gp: [N,k,chi] = [483,2,Mod(64,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.64");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 0, 12]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [80,1,-8,-9,13]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{80} - T_{2}^{79} + 13 T_{2}^{78} + 9 T_{2}^{77} + 93 T_{2}^{76} + 105 T_{2}^{75} + 1004 T_{2}^{74} + \cdots + 2374681 \)
T2^80 - T2^79 + 13*T2^78 + 9*T2^77 + 93*T2^76 + 105*T2^75 + 1004*T2^74 + 696*T2^73 + 7430*T2^72 + 10512*T2^71 + 57682*T2^70 + 54891*T2^69 + 548703*T2^68 + 400302*T2^67 + 3655863*T2^66 + 5323126*T2^65 + 27412148*T2^64 + 31906545*T2^63 + 239491414*T2^62 + 247745707*T2^61 + 1537990068*T2^60 + 2206019610*T2^59 + 8553037783*T2^58 + 13283015758*T2^57 + 46469524266*T2^56 + 54868772773*T2^55 + 232758872756*T2^54 + 191362977629*T2^53 + 1041500084782*T2^52 + 548706916315*T2^51 + 4134966994106*T2^50 + 608694148183*T2^49 + 16125804599689*T2^48 - 4823893620065*T2^47 + 59050617599957*T2^46 - 35322350479809*T2^45 + 179880692993294*T2^44 - 173238811135661*T2^43 + 528291340707625*T2^42 - 471335101010884*T2^41 + 1206782337553237*T2^40 - 1444073305830325*T2^39 + 2855677678889009*T2^38 - 4009594778135168*T2^37 + 8454615173402360*T2^36 - 14715592729218666*T2^35 + 26035052277013994*T2^34 - 38527099371165473*T2^33 + 64185768393592166*T2^32 - 87824046165388552*T2^31 + 144280604082859761*T2^30 - 226337453360918386*T2^29 + 392653366552092949*T2^28 - 545965441015640641*T2^27 + 679638655120398523*T2^26 - 800137318029596865*T2^25 + 859964280793302836*T2^24 - 873130028223802119*T2^23 + 843845205170503528*T2^22 - 566016397823363804*T2^21 + 402050587852662061*T2^20 - 164946791860454468*T2^19 + 60898278709115479*T2^18 + 71264135369522851*T2^17 - 88047337824948723*T2^16 + 46429782815957759*T2^15 + 23804001650443634*T2^14 - 17661997363832274*T2^13 + 8850256051158333*T2^12 - 1058210071990660*T2^11 - 478253453000277*T2^10 + 433839999735287*T2^9 - 30862601748541*T2^8 + 2669739060284*T2^7 + 8053866039945*T2^6 - 2514771487785*T2^5 + 699886407536*T2^4 - 61711045204*T2^3 + 3693073622*T2^2 - 115009453*T2 + 2374681
acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\).