Properties

Label 483.2.q.f
Level $483$
Weight $2$
Character orbit 483.q
Analytic conductor $3.857$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(64,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 0, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(8\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 80 q + q^{2} - 8 q^{3} - 9 q^{4} + 13 q^{5} + q^{6} + 8 q^{7} - 25 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 80 q + q^{2} - 8 q^{3} - 9 q^{4} + 13 q^{5} + q^{6} + 8 q^{7} - 25 q^{8} - 8 q^{9} + 4 q^{10} + q^{11} - 9 q^{12} - 26 q^{13} - q^{14} + 2 q^{15} - 3 q^{16} - 23 q^{17} + q^{18} + 10 q^{19} + 63 q^{20} + 8 q^{21} - 9 q^{23} + 30 q^{24} - 29 q^{25} - 12 q^{26} - 8 q^{27} + 20 q^{28} + 13 q^{29} + 4 q^{30} - 27 q^{31} + 71 q^{32} + q^{33} - 45 q^{34} - 2 q^{35} - 9 q^{36} + 60 q^{37} - 2 q^{38} - 26 q^{39} + 7 q^{40} - 26 q^{41} - q^{42} + 5 q^{43} - 33 q^{44} - 20 q^{45} - 41 q^{46} + 34 q^{47} - 58 q^{48} - 8 q^{49} - 75 q^{50} - q^{51} + 108 q^{52} - 39 q^{53} - 10 q^{54} + 51 q^{55} + 3 q^{56} + 10 q^{57} + 47 q^{58} - 66 q^{59} + 19 q^{60} + 3 q^{61} + 103 q^{62} + 8 q^{63} - 25 q^{64} + 39 q^{65} - 33 q^{66} + 33 q^{67} - 88 q^{68} + 13 q^{69} + 18 q^{70} - 12 q^{71} - 25 q^{72} - 98 q^{73} + 123 q^{74} + 4 q^{75} - 41 q^{76} - 12 q^{77} + 10 q^{78} - 34 q^{79} + 163 q^{80} - 8 q^{81} + 48 q^{82} + 26 q^{83} + 9 q^{84} + 35 q^{85} + 4 q^{86} + 2 q^{87} + 178 q^{88} - 63 q^{89} + 4 q^{90} - 62 q^{91} - 39 q^{92} + 138 q^{93} - 28 q^{94} - 80 q^{95} - 17 q^{96} - 44 q^{97} + q^{98} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1 −2.58285 0.758394i −0.654861 + 0.755750i 4.41347 + 2.83636i 0.585697 4.07361i 2.26457 1.45535i −0.415415 0.909632i −5.72263 6.60426i −0.142315 0.989821i −4.60218 + 10.0774i
64.2 −2.29822 0.674819i −0.654861 + 0.755750i 3.14394 + 2.02049i −0.337260 + 2.34570i 2.01501 1.29497i −0.415415 0.909632i −2.72491 3.14472i −0.142315 0.989821i 2.35802 5.16334i
64.3 −1.60503 0.471280i −0.654861 + 0.755750i 0.671521 + 0.431561i 0.344040 2.39285i 1.40724 0.904381i −0.415415 0.909632i 1.31647 + 1.51928i −0.142315 0.989821i −1.67990 + 3.67846i
64.4 −0.545660 0.160220i −0.654861 + 0.755750i −1.41043 0.906430i −0.339288 + 2.35980i 0.478418 0.307461i −0.415415 0.909632i 1.36922 + 1.58017i −0.142315 0.989821i 0.563223 1.23329i
64.5 −0.326470 0.0958603i −0.654861 + 0.755750i −1.58511 1.01869i −0.00655525 + 0.0455927i 0.286239 0.183955i −0.415415 0.909632i 0.865477 + 0.998813i −0.142315 0.989821i 0.00651063 0.0142563i
64.6 1.23378 + 0.362270i −0.654861 + 0.755750i −0.291534 0.187358i 0.256312 1.78269i −1.08174 + 0.695192i −0.415415 0.909632i −1.97594 2.28036i −0.142315 0.989821i 0.962047 2.10659i
64.7 1.23794 + 0.363493i −0.654861 + 0.755750i −0.282132 0.181316i −0.594222 + 4.13291i −1.08539 + 0.697537i −0.415415 0.909632i −1.97317 2.27715i −0.142315 0.989821i −2.23789 + 4.90030i
64.8 2.67036 + 0.784088i −0.654861 + 0.755750i 4.83351 + 3.10631i 0.534653 3.71859i −2.34129 + 1.50465i −0.415415 0.909632i 6.82652 + 7.87822i −0.142315 0.989821i 4.34342 9.51076i
85.1 −1.83093 + 2.11301i 0.841254 0.540641i −0.827862 5.75791i 0.00406880 + 0.00890943i −0.397900 + 2.76745i 0.959493 0.281733i 8.97813 + 5.76989i 0.415415 0.909632i −0.0262754 0.00771515i
85.2 −1.24645 + 1.43848i 0.841254 0.540641i −0.230954 1.60632i 0.274912 + 0.601974i −0.270879 + 1.88400i 0.959493 0.281733i −0.603914 0.388112i 0.415415 0.909632i −1.20859 0.354874i
85.3 −0.723306 + 0.834739i 0.841254 0.540641i 0.111011 + 0.772099i −1.01603 2.22480i −0.157189 + 1.09328i 0.959493 0.281733i −2.58316 1.66009i 0.415415 0.909632i 2.59204 + 0.761090i
85.4 0.0321112 0.0370583i 0.841254 0.540641i 0.284287 + 1.97726i 1.63623 + 3.58284i 0.00697843 0.0485360i 0.959493 0.281733i 0.164905 + 0.105978i 0.415415 0.909632i 0.185315 + 0.0544134i
85.5 0.150977 0.174237i 0.841254 0.540641i 0.277065 + 1.92703i −0.602841 1.32004i 0.0328104 0.228201i 0.959493 0.281733i 0.765488 + 0.491950i 0.415415 0.909632i −0.321014 0.0942582i
85.6 1.00586 1.16083i 0.841254 0.540641i −0.0511307 0.355622i −0.0685636 0.150133i 0.218595 1.52036i 0.959493 0.281733i 2.12008 + 1.36249i 0.415415 0.909632i −0.243244 0.0714230i
85.7 1.32935 1.53415i 0.841254 0.540641i −0.301820 2.09921i −1.44923 3.17337i 0.288895 2.00931i 0.959493 0.281733i −0.206281 0.132568i 0.415415 0.909632i −6.79496 1.99518i
85.8 1.72933 1.99575i 0.841254 0.540641i −0.707820 4.92300i 1.53294 + 3.35668i 0.375820 2.61388i 0.959493 0.281733i −6.60605 4.24545i 0.415415 0.909632i 9.35007 + 2.74543i
127.1 −2.21932 + 1.42627i −0.142315 + 0.989821i 2.06030 4.51143i −2.63138 + 0.772642i −1.09591 2.39971i 0.654861 + 0.755750i 1.11117 + 7.72832i −0.959493 0.281733i 4.73787 5.46779i
127.2 −1.76396 + 1.13363i −0.142315 + 0.989821i 0.995613 2.18009i 3.41611 1.00306i −0.871052 1.90734i 0.654861 + 0.755750i 0.118370 + 0.823281i −0.959493 0.281733i −4.88878 + 5.64196i
127.3 −1.32987 + 0.854653i −0.142315 + 0.989821i 0.207281 0.453882i 0.177622 0.0521546i −0.656694 1.43796i 0.654861 + 0.755750i −0.337691 2.34869i −0.959493 0.281733i −0.191640 + 0.221164i
127.4 0.346757 0.222847i −0.142315 + 0.989821i −0.760251 + 1.66472i 2.21096 0.649197i 0.171230 + 0.374942i 0.654861 + 0.755750i 0.224677 + 1.56266i −0.959493 0.281733i 0.621994 0.717820i
See all 80 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.q.f 80
23.c even 11 1 inner 483.2.q.f 80
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.q.f 80 1.a even 1 1 trivial
483.2.q.f 80 23.c even 11 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{80} - T_{2}^{79} + 13 T_{2}^{78} + 9 T_{2}^{77} + 93 T_{2}^{76} + 105 T_{2}^{75} + 1004 T_{2}^{74} + \cdots + 2374681 \) acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\). Copy content Toggle raw display