.92703i | −0.602841 | − | 1.32004i | 0.0328104 | − | 0.228201i | 0.959493 | − | 0.281733i | 0.765488 | + | 0.491950i | 0.415415 | − | 0.909632i | −0.321014 | − | 0.0942582i |
85.6 | 1.00586 | − | 1.16083i | 0.841254 | − | 0.540641i | −0.0511307 | − | 0.355622i | −0.0685636 | − | 0.150133i | 0.218595 | − | 1.52036i | 0.959493 | − | 0.281733i | 2.12008 | + | 1.36249i | 0.415415 | − | 0.909632i | −0.243244 | − | 0.0714230i |
85.7 | 1.32935 | − | 1.53415i | 0.841254 | − | 0.540641i | −0.301820 | − | 2.09921i | −1.44923 | − | 3.17337i | 0.288895 | − | 2.00931i | 0.959493 | − | 0.281733i | −0.206281 | − | 0.132568i | 0.415415 | − | 0.909632i | −6.79496 | − | 1.99518i |
85.8 | 1.72933 | − | 1.99575i | 0.841254 | − | 0.540641i | −0.707820 | − | 4.92300i | 1.53294 | + | 3.35668i | 0.375820 | − | 2.61388i | 0.959493 | − | 0.281733i | −6.60605 | − | 4.24545i | 0.415415 | − | 0.909632i | 9.35007 | + | 2.74543i |
127.1 | −2.21932 | + | 1.42627i | −0.142315 | + | 0.989821i | 2.06030 | − | 4.51143i | −2.63138 | + | 0.772642i | −1.09591 | − | 2.39971i | 0.654861 | + | 0.755750i | 1.11117 | + | 7.72832i | −0.959493 | − | 0.281733i | 4.73787 | − | 5.46779i |
127.2 | −1.76396 | + | 1.13363i | −0.142315 | + | 0.989821i | 0.995613 | − | 2.18009i | 3.41611 | − | 1.00306i | −0.871052 | − | 1.90734i | 0.654861 | + | 0.755750i | 0.118370 | + | 0.823281i | −0.959493 | − | 0.281733i | −4.88878 | + | 5.64196i |
127.3 | −1.32987 | + | 0.854653i | −0.142315 | + | 0.989821i | 0.207281 | − | 0.453882i | 0.177622 | − | 0.0521546i | −0.656694 | − | 1.43796i | 0.654861 | + | 0.755750i | −0.337691 | − | 2.34869i | −0.959493 | − | 0.281733i | −0.191640 | + | 0.221164i |
127.4 | 0.346757 | − | 0.222847i | −0.142315 | + | 0.989821i | −0.760251 | + | 1.66472i | 2.21096 | − | 0.649197i | 0.171230 | + | 0.374942i | 0.654861 | + | 0.755750i | 0.224677 | + | 1.56266i | −0.959493 | − | 0.281733i | 0.621994 | − | 0.717820i |
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.q.f | ✓ | 80 |
23.c | even | 11 | 1 | inner | 483.2.q.f | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.q.f | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
483.2.q.f | ✓ | 80 | 23.c | even | 11 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(10\!\cdots\!82\)\( T_{2}^{52} + 548706916315 T_{2}^{51} + \)\(41\!\cdots\!06\)\( T_{2}^{50} + 608694148183 T_{2}^{49} + \)\(16\!\cdots\!89\)\( T_{2}^{48} - \)\(48\!\cdots\!65\)\( T_{2}^{47} + \)\(59\!\cdots\!57\)\( T_{2}^{46} - \)\(35\!\cdots\!09\)\( T_{2}^{45} + \)\(17\!\cdots\!94\)\( T_{2}^{44} - \)\(17\!\cdots\!61\)\( T_{2}^{43} + \)\(52\!\cdots\!25\)\( T_{2}^{42} - \)\(47\!\cdots\!84\)\( T_{2}^{41} + \)\(12\!\cdots\!37\)\( T_{2}^{40} - \)\(14\!\cdots\!25\)\( T_{2}^{39} + \)\(28\!\cdots\!09\)\( T_{2}^{38} - \)\(40\!\cdots\!68\)\( T_{2}^{37} + \)\(84\!\cdots\!60\)\( T_{2}^{36} - \)\(14\!\cdots\!66\)\( T_{2}^{35} + \)\(26\!\cdots\!94\)\( T_{2}^{34} - \)\(38\!\cdots\!73\)\( T_{2}^{33} + \)\(64\!\cdots\!66\)\( T_{2}^{32} - \)\(87\!\cdots\!52\)\( T_{2}^{31} + \)\(14\!\cdots\!61\)\( T_{2}^{30} - \)\(22\!\cdots\!86\)\( T_{2}^{29} + \)\(39\!\cdots\!49\)\( T_{2}^{28} - \)\(54\!\cdots\!41\)\( T_{2}^{27} + \)\(67\!\cdots\!23\)\( T_{2}^{26} - \)\(80\!\cdots\!65\)\( T_{2}^{25} + \)\(85\!\cdots\!36\)\( T_{2}^{24} - \)\(87\!\cdots\!19\)\( T_{2}^{23} + \)\(84\!\cdots\!28\)\( T_{2}^{22} - \)\(56\!\cdots\!04\)\( T_{2}^{21} + \)\(40\!\cdots\!61\)\( T_{2}^{20} - \)\(16\!\cdots\!68\)\( T_{2}^{19} + \)\(60\!\cdots\!79\)\( T_{2}^{18} + \)\(71\!\cdots\!51\)\( T_{2}^{17} - \)\(88\!\cdots\!23\)\( T_{2}^{16} + \)\(46\!\cdots\!59\)\( T_{2}^{15} + \)\(23\!\cdots\!34\)\( T_{2}^{14} - \)\(17\!\cdots\!74\)\( T_{2}^{13} + \)\(88\!\cdots\!33\)\( T_{2}^{12} - \)\(10\!\cdots\!60\)\( T_{2}^{11} - \)\(47\!\cdots\!77\)\( T_{2}^{10} + \)\(43\!\cdots\!87\)\( T_{2}^{9} - \)\(30\!\cdots\!41\)\( T_{2}^{8} + \)\(26\!\cdots\!84\)\( T_{2}^{7} + \)\(80\!\cdots\!45\)\( T_{2}^{6} - \)\(25\!\cdots\!85\)\( T_{2}^{5} + 699886407536 T_{2}^{4} - 61711045204 T_{2}^{3} + 3693073622 T_{2}^{2} - 115009453 T_{2} + 2374681 \)">\(T_{2}^{80} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\).