Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(64,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 0, 12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.64");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.q (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 | −1.87100 | − | 0.549377i | 0.654861 | − | 0.755750i | 1.51634 | + | 0.974491i | −0.563341 | + | 3.91812i | −1.64044 | + | 1.05425i | −0.415415 | − | 0.909632i | 0.252236 | + | 0.291095i | −0.142315 | − | 0.989821i | 3.20654 | − | 7.02134i |
64.2 | −1.43941 | − | 0.422649i | 0.654861 | − | 0.755750i | 0.210759 | + | 0.135447i | 0.271386 | − | 1.88753i | −1.26203 | + | 0.811057i | −0.415415 | − | 0.909632i | 1.71869 | + | 1.98348i | −0.142315 | − | 0.989821i | −1.18840 | + | 2.60223i |
64.3 | 0.345617 | + | 0.101482i | 0.654861 | − | 0.755750i | −1.57335 | − | 1.01113i | −0.475765 | + | 3.30902i | 0.303026 | − | 0.194743i | −0.415415 | − | 0.909632i | −0.912937 | − | 1.05359i | −0.142315 | − | 0.989821i | −0.500239 | + | 1.09537i |
64.4 | 0.888980 | + | 0.261028i | 0.654861 | − | 0.755750i | −0.960357 | − | 0.617184i | 0.251813 | − | 1.75140i | 0.779430 | − | 0.500909i | −0.415415 | − | 0.909632i | −1.90611 | − | 2.19976i | −0.142315 | − | 0.989821i | 0.681020 | − | 1.49123i |
64.5 | 1.81443 | + | 0.532766i | 0.654861 | − | 0.755750i | 1.32583 | + | 0.852056i | 0.289215 | − | 2.01153i | 1.59084 | − | 1.02237i | −0.415415 | − | 0.909632i | −0.525052 | − | 0.605943i | −0.142315 | − | 0.989821i | 1.59644 | − | 3.49571i |
64.6 | 2.47754 | + | 0.727473i | 0.654861 | − | 0.755750i | 3.92650 | + | 2.52341i | −0.135670 | + | 0.943603i | 2.17223 | − | 1.39601i | −0.415415 | − | 0.909632i | 4.51049 | + | 5.20538i | −0.142315 | − | 0.989821i | −1.02257 | + | 2.23912i |
85.1 | −1.56944 | + | 1.81123i | −0.841254 | + | 0.540641i | −0.532780 | − | 3.70557i | 1.21760 | + | 2.66617i | 0.341071 | − | 2.37220i | 0.959493 | − | 0.281733i | 3.51550 | + | 2.25928i | 0.415415 | − | 0.909632i | −6.73999 | − | 1.97904i |
85.2 | −1.10975 | + | 1.28072i | −0.841254 | + | 0.540641i | −0.124067 | − | 0.862907i | −0.209554 | − | 0.458859i | 0.241171 | − | 1.67738i | 0.959493 | − | 0.281733i | −1.60841 | − | 1.03366i | 0.415415 | − | 0.909632i | 0.820221 | + | 0.240839i |
85.3 | −0.476363 | + | 0.549752i | −0.841254 | + | 0.540641i | 0.209324 | + | 1.45588i | −1.25822 | − | 2.75513i | 0.103524 | − | 0.720022i | 0.959493 | − | 0.281733i | −2.12399 | − | 1.36500i | 0.415415 | − | 0.909632i | 2.11401 | + | 0.620729i |
85.4 | 0.451295 | − | 0.520822i | −0.841254 | + | 0.540641i | 0.217041 | + | 1.50955i | 0.918881 | + | 2.01207i | −0.0980757 | + | 0.682131i | 0.959493 | − | 0.281733i | 2.04365 | + | 1.31337i | 0.415415 | − | 0.909632i | 1.46262 | + | 0.429463i |
85.5 | 0.767372 | − | 0.885594i | −0.841254 | + | 0.540641i | 0.0892119 | + | 0.620482i | −1.61200 | − | 3.52979i | −0.166766 | + | 1.15988i | 0.959493 | − | 0.281733i | 2.58953 | + | 1.66419i | 0.415415 | − | 0.909632i | −4.36297 | − | 1.28108i |
85.6 | 1.48993 | − | 1.71948i | −0.841254 | + | 0.540641i | −0.452064 | − | 3.14417i | 1.32209 | + | 2.89498i | −0.323794 | + | 2.25204i | 0.959493 | − | 0.281733i | −2.25185 | − | 1.44718i | 0.415415 | − | 0.909632i | 6.94768 | + | 2.04002i |
127.1 | −2.26640 | + | 1.45653i | 0.142315 | − | 0.989821i | 2.18428 | − | 4.78290i | 3.84207 | − | 1.12813i | 1.11916 | + | 2.45062i | 0.654861 | + | 0.755750i | 1.24916 | + | 8.68812i | −0.959493 | − | 0.281733i | −7.06452 | + | 8.15290i |
127.2 | −1.70473 | + | 1.09556i | 0.142315 | − | 0.989821i | 0.875006 | − | 1.91600i | −0.251997 | + | 0.0739930i | 0.841802 | + | 1.84329i | 0.654861 | + | 0.755750i | 0.0306675 | + | 0.213297i | −0.959493 | − | 0.281733i | 0.348522 | − | 0.402215i |
127.3 | −0.539950 | + | 0.347005i | 0.142315 | − | 0.989821i | −0.659696 | + | 1.44453i | −3.99137 | + | 1.17197i | 0.266630 | + | 0.583838i | 0.654861 | + | 0.755750i | −0.327744 | − | 2.27951i | −0.959493 | − | 0.281733i | 1.74846 | − | 2.01783i |
127.4 | 0.486928 | − | 0.312930i | 0.142315 | − | 0.989821i | −0.691656 | + | 1.51452i | −1.52427 | + | 0.447565i | −0.240447 | − | 0.526506i | 0.654861 | + | 0.755750i | 0.301897 | + | 2.09974i | −0.959493 | − | 0.281733i | −0.602152 | + | 0.694921i |
127.5 | 0.978856 | − | 0.629072i | 0.142315 | − | 0.989821i | −0.268403 | + | 0.587721i | 2.45426 | − | 0.720637i | −0.483364 | − | 1.05842i | 0.654861 | + | 0.755750i | 0.438177 | + | 3.04759i | −0.959493 | − | 0.281733i | 1.94904 | − | 2.24931i |
127.6 | 1.96460 | − | 1.26257i | 0.142315 | − | 0.989821i | 1.43472 | − | 3.14161i | 0.650234 | − | 0.190926i | −0.970126 | − | 2.12428i | 0.654861 | + | 0.755750i | −0.483142 | − | 3.36033i | −0.959493 | − | 0.281733i | 1.03639 | − | 1.19606i |
169.1 | −0.322450 | + | 2.24269i | −0.415415 | − | 0.909632i | −3.00670 | − | 0.882847i | −0.335539 | − | 0.387233i | 2.17397 | − | 0.638336i | −0.841254 | − | 0.540641i | 1.06701 | − | 2.33642i | −0.654861 | + | 0.755750i | 0.976638 | − | 0.627647i |
169.2 | −0.222029 | + | 1.54425i | −0.415415 | − | 0.909632i | −0.416411 | − | 0.122269i | −2.19333 | − | 2.53124i | 1.49693 | − | 0.439538i | −0.841254 | − | 0.540641i | −1.01493 | + | 2.22239i | −0.654861 | + | 0.755750i | 4.39584 | − | 2.82504i |
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.q.e | ✓ | 60 |
23.c | even | 11 | 1 | inner | 483.2.q.e | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.q.e | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
483.2.q.e | ✓ | 60 | 23.c | even | 11 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{60} + T_{2}^{59} + 8 T_{2}^{58} - 10 T_{2}^{57} + 32 T_{2}^{56} - 136 T_{2}^{55} + 387 T_{2}^{54} + \cdots + 591361 \) acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\).